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Momentum filter using resonant Zener tunneling
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We consider the formation of a double barrier structure which includes both the valence and conduction
bands in an InSb/InAISb quantum well system and demonstrate basic features of the transport process through
this structure, which exhibits Zener tunneling. In particular, we employ an eight-band model and the Landauer-
Biittiker formalism [Phys. Rev. B 31, 6207 (1985)] to investigate the transport process which under high
confinement involves resonant energy levels due to the induced quasibound states in the valence bands. The

mechanism of momentum filtering, taking advantage of resonant Zener tunneling, is shown to give improved
performance at elevated temperatures compared with a unipolar double barrier resonant tunneling structure.
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I. INTRODUCTION

The Zener tunneling mechanism,! which involves inter-
band tunneling through the energy gap of the corresponding
material, i.e., tunneling from the conduction band into the
valence bands and vice versa, has been well studied for bulk
semiconductors®™ and observed, for example, in heavily
doped p-n diode structures under a high reverse bias
voltage.*> One interesting consequence of the tunneling pro-
cess is the increase of the current as a function of reverse
bias up to the breakdown condition, a feature that makes
tunnel diodes attractive in solid state devices for achieving
fast switching times and fabricating low-power
electronics.®® Tunnel diodes also give rise to so-called nega-
tive differential resistance,®'? an effect which is revealed in
the current versus applied voltage diagram and is widely
studied and employed in nanostructures.!!-13

As has been demonstrated, Zener interband tunneling can
also be induced in a two-dimensional electron gas (2DEG)
system!*!> for electric fields of order MV/cm and the appro-
priate band bending conditions which are achieved via band
engineering. The more complicated resonant Zener tunneling
mechanism has been studied theoretically in p-i-n diodes!'®
and demonstrated experimentally by Morifuji et al.'”

In this work, we deal with the so-called Zener double
barrier structure'® (ZDBS) which involves resonant Zener
tunneling and can be formed in a narrow gap quantum well
material due to a well-localized high electric field from a
surface gate. We use an eight-band model and the Landauer-
Biittiker formalism in order to demonstrate a momentum fil-
ter based on resonant Zener tunneling and compare the
mechanism with that in a conventional unipolar double bar-
rier structure (DBS).!%?° The efficiency of the ZDBS sug-
gests that we can use this system to probe Zener properties in
surface gated narrow gap 2DEG systems up to room tem-
perature.

This paper is organized as follows. In Sec. II, we describe
an appropriate device geometry and the basic model. In Sec.
III, we present the main results, and Sec. IV summarizes the
work.

II. DEVICE GEOMETRY AND BASIC MODEL

A. Zener double barrier structure

A possible device geometry to form a ZDBS is shown
schematically in Fig. 1(a). The gates G, and G, on the sur-
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face of a quantum well structure control the transverse con-
finement in the plane of the 2DEG, whereas the additional
gate G controls the confinement along the transport direc-
tion z. Back gates can also be used for a more efficient con-
trol of the potential landscape.?!"*? For a narrow gap quantum
well structure such as InSb/In;_ Al Sb, considered in this
work, and sufficiently high electric field, the potential profile
along z is shown in Fig. 1(b). This simplified picture of the
band diagram shows that the ZDBS involves well-separated
discrete energy levels in the valence band due to the induced
confinement in all three spatial dimensions. These quantized
levels arise from the heavy and light hole bands with the
former being much more closely spaced due to the higher
mass. In particular, confined energy levels in the valence
band above the asymptotic conduction band edge have qua-
sibound character and give rise to resonant Zener tunneling
in and out of the confined region under gate Gjs.

(a)

(b)

¢

v

FIG. 1. (a) Schematic illustration of a possible gate design to
induce the ZDBS. The gates G| and G, control transverse confine-
ment in the plane of the 2DEG and the gate G; controls confine-
ment along the transport z direction. (b) Simplified schematic illus-
tration of the potential landscape of the ZDBS in the plane of the
2DEG and along the transport direction (for a detailed description
of the band structure, see the text). The solid lines represent con-
duction (E,) and valence band (E,) edges. The dotted line indicates
the Fermi energy (Ey), and the dashed lines indicate quantized en-
ergy levels in the valence band due to the strong confinement. The
energy levels above the conduction band edge, which correspond to
quasibound states, allow resonant Zener tunneling.
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Since the aim of this work is to demonstrate theoretically
the mechanism of momentum filtering using resonant Zener
tunneling in an InSb/In;_,Al,Sb quantum well, without try-
ing to model specific experimental devices, we have assumed
for simplicity a constant potential in confinement regions and
a linear approximation to the potential shown schematically
in Fig. 1(b) along the transport direction. Specifically, for our
work the ZDBS potential landscape along z is modeled using
a linear potential approximation, i.e., V(z)=—(V,/L)|z|+V,,
(V,>0) when —L<z<L and V(z)=0 otherwise, which re-
sults in a constant electric field of magnitude £=V,/L. We
note that a more accurate self-consistent calculation in all
three spatial dimensions, which takes into account the hole
charge in the valence bands, would change the position of
the resonances; however, the main mechanism that we de-
scribe below would still be efficient provided the gate bias is
adjusted to maximize the transmitted current according to the
resulting position of the resonances.

The resonant tunneling mechanism through the ZDBS is
analogous to that occurring in a unipolar DBS, which is the
fundamental element in a resonant tunneling diode.!*?° This
is because an electron in the conduction band will tunnel
through the classically forbidden regions that act as barriers.
The barrier thickness depends on the value of the energy gap
and the gate-induced electric field. To be specific, the effec-
tive Zener barriers become narrower with increasing electric
field and decreasing energy gap. In addition, when the con-
finement is strong between the barriers, i.e., in the valence
band, resonant tunneling can take place due to the appear-
ance of quasibound states, leading to perfect transmission on
resonance. This two-step process includes tunneling from the
conduction to the valence bands and vice versa. By contrast,
in the DBS we are dealing with resonant tunneling through
barriers within the same band. For this reason, the theoretical
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approach for the ZDBS requires a multiband model which
we describe below.

B. Band structure model

The structures of the bound and quasibound states under
gate G5 in Fig. 1 involve both light and heavy holes. Kane’s
eight-band model**~? includes these bands and in the bulk
they may be decoupled, separating the heavy hole band from
the coupled conduction and light hole valence bands (two-
band model), with the split-off band somewhat lower in en-
ergy. For the ZDBS problem, this approach is inadequate in
two respects. Firstly, because of lateral confinement (due to
the quantum well confinement in the x direction and gates G,
and G, in the y direction), decoupling of the eight-band
model is no longer possible. Secondly, the mass of the heavy
holes determines the number and properties of the reso-
nances, and Kane’s approximation (which does not include
the dispersion of the heavy holes) is not appropriate.

A more refined model that includes heavy hole dispersion
and reproduces the correct effective mass has already been
used in the literature for the description of GaAs/AlGaAs
quantum wells using a k-p theory approach.?®?’ In fact, this
model is based on some earlier work in which the extended
eight-band Kane model was employed for calculations in a
quantum well structure.”® The approach of Schuurmans and
co-workers?0~28 uses Kane’s eight-band model and a basis set
that takes the axis of angular momenta to be perpendicular to
the z axis. It also includes the Dresselhaus®® and the free
electron terms. This is similar to Kane’s original eight-band
model but has the advantage that the five parameters it uses
to describe the electron and hole states refer to effective
masses that are more readily obtained for a specific material
(in our case InSb). The resulting 8 X 8 Hamiltonian has the
following form:

3P, 0 -P. —\2p. 0

Ey G \EG+ -P; 0 -\3G. G,

E, -G, - \J’EPi 36 0 VEGQ

Ey, 0 —er -\26, 2 ’ (1)

E. V2P, -P, —\3P_

E, G G

E,, -G_
Epn

|
where only the upper triangle of the Hermitian matrix is E,=-A-ve,

shown. This eight-band Hamiltonian together with the func-
tional form of all the terms is described in detail in Ref. 27.

The diagonal elements may be written as Ep=—vie+ vsey,

E,=E,+se, where E,=0.24 ¢V is the energy gap, A=0.81 eV is the spin-
orbit splitting in InSb, and s and v, , are dimensionless pa-
Ey=-vye—ye, rameters that describe the coupling of the s, x, y, z states to
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the other bands.?” Their values are derived by the effective
masses using the relationships

mlmy, =y = 2y,,

r
mylmeq,=s+ )\(1 + 5),
mo/mlh =7 + 2'}/2 + )\,
r
mo/mm: Nt ?’

4m,,P2
34%E,’

_E

r= ,
E,+A
where m,, is the free electron mass and P is the Kane mo-

mentum matrix element P= \/ghc, with ¢=¢,/300 and c, the
speed of light. For our work, the effective masses have the
values®® m,;,=0.32m,, m;,=0.016m,, and m_,=0.014m, for
the heavy hole, light hole, and conduction band, respectively,
which give s=24.8, y,=10.9, and y,=3.9. The energy terms

e and e are

ﬁ2
€= E(k§+k§+/€?),

~—ﬁ—22i€2 K- k>
€= o, B k=K,

with k;:—i(a/ dz). The transverse momenta k, and k, are
given directly from the confinement in the x and y directions.
For simplicity, we have modeled this by particle in a box
standing waves with k,=n,7/L, and k,=n,m/L,, where n,,
n,=1,2... and L,, L, the corresponding widths in x and y
directions, respectively. Note that for the calculations we add
the potential term V(z) of the ZDBS to the diagonal ele-
ments. Finally, the off-diagonal terms can be expressed as

1 -
P = \/;(ipkZ +Bkk,),

1 _
- \fgbp(kx + k) + BE(k, = ik)],

G = \”27’2€~1,
- =
Gz =- \3 Y267 + l2\”3')/3kxk .

G. = 6yski(k, £ ik,).

The new dimensionless parameter 7y; describes the aniso-
tropy of the energy band structure around the I" point when
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v, # 73 and its value y;=4.3 follows from the relationship
my/my,=y,—-2y; and my;,=0.44m, (Ref. 30). These
equations contain another energy term which is e,
=h2(kf—k$)/ 2m, and Kane’s B parameter that describes the
bulk inversion asymmetry splitting.”? In our calculations, we
set B=0 since we will not consider small spin-splitting ef-
fects. Note that the effective masses that are used for the
calculation of vy, , 3 and s are independent of the value of B
(Refs. 26 and 27). It should also be mentioned that the rela-
tionships between the 7, , 5 that this formalism uses and the
Luttinger 7y, ;, ¥, and y;; parameters®! are y, ;=7y,+\/2,
Y2..="Y>+N/4, and y;;=7y;+\, where N is a dimensionless
parameter whose exact expression is given in Ref. 27 and in
our study was calculated to be A=45.55.

C. Transport model

Transport through the ZDBS is determined by solving the
time-independent Schrodinger equation with Hamiltonian (1)
as a scattering problem, in which incident electrons at the
Fermi energy in the conduction band are transmitted or re-
flected. In these calculations, transmission in the z direction
for each incident electron and allowed transverse mode (de-
fined by n, and n,) is computed using a finite difference
approximation to the eight-component Schrédinger equation.

In particular, we have adopted the scattering technique
developed by Sanvito et al.,’> which is based on the
Landauer-Biittiker formalism,3? to calculate conductance
from transmission by summing over all modes. This numeri-
cal technique assumes an arbitrary scattering region attached
to two semi-infinite crystalline leads and extracts all the rel-
evant transport information assuming coherent propagation.
The method is also easily extended to finite temperature cal-
culations by integrating over a Fermi distribution in the leads
as required in subsequent calculations. We also mention that
our approach to calculate transmission amplitude for an in-
cident energy is valid within the low-bias regime when the
Landauer-Biittiker formalism is applicable.

As described in Ref. 32, the first main and general step
involved in this method is the calculation of Green’s function
(GF) of an infinite lead and the application of boundary con-
ditions to obtain the GF for the semi-infinite leads attached
to the scattering region. The next step is the construction of
an effective Hamiltonian H, taken from the scatterer Hamil-
tonian and its couplings to the leads by eliminating the de-
grees of freedom of the system with a method implemented
by the Gaussian elimination.’* The degrees of freedom of the
our system are 8N, where N are the mesh points in the trans-
port direction. Because H,; is energy dependent, we can
calculate the GF of the system for each given energy. The
total GF of the system is then calculated via Dyson’s
equation®?

G(E)=[g " (E) - H (E)]™", 2)

where
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g1(E) 0 )7 3)

0 gr(E)

with g; and gp the GF of the left and the right lead, respec-
tively. The total GF, in turn, allows the calculation of the
scattering matrix (S matrix) that relates the outgoing wave
amplitudes to the ingoing amplitudes at the leads, and thus
the transmission and reflection probabilities. Finally, the con-
ductance, considering the contribution from all open chan-
nels, is determined within the Landauer-Biittiker formalism
by the expression G=G,X,T, with T, the transmission prob-
ability of the nth channel and G,=2¢%/h.

We point out that the Hamiltonian H of our scattering
problem has to be separated into an intrapart H, and an in-
terpart Hy, i.e., H=H,+ H,. This is because the z direction of
transport is discretized so that for each mesh point we have
an eight-band Hamiltonian (slice) in a particular potential
value that appears in the diagonal terms. H, is Hermitian and
carries all the information about a particular mesh point and
H, links H, to the adjacent slices. Then the Schrodinger
equation for the system can be written as

H,|(2)y + H |z + 1)y + H_j|f(z - 1)) = E|(2)), (4)

with H_, :HI, E the corresponding incident energy, and
|¢4(z)) a column vector which corresponds to the slice at the
z position. Using Bloch’s theorem, |¢(z)) can be written as
|(z))=e'*7|k.) with |k,) an eight-component column vector,
corresponding to the degrees of freedom of each slice.

In our case, H; includes only the k.-dependent terms of H
and H, the remaining elements that do not participate in the

g(E)= (

discretization. The energy terms that contain all k,, ky, k;, are
separated into two parts, which belong to H, and to H,. For
example, the diagonal term

ﬁ2
Ecb=Eg+sE(k§+k§+]€§) (5)
is written as E.,=E, +E,,, with
h? h?
Eg1=s—k, Eg,=E,+s— (K +k°). 6
ch,1 Szmo z ch,c g Szmo( X )) ( )

Hence, the term E ;| is the corresponding element of H, and
the term £, , of H,,.

III. MOMENTUM FILTER MECHANISM

Before presenting results showing how the ZDBS can act
as a momentum filter, we illustrate the behavior of the con-
ductance for the simple case of very high confinement in the
x and y directions such that only the lowest transverse mode
is relevant (quantum wire). Figure 2 shows conductance in
quantum units of G,=2¢?/h as a function of incident energy,
which is measured relative to the conduction band edge, for
temperature 7=0 K and for an electric field of &
=0.47 MV/cm. The conductance displays resonances for
some characteristic energies and increases smoothly close to
unity with increasing energy. Analysis of the data reveals that
the wide resonance, which occurs at energy ~0.055 eV,
arises from a light hole quasibound state, while the narrow
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FIG. 2. Conductance (in units of G,=2¢*/h) as a function of
energy derived from the eight-band model, for an electric field of
£=0.47 MV/cm.

resonances are due to heavy hole states. The heavy hole reso-
nances are relatively difficult to resolve requiring a very fine
energy step and as a result, due to the numerical approach,
yield a conductance slightly less than unity. An interesting
feature is that the light hole resonance is much wider even
than the heavy hole resonances that occur at higher energies
because of the relative effective mass ratio. We also note that
the split-off valence band does not generate resonances since
itis ~0.81 eV lower in energy than the heavy and light hole
bands.

We can estimate the characteristic energies of the reso-
nances by determining the bound energy states (E,) of a
one-dimensional quantum well that is identical to the Zener
potential, since in the transport process these states have qua-
sibound character allowing nearly perfect transmission. If we
consider that the well is formed by an electric field &£, then
for a particle of mass m" the Wentzel-Kramers-Brillouin
(WKB) approximation yields

37 1 2/3 eZﬁZgZ 1/3
T
m

Using InSb parameters for the heavy and light hole masses
and the electric field £=0.47 MV/cm that we used before,
we can determine to a good approximation the position of
the resonances especially for the light hole band. Although
such a check for the very narrow heavy hole resonances is
not ideal, by shifting the corresponding heavy hole valence
band edge we can monitor their number and position and
thus verify their origin.

As it is well known from conventional p-n junctions, the
tunneling process for a specific incident energy is efficient as
long as the transverse momentum, controlled by k, and &, is
much smaller than the forward momentum k.. In the ZDBS,
the increase of transverse momentum lowers the conductance
because it induces a larger effective band gap, leading to
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FIG. 3. (Color online) Conductance versus transverse momen-
tum k =k (n,,n,) for T=0 K and three different electric fields.
These results are obtained from the eight-band model with Fermi
energy fixed to give maximum conductance G, for the lowest mode
n.=n,=1 (light hole resonance).

narrower resonances. Control of k, and k, can change the
conductance drastically and this allows filtering of the mo-
mentum in the sense that the lower modes with larger for-
ward component have the highest transmission probability
close to resonance.

To analyze this behavior, we choose the transverse con-
finement lengths equal to L,=L,=L,=200 nm (though the
behavior is quite general) and perform transport calculations.
For zero temperature, we set the Fermi energy of the system
to yield maximum conductance for n,=n,=1 which comes
from a light hole resonance and then calculate conductance
for all the combinations of n, and n, of the allowed modes.
As we see in Fig. 3, the conductance as a function of trans-
verse momentum k l:\rkﬁ+k§:77\/nf+n€/L, maintains a
relatively high value only for the few lowest modes for all
the values of electric field, and drops to zero with increasing
k. As in a unipolar DBS, the increase of transverse momen-
tum leads to narrower conductance resonances which even-
tually become unresolvable at finite temperatures and the
transmission is effectively blocked. Additionally, to under-
stand the drop in conductance of the ZDBS, we need to
consider that under strong transverse confinement the effec-
tive band gap increases, inducing stronger Zener barriers and
thus lower tunneling probability. Note that this feature is not
present in a DBS since the width of the rectangular barriers
is fixed. We can see some of these effects by using the ap-
proximate quasirelativistic formula for the allowed miniband
energies E=i\/§P2(k2l+k§)+(%)2 derived from the two-
band model,? giving for k,~0 (conduction band edge) an
effective energy gap of Eg=2 %szi + (%)2 which increases
with transverse momentum k ;. Since the 7=0 K resonance
widths have approximately an exponential decrease with ef-
fective band gap, as derived from a WKB approach,'® the
transmission through the higher transverse modes becomes
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FIG. 4. (Color online) Conductance versus Fermi energy for the
ZDBS at temperature 7=77 K. Note that any extra resonances due
to the heavy hole band are averaged out at finite temperatures. The
curves correspond to different values of n,, whereas in all cases
n,=1.

Vs

too narrow to resolve, thus biasing the transmitted distribu-
tion to the forward direction. For example, with L,=L,
=200 nm and n,=1, the effective band gap almost doubles
with n,~9 and the resonance width decreases 40 times. The
modes 7, and n, for which the resonances are too narrow to
resolve depend, in general, on the well widths L, and L, and
the Fermi energy. It is clear that if the well width is suffi-
ciently small, the resonances will eventually not be resolved
even for the second mode (i.e., n,=1, n,=2).

Another interesting feature shown in Fig. 3 is the strong
dependence of the conductance on electric field. For ex-
ample, an increase of the field from 0.23 to 0.47 MV/cm for
a fixed incident energy leads to an increase of the conduc-
tance of nearly 0.8G,, units for k| ~6X 10" m~!. This is be-
cause the increase in electric field results in broader reso-
nances (due to the narrower Zener barriers), thus giving
higher tunneling probability when we detune away from
minimum k | .

To extend the analysis to finite temperatures, we integrate
over the Fermi distribution, giving the one-channel
conductance® G(Ej)=G,[T(E)F{(E-Er)dE, where F(E)
is the thermal broadening function incorporating the Fermi-
Dirac distribution in the leads. The value of the energy gap is
given by the expression®® E,(T)=E,(0)-aT*/(b+T), with a
=0.6 meV K~! and »=500 K, though this gap variation has a
relatively small effect. In Figs. 4 and 5, we plot conductance
versus Fermi energy for the ZDBS (for a field of &
=0.47 MV/cm) and the DBS, respectively, for a temperature
of T=77 K and some combinations of transverse modes. It is
important to observe that for a realistic comparison, the
maximum value of conductance (for the lowest mode) has
been chosen to be the same for both structures, i.e., ~0.5G,,
which arises from the ZDBS and DBS structures which have
the same barrier width and height. In Fig. 4, the conductance
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FIG. 5. (Color online) Conductance versus Fermi energy for the
DBS at temperature 7=77 K. For all the resonances, n,=1 and
different values of n, are considered.

peak induced by a light hole resonance drops with increasing
modes because, similar to the zero temperature case, the in-
creased confinement leads to an increase of the effective
band gap and hence narrower resonances. Note that at finite
temperatures, the very sharp resonances due to the heavy
holes are suppressed and no longer resolved. On the other
hand, as shown clearly in Fig. 5 for the DBS, the increase of
transverse confinement has a much weaker effect on the peak
of the conductance since the resonance narrowing is much
weaker.

By comparing Figs. 4 and 5, we demonstrate the im-
proved efficiency of the ZDBS as a momentum filter com-
pared to a DBS. For a more detailed description, we have
performed calculations for a range of temperatures and de-
termined the normalized quantity G/Gy,,,., as a function of
transverse momentum k | , with Gy,,,., the conductance of the

1
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lowest mode and E chosen such that Gy, 1s maximum
(light hole resonance). Figure 6(a) for the ZDBS for an elec-
tric field of £=0.47 MV/cm shows a negligible dependence
on temperature even at temperatures as high as 7=300 K.
This is because there is a significant drop in the height of the
resonances as Fig. 4 shows, and as a result the thermal
broadening at high temperatures has a small effect on the
conductance. Note that we have also verified this behavior
for other values of electric fields, within the order of MV/cm,
which indicates that the ZDBS is robust to small changes of
the induced potential. On the other hand, in the unipolar
DBS for which results are shown in Fig. 6(b), the effect of
broadening is clear and becomes much stronger with increas-
ing temperature than that in the ZDBS. This is due to the fact
that in the DBS, the increase of transverse confinement has a
relatively small effect on the conductance as Fig. 5 indicates,
simply because it results in transmission through slightly nar-
rower quasibound states but not through substantially stron-
ger tunnel barriers as in the ZDBS.

The conductance versus k; diagrams show that if L, and
L, are small and very few modes are allowed, then there can
be a situation in which only the lowest mode gives a non-
negligible contribution to the conductance. It is interesting to
determine how small the wire width needs to be in order to
give a momentum filter for which most of the transmitted
electrons are in the lowest mode (maximum forward momen-
tum). For an estimation, we choose 7=300 K and determine
the wire width which gives the very small value of
G/Gpe;=0.01 for the second higher mode. In the ZDBS
and for £=0.47 MV/cm the wire width is ~45 nm, whereas
for the DBS we calculate this width to be less than 10 nm,
which shows clearly the potential advantages of a device
based on Zener tunneling for momentum filtering.

IV. SUMMARY AND DISCUSSION

We have demonstrated a momentum filter using the
ZDBS which includes both the conduction and valence
bands of an InSb quantum well system. This structure can be

I I
L T(K) |
08 0
77
L - 150 |
- 300

5 06 —

% FIG. 6. (Color online) Dependence of normal-
ol r 7 ized conductance G/Gy,,,.;; On transverse mo-
B 04l | mentum k; in an InSb channel for various tem-

' peratures. Results for (a) the ZDBS for an electric
L 1 field £=0.47 MV/cm and (b) the unipolar DBS.
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formed under a high electric field on the order of MV/cm due
to a top gate voltage and leads to a band bending that allows
Zener interband tunneling in a lateral configuration. The be-
havior of the conductance was investigated by employing a
combination of an eight-band model>*® and the Landauer-
Biittiker transport formalism.??

The conductance displays resonances due to heavy and
light hole quasibound states whose width can be tuned with
electric field, energy gap, temperature, and transverse mo-
mentum. With increasing transverse momentum or energy
gap, or with decreasing electric field, the resonances become
narrower and the conductance gradually drops to zero. In the
opposite limits, nonresonant tunneling can take place and the
conductance can have an appreciable value for a wide range
of incident energies. The heavy hole resonances are difficult
to resolve because of their very small width and for high
temperatures 7>77 K they are almost totally suppressed.
Hence, in the limit of high temperatures, the conductance
peaks are only due to resonances resulting from the interac-
tion between light hole and conduction bands.
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The increase of the transverse momentum results in a sig-
nificant drop in conductance for the ZDBS, because it gives
rise to an enhanced narrowing of the quasibound states com-
pared with an ordinary DBS. This is due to a larger effective
band gap which leads to strong tunnel barriers between con-
duction and valence band states. We have shown how we can
exploit the Zener resonant tunneling mechanism to filter mo-
mentum with only a few modes (the modes with the largest
forward momentum) contributing to conductance, with
Fermi energy chosen to give maximum conductance for the
lowest allowed transverse momentum corresponding to a
light hole resonance. Unlike in a DBS, in the ZDBS the
conductance versus transverse momentum increases very
little with increasing temperature, offering an efficient mo-
mentum filter in narrow gap 2DEG systems.
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