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Topological insulators are materials with a bulk excitation gap generated by the spin-orbit interaction that are
different from conventional insulators. This distinction is characterized by Z2 topological invariants, which
characterize the ground state. In two dimensions, there is a single Z2 invariant that distinguishes the ordinary
insulator from the quantum spin-Hall phase. In three dimensions, there are four Z2 invariants that distinguish
the ordinary insulator from “weak” and “strong” topological insulators. These phases are characterized by the
presence of gapless surface �or edge� states. In the two-dimensional quantum spin-Hall phase and the three-
dimensional strong topological insulator, these states are robust and are insensitive to weak disorder and
interactions. In this paper, we show that the presence of inversion symmetry greatly simplifies the problem of
evaluating the Z2 invariants. We show that the invariants can be determined from the knowledge of the parity
of the occupied Bloch wave functions at the time-reversal invariant points in the Brillouin zone. Using this
approach, we predict a number of specific materials that are strong topological insulators, including the
semiconducting alloy Bi1−xSbx as well as �-Sn and HgTe under uniaxial strain. This paper also includes an
expanded discussion of our formulation of the topological insulators in both two and three dimensions, as well
as implications for experiments.
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I. INTRODUCTION

In elementary solid-state physics textbooks, an insulator is
described as a material with an energy gap separating filled
and empty energy bands. A more sophisticated definition of
an insulator is that of a material for which all electronic
phenomena are local.1 Such a material is insensitive to
boundary conditions, so that in a multiply connected sample,
such as a ring, there is exponentially small sensitivity to
magnetic flux threading the holes. The simplest atomic insu-
lator, in which all electrons are tightly bound to atoms in
closed shells, clearly satisfies both properties. Ionic and co-
valent insulators do too. These band insulators are topologi-
cally equivalent in the sense that the Hamiltonian can be
adiabatically transformed into an atomic insulator without
going through any phase transitions. With regards to their
low-energy electronic behavior, conventional insulators are
equivalent to atomic insulators.

The existence of a bulk energy gap does not guarantee the
insensitivity to boundary conditions, and there exist phases
with bulk gaps, which are topologically distinct. In addition
to exotic strongly correlated phases,2,3 this fact arises even
for noninteracting electrons described within band theory.
The simplest example is the integer quantum Hall effect
�IQHE�. In two dimensions, a magnetic field introduces a
cyclotron gap between Landau levels, which may be viewed
as energy bands in the magnetic Brillouin zone. This phase
can exist even without Landau levels in the absence of a
uniform magnetic field,4 though a necessary condition is that
time-reversal symmetry be broken. Based on the band struc-
ture alone, it is difficult to tell the difference between the
IQHE state and a band insulator. The distinction between the
two is a topological property of the occupied bands which is
encoded into the Chern integer introduced by Thouless et al.5

Three-dimensional generalizations of the IQHE state, which
may be viewed as layered two-dimensional �2D� states, are
indexed by a triad of Chern integers.6 A hallmark of the

IQHE phases, which is intimately related to their topology, is
the existence of gapless chiral edge states which are robust in
the presence of disorder.7,8

Recently, new topological insulating phases for systems
with time-reversal symmetry have been discovered.9–15 In
two dimensions, the quantum spin-Hall phase is distin-
guished from a band insulator by a single Z2 invariant.10 This
phase exhibits gapless spin-filtered edge states, which allow
for dissipationless transport of charge and spin at zero tem-
perature and are protected from weak disorder and interac-
tions by time-reversal symmetry. In three dimensions, a time-
reversal invariant band structure is characterized by four Z2
invariants.13–15 Three of the invariants rely on the transla-
tional symmetry of the lattice and are not robust in the pres-
ence of disorder, leading to “weak topological insulators.”
The fourth invariant, however, is robust and distinguishes the
“strong topological insulator” �STI�.

Nontrivial Z2 invariants imply the existence of gapless
surface states. In particular, in the STI phase, the surface
states form a two-dimensional “topological metal,” in which
the Fermi arc encloses an odd number of Dirac points.15 This
leads to a quantized Berry’s phase of � acquired by an elec-
tron circling the surface Fermi arc, which does not change
under continuous perturbations.16,17 The � Berry’s phase also
signifies that with disorder, the surface states are in the sym-
plectic universality class and exhibit antilocalization.18 Thus,
the metallic surface states form a unique phase, which cannot
be realized in a conventional two-dimensional electron sys-
tem for which Dirac points must come in pairs.19

The purpose of this paper is twofold. First, we will ex-
plain the formulation of the Z2 invariants in somewhat more
detail than in Ref. 15, emphasizing the physical meaning of
the invariants and their relation to the surface states. Second,
we will develop a method for evaluating the Z2 invariants in
systems which have inversion symmetry. This allows us to
predict a number of specific materials to be strong topologi-
cal insulators.
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Most insulators are conventional insulators. In order to
find topological insulators experimentally, it is necessary to
develop criteria for recognizing them from their bulk band
structure. Clearly, a necessary condition is the existence of a
bulk energy gap which owes its existence to the spin-orbit
interaction. However, evaluating the Z2 invariants for a given
band structure is, in general, a difficult problem. To date,
three general approaches have been used.

�1� One powerful approach is to exploit adiabatic conti-
nuity to a Hamiltonian which has extra symmetry. We used
this method to identify the quantum spin-Hall phase in
graphene9,10 by arguing that the Hamiltonian for graphene is
adiabatically connected to a Hamiltonian in which the spin Sz

is conserved. With this extra conservation law, the system
can be characterized by a spin Chern number, which de-
scribes the quantized spin-Hall conductivity.20,21 The Z2 in-
variant can then be identified with the parity of the spin
Chern number. In the presence of Sz nonconserving terms
�which are inevitably present�, the spin Chern number loses
its meaning.22 However, the Z2 invariant retains its value and
characterizes the quantum spin-Hall phase.

Adiabatic continuity can also be used to establish that a
material is a band insulator if an adiabatic path can be found
which connects the material to an “atomic” limit. Moreover,
it can be argued that the Z2 invariant changes at an appropri-
ate quantum phase transition, where the bulk energy gap
goes to zero.12,14 In general, this approach requires a continu-
ous path to be found which connects the Hamiltonian in
question to a known phase.

�2� It is also possible to evaluate the Z2 invariant directly
with the knowledge of the Bloch wave functions for the oc-
cupied energy bands. In Ref. 22, we established a formula
for the invariant in terms of a Brillouin-zone integral. This is
analogous to the calculation of the Chern number as an inte-
gral of the gauge invariant Berry’s curvature.5,23 However,
unlike the Chern invariant, the integral for the Z2 invariant
also involves the Berry’s potential and requires a gauge in
which the wave functions are globally continuous. Since
time-reversal symmetry requires the Chern invariant to van-
ish, a globally continuous gauge is guaranteed to exist. How-
ever, finding a continuous gauge is not always simple.

�3� A third approach is to characterize the zeros of Pfaff-
ian function introduced Ref. 10. Though the Pfaffian is not
gauge invariant, its zeros can be determined without speci-
fying a continuous gauge. While this approach is tedious
�especially in three dimensions�, it has been successfully
implemented by Murakami24 to show that two-dimensional
bismuth bilayers realize a quantum spin-Hall phase.

In this paper, we will show that the presence of inversion
symmetry greatly simplifies the problem of identifying the Z2
invariants. We show that the invariants can be determined
from the knowledge of the parity of the occupied band eigen-
states at the eight �or four in two dimensions� time-reversal
invariant momenta �i in the Brillouin zone. Specifically, we
will show that the Z2 invariants are determined by the quan-
tities

�i = �
m=1

N

�2m��i� . �1.1�

Here, �2m��i�= ±1 is the parity eigenvalue of the 2mth occu-
pied energy band at �i, which shares the same eigenvalue
�2m=�2m−1 with its Kramers degenerate partner. The product
involves the 2N occupied bands. The Z2 invariant �=0,1,
which distinguishes the quantum spin-Hall phase in two di-
mensions and the strong topological insulator in three dimen-
sions, is then given by the product of all the �i’s,

�− 1�� = �
i

�i. �1.2�

The other three “weak” topological invariants in three di-
mensions are also determined by �i. Since the parity eigen-
values �n��i� are tabulated in the band theory literature, this
allows us to identify inversion symmetric topological insu-
lating materials. Moreover, exploiting adiabatic continuity
allows us to identify topological insulators which do not
have inversion symmetry but are adiabatically connected to
materials which have inversion symmetry.

Applying the above approach, we predict that the follow-
ing narrow gap semiconductors are strong topological insu-
lators: �1� the alloy Bi1−xSbx, which is semiconducting for
0.07�x�0.22, �2� �-Sn and HgTe under uniaxial strain, and
�3� the alloy Pb1−xSnxTe under uniaxial strain for x�xc in
the vicinity of the band inversion transition. The materials
�2� and �3� were suggested by Murakami et al.25 as candi-
dates for spin-Hall insulators. Those authors argued that
those materials share a large spin-Hall conductivity, as cal-
culated by a Kubo formula. Our analysis of these materials is
rather different, and we will show that PbTe is a conventional
insulator, despite its large spin-Hall conductivity, while
strained �-Sn and HgTe are topological insulators.

In Sec. II, we will present an expanded discussion of our
formulation of the Z2 invariants. Then, in Sec. III, we will
derive Eqs. �1.1� and �1.2� for problems with inversion sym-
metry. In Sec. IV, we will apply our method to a class of four
band tight-binding models, which includes the graphene
model as well as the three-dimensional �3D� model intro-
duced in Ref. 15. In Sec. V, we will apply Eqs. �1.1� and
�1.2� to deduce the Z2 invariants of several real materials
based on their known band structures. Readers uninterested
in the technical details can skip directly to Sec. V to read
about these applications. Finally, in Sec. VI, we will con-
clude with a brief discussion of the experimental implica-
tions for the topological insulating phases.

II. Z2 INVARIANTS IN TWO AND THREE DIMENSIONS

In this section, we will review our formulation of the
topological insulating phases. We begin in Sec. II A by de-
fining the time-reversal polarization. In Sec. II B, we develop
the Z2 characterization of a band structure as a topological
property of the occupied Bloch wave functions. In Sec. II C,
we show how the Z2 invariants determine the surface-state
spectrum. In Sec. II C, we consider a more general formula-
tion of the Z2 invariant as a sensitivity of a bulk crystal to
boundary conditions.
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A. Time-reversal polarization

In Ref. 22, we introduced the concept of the time-reversal
polarization, in the same spirit as charge polarization. This
allows for an interpretation of the Z2 invariants using a
Laughlin-type gedanken experiment on a cylinder.26 In the
ordinary quantum Hall effect, the Chern invariant can be
interpreted in a similar way. To motivate the time-reversal
polarization, we therefore begin with a discussion of the
charge polarization.

The charge polarization determines the surface charges
present in a finite system. Since electrons may be added or
removed from a surface, the charge polarization is defined
only modulo an integer.27–30 However, changes in the charge
polarization induced by adiabatic changes in the Hamiltonian
are well defined. In Laughlin’s gedanken experiment for the
integer quantum Hall effect, a quantum of magnetic flux h /e
is adiabatically inserted in a cylindrical quantum Hall sample
at filling �=N. The resulting transfer of N electrons from one
end of the cylinder to the other can be interpreted as a change
in the charge polarization of the cylinder. The Chern invari-
ant, which characterizes the integer quantum Hall state, pre-
cisely characterizes this quantized change in charge polariza-
tion.

The time-reversal polarization is a Z2 quantity, which
characterizes the presence or absence of a Kramers degen-
eracy associated with a surface. Like the charge polarization,
its value can be changed by adding an extra electron to the
surface. Thus, by itself, the time-reversal polarization is not
meaningful. However, changes in the time-reversal polariza-
tion due to adiabatic changes in the bulk Hamiltonian are
well defined. Specifically, the change in the time-reversal
polarization when half a flux quantum h /2e is threaded
through a cylinder defines a Z2 invariant, which is analogous
to the Chern invariant, and distinguishes topological insula-
tors.

B. Z2 invariants characterizing a band structure

The topological invariant characterizing a two-
dimensional band structure may be constructed by imagining
a long cylinder whose axis is parallel to a reciprocal-lattice
vector G and which has a circumference of a single lattice
constant. Then, the magnetic flux threading the cylinder
plays the role of the circumferential �or “edge”� crystal mo-
mentum kx, with 	=0 and 	=h /2e corresponding to two
edge time-reversal invariant momenta kx=
1 and kx=
2.
The Z2 invariant characterizes the change in the Kramers
degeneracy at the ends of this one-dimensional system be-
tween kx=
1 and kx=
2.

For a three-dimensional crystal, imagine a “generalized
cylinder” which is long in one direction �parallel to G� but,
in the other two directions, has a width of one lattice con-
stant with periodic boundary conditions. While this structure
cannot be pictured as easily as a regular cylinder, a distorted
�but topologically equivalent� version can be visualized as a
torus with a finite thickness. This “Corbino donut” is analo-
gous to the generalized cylinder in the same way the Corbino
disk is analogous to the regular cylinder. The “long” direc-
tion corresponds to the thickness of the torus, and the two

ends correspond to the inner and outer surfaces. This system
can be threaded by two independent magnetic fluxes, and
they correspond to the two components of the momentum
perpendicular to G. There are four time-reversal invariant
surface momenta 
a, corresponding to the two fluxes being
either 0 or h /2e. The band structure can be characterized by
the difference in the time-reversal polarization between any
pair.

The Z2 invariants can be deduced from the topological
structure of the Bloch wave functions of the bulk crystal in
the Brillouin zone. Consider a time-reversal invariant peri-
odic Hamiltonian H with 2N occupied bands characterized
by Bloch wave functions

��n,k� = eik·r�un,k� . �2.1�

Here, �un,k� are cell periodic eigenstates of the Bloch Hamil-
tonian

H�k� = e−ik·rHe+ik·r. �2.2�

We require ��n,k+G�= ��n,k� for reciprocal-lattice vectors G,
so that the Brillouin zone in which k is defined is a torus.
This implies �un,k+G�=e−iG·r�un,k�. Time-reversal symmetry
implies �H ,��=0, where �=exp�i�Sy�K is the time-
reversal operator �Sy is spin and K complex conjugation�,
which for spin 1/2 particles satisfies �2=−1. It follows that
H�−k�=�H�k��−1.

There are special points k=�i in the Brillouin zone which
are time-reversal invariant and satisfy −�i=�i+G for a
reciprocal-lattice vector G. There are eight such points in
three dimensions and four in two dimensions. At these
points, H��i�=�H��i��−1, so that the eigenstates are Kram-
ers degenerate. In the following, it will be useful to use two
different notations to label the distinct �i. �1� The eight �or
four� �i can be indexed by three �or two� integers nl=0,1
defined modulo 2, which specify half a “mod 2 reciprocal-
lattice vector,”

�i=�n1n2n3� =
1

2
�n1b1 + n2b2 + n3b3� , �2.3�

where bl are primitive reciprocal-lattice vectors. Two mod 2
reciprocal-lattice vectors are equivalent if they differ by
twice a reciprocal-lattice vector. �2� A second notation is use-
ful when considering a surface perpendicular to reciprocal-
lattice vector G. The surface time-reversal invariant mo-
menta 
a will be projections of pairs of �i which differ by
G /2, as shown in Fig. 1. Given G, we can define �i=�a
�,
such that �a1−�a2=G /2.

The change in the time-reversal polarization associated
with a cylinder oriented along G due to changing the flux
between two values corresponding to 
a and 
b can be cal-
culated by a method analogous to the calculation of the
charge polarization as a Berry’s phase.27–30 In Ref. 22, we
showed that the result is most simply expressed in terms of
the quantities

�i =
	det�w��i��
Pf�w��i��

= ± 1, �2.4�
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where w is the 2N�2N unitary matrix defined by

wmn�k� 
 �um−k���unk� . �2.5�

Since ��a ��b�= �b �a� and �2=−1, the matrix w�k� is anti-
symmetric for k=�i, allowing for the definition of the Pfaff-
ian, which satisfies det�w�=Pf�w�2. Given a surface G, the
time-reversal polarization associated with surface momen-
tum 
a was found to be

�a = �a1�a2. �2.6�

This formula is analogous to the expression for the charge
polarization as a Berry’s phase along a closed cycle in mo-
mentum space.28

Because of the square root, the sign of �i is ambiguous.
However, since we require �un,k� to be continuous,
	det�w�k�� is defined globally throughout the Brillouin zone.
The sign ambiguity then cancels for �a. The existence of the
global square root is guaranteed by the fact that the phase
winding of det�w�k�� around any closed loop C is zero, so
that 	det�w�k�� has no branch cuts. When C is contractable,
the vanishing phase winding follows from the continuity of
�un,k�. For noncontractable loops, which can be continuously
deformed to satisfy C=−C, it follows from the fact that
det�w�−k��=det�w�k��.

The inherent ambiguity of the time-reversal polarization
is reflected in the fact that the �a are not gauge invariant. For
instance, consider a gauge transformation of the form

�un,k� → �ei�k�un,k� for n = 1

�un,k� for n � 1.

 �2.7�

Under this transformation,

det�w�k�� → det�w�k��e−i��k+�−k�, �2.8�

Pf�w��i�� → Pf�w��i��e−i��i. �2.9�

If we choose �k=k ·R for a lattice vector R, the Brillouin-
zone periodicity of unk is preserved. From Eq. �2.8�, it is
clear that det�w�k�� is unchanged. However, if G ·R=2�, it
follows that Pf�w��a1��Pf�w��a2��, and hence �a changes
sign. Since this gauge transformation changes the sign of �a
for all a, however, the product �a�b, which gives the change
in the time-reversal polarization between 
a and 
b, remains
invariant. In general, the product of any four �i’s for which
�i lie in the same plane is gauge invariant and defines a
topological invariant characterizing the band structure.

In two dimensions, there are four time-reversal invariant
momenta �i and a single Z2 invariant, given by

�− 1�� = �
i=1

4

�i. �2.10�

In three dimensions there are eight time-reversal invariant
points. This leads to four independent Z2 invariants.13–15 One
of these invariants, �0, can be expressed as the product over
all eight points,

�− 1��0 = �
i=1

8

�i. �2.11�

The other three invariants are given by products of four �i’s
for which �i reside in the same plane.

FIG. 1. �a� A two-dimensional cylinder threaded by magnetic flux 	. When the cylinder has a circumference of a single lattice constant,
	 plays the role of the edge crystal momentum kx in band theory. �b� The time-reversal invariant fluxes 	=0 and h /2e correspond to edge
time-reversal invariant momenta 
1 and 
2. 
a are projections of pairs of the four bulk time-reversal momenta �i=�a
�, which reside in the
two-dimensional Brillouin zone indicated by the shaded region. �c� In three dimensions, the generalized cylinder can be visualized as a
Corbino donut, with two fluxes, which correspond to the two components of the surface crystal momentum. �d� The four time-reversal
invariant fluxes 	1, 	2=0,h /2e correspond to the four two-dimensional surface momenta 
a. These are projections of pairs of the eight
�i=�a
� that reside in the bulk 3D Brillouin zone.
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�− 1��k = �
nk=1;nj�k=0,1

�i=�n1n2n3�. �2.12�

�0 is clearly independent of the choice of primitive
reciprocal-lattice vectors bk in Eq. �2.3�. ��1�2�3� are not.
However, they may be viewed as components of a mod 2
reciprocal-lattice vector

G� = �1b1 + �2b2 + �3b3. �2.13�

This vector may be explicitly constructed from the �i’s as
follows. A gauge transformation of the form of Eq. �2.7� can
change the signs of any four �i for which the �i lie in the
same plane. Such transformations do not change the invari-
ants ��1�2�3�. By a sequence of these transformations, it is
always possible to find a gauge in which �i=−1 for at most
one nonzero �i. Define �*=�i if there is one such point. If
there is none, then set �*=0. In this gauge, the mod 2
reciprocal-lattice vector is G�=2�*. The remaining invariant
�0 is then determined by �i at �i=0.

As we will explain below in Sec. II C 2, the latter invari-
ants �k are not robust in the presence of disorder. We refer to
them as “weak” topological invariants. On the other hand, �0
is more fundamental and distinguishes the “strong” topologi-
cal insulator.

Formulas �2.10�–�2.12� are a bit deceptive because they
appear to depend solely on a local property of the wave
functions. Knowledge of the global structure of �unk�, how-
ever, is necessary to construct the continuous gauge required
to evaluate Eq. �2.4�. The existence of globally continuous
wave functions is mathematically guaranteed because the
Chern number for the occupied bands vanishes due to time-
reversal symmetry. However, determining a continuous
gauge is not always simple.

C. Surface states

The spectrum of surface �or edge� states as a function of
momentum parallel to the surface �or edge� is equivalent to
the spectrum of discrete end states of the cylinder as a func-
tion of flux. Figure 2 schematically shows two possible end
state spectra as a function of momentum �or equivalently
flux� along a path connecting the surface time-reversal in-
variant momenta 
a and 
b. Only end states localized at one
of the ends of the cylinder are shown. The shaded region
gives the bulk continuum states. Time-reversal symmetry re-
quires the end states at 
a and 
b to be twofold degenerate.
However, there are two possible ways these degenerate states
can connect up with each other. In Fig. 2�a�, the Kramers
pairs “switch partners” between 
a and 
b, while in Fig.
2�b�, they do not.

These two situations are distinguished by the Z2 invariant
characterizing the change in the time-reversal polarization of
the cylinder when the flux is changed between the values
corresponding to 
a and 
b. Suppose that at the flux corre-
sponding to 
a the ground state is nondegenerate, and all
levels up to and including the doublet �a1 are occupied. If the
flux is adiabatically changed to 
b, then for Fig. 2�a�, the
doublet �b1 is half filled, and the ground state has a twofold
Kramers degeneracy associated with the end. For Fig. 2�b�,

on the other hand, the ground state remains nondegenerate.
This construction establishes the connection between the sur-
face states and the bulk topological invariants. When �a�b
=−1 �+1�, the surface spectrum is like Fig. 2�a� �2b�.

It follows that when �a�b=−1 �+1�, a generic Fermi en-
ergy inside the bulk gap will intersect an odd �even� number
of surface bands between 
a and 
b. Thus, when �a�b=
−1, the existence of surface states is topologically protected.
The details of the surface-state spectrum will depend on the
Hamiltonian in the vicinity of the surface. In Fig. 2, we have
assumed that surface bound states exist for all momenta. This
need not be the case, since it is possible that by varying the
surface Hamiltonian, the degenerate states at 
a and 
b can
be pulled out of the gap into the bulk continuum states. This,
however, does not change our conclusions regarding the
number of Fermi energy crossings. When �a�b=−1, there
still must exist surface band traversing the energy gap.

In the two-dimensional quantum spin-Hall phase, �1�2=
−1, and there will be an odd number of pairs of Fermi
points.9,10 In the simplest case where there is a single pair,
the states at the Fermi energy will be spin filtered in the
sense that the expectation value of the spin in the right and
left moving states will have opposite sign. These states are
robust in the presence of weak disorder and interactions be-
cause time-reversal symmetry forbids elastic backscattering.
Strong interactions, however, can lead to an electronic insta-
bility that opens a gap.31,32 The resulting ground state, how-
ever, breaks time-reversal symmetry.

In three dimensions, the Kramers degenerate band cross-
ings that occur at 
a in the surface spectrum are two-
dimensional Dirac points. While such Dirac points will oc-
cur in any time-reversal invariant system with spin-orbit
interactions, the nontrivial structure here arises from the way
in which the Dirac points at different 
a are connected to
each other. This is determined by the relative signs of the
four �a associated with any surface.

In Fig. 3, we depict four different topological classes for
three-dimensional band structures labeled according to �0;

FIG. 2. Schematic representations of the surface energy levels of
a crystal in either two or three dimensions as a function of surface
crystal momentum on a path connecting 
a and 
b. The shaded
region shows the bulk continuum states, and the lines show discrete
surface �or edge� bands localized near one of the surfaces. The
Kramers degenerate surface states at 
a and 
b can be connected to
each other in two possible ways, shown in �a� and �b�, which reflect
the change in time-reversal polarization �a�b of the cylinder be-
tween those points. Case �a� occurs in topological insulators and
guarantees that the surface bands cross any Fermi energy inside the
bulk gap.
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��1�2�3�, which are characterized by different values of �i for
the eight �i, represented as the vertices of a cube in momen-
tum space. The lower panel shows the surface Brillouin zone
for a 001 surface with the four 
a labeled by either filled or
solid circles, depending on the value of �a=�i=�a1��i=�a2�. The
surface band structure will resemble Fig. 2�a� on paths con-
necting two filled circles or two empty circles, and will re-
semble Fig. 2�b� on paths connecting a filled circle to an
empty circle. This allows us to draw a minimal Fermi arc
�denoted by the thick lines�, which separates regions contain-
ing the filled circles from regions containing the empty
circles.

1. Strong topological insulator

For the strong topological insulator, �1�2�3�4=−1, so
that a single �a=a* differs in sign from the other three. The
simplest Fermi arc, shown in Fig. 3�d�, thus encloses 
a*

once. As in the two-dimensional case, this Fermi arc cannot
be eliminated. In general, time-reversal symmetry requires
that any time-reversal invariant Fermi arc C satisfies C=
−C. It follows that the Berry’s phase acquired by an electron
circling the Fermi arc can only be either 0 or �. Since the
Fermi arc of the strong topological insulator encloses a
single Dirac point, an electron circling the Fermi arc acquires
a Berry’s phase of �. Since this cannot be changed by con-
tinuous changes to the Hamiltonian, we conclude that the �
Berry’s phase is a generic feature of the surface Fermi arc in
the strong topological insulator phase. Such a Fermi arc de-
fines a “topological metal,”22 which is topologically pro-
tected and, unlike an ordinary metal, cannot be depleted.

In the presence of weak disorder, the � Berry’s phase
changes the sign of the weak localization correction to the
conductivity and gives rise to antilocalization, as in the sym-
plectic universality class.16,18 We suspect that in the absence
of electron-electron interactions, these surface states cannot
be localized even for strong disorder �provided the bulk to-
pological phase is not destroyed�. As in the 2D case, how-
ever, electron interactions can lead to a localized phase,

which will necessarily break the time-reversal
symmetry.22,31,32

In the strong topological insulator, it is possible that the
Fermi energy can be tuned to intersect a single Dirac point.
This is a rather unique situation, because lattice Dirac fermi-
ons are generally expected to come in pairs.19 These surface
Dirac fermions are reminiscent of domain-wall fermions
which have been studied in the context of lattice gauge
theories.33 The surface can be viewed as an interface be-
tween the topological insulator and a conventional insulator
�the vacuum�. These two phases can be characterized in
terms of a three-dimensional Dirac fermion, whose mass has
opposite signs in the two phases �see, for example, Sec. III�.
The domain wall between the two is then characterized by a
gapless Fermion, or zero mode, which is related to the zero
energy midgap states that appear in a one-dimensional
Peierls insulator at a soliton.34 However, there are some im-
portant differences between our model and the conventional
applications of domain-wall fermions. �1� In our problem,
there is no reason to have particle-hole symmetry, so tuning
is required for the Fermi energy to be at the Dirac point. �2�
The domain-wall fermion applications have often been used
to model chiral fermions in even-dimensional space-time.33

Our �2+1�-dimensional surface Dirac fermions are not chi-
ral. Nonetheless, they realize the �2+1�-dimensional “parity
anomaly.”35

The parity anomaly arises for a single �i.e., undoubled�
species of massless Dirac fermion in 2+1 dimensions. When
the response to the electromagnetic field is naively computed
in this model, one finds35

J� = ±
e2

4h
�
��F
�, �2.14�

where J� is the three current and F
� is the electromagnetic
field tensor in 2+1 dimensions. This appears “anomalous” in
the sense that the electromagnetic field gives rise to currents
which appear to violate the symmetries of the Dirac Hamil-
tonian. The sign ambiguity in Eq. �2.14� is due to the regu-
larization procedure, in which a finite mass is included to
control divergences and taken to zero at the end. The origin
of the singular behavior is the subtlety of this limiting pro-
cedure.

In a magnetic field, the Dirac equation leads to a Landau
level at exactly zero energy. At exactly half filling, the sys-
tem is thus at a critical point separating two quantum Hall
states with �xy = ± �1/2�e2 /h. This explains the singular be-
havior described above. Indeed, the regulator mass term dis-
cussed above which opens a gap necessarily violates time-
reversal symmetry because it lifts a Kramers degeneracy.
This leads to quantum Hall states even in zero applied mag-
netic field.

For our problem, in the absence of time-reversal
symmetry-breaking perturbations, we do not expect anoma-
lous currents to occur. However, in a magnetic field, the par-
ity anomaly shows up in the quantum Hall effect because the
surface Hall conductivity will be quantized in half integers,

FIG. 3. Diagrams depicting four different phases indexed by �0;
��1�2�3�. The top panel depicts the signs of �i at the points �i on the
vertices of a cube. The bottom panel characterizes the band struc-
ture of a 001 surface for each phase. The solid and open circles
depict the time-reversal polarization �a at the surface momenta 
a,
which are projections of pairs of �i that differ only in their z com-
ponent. The thick lines indicate possible Fermi arcs that enclose
specific 
a.
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�xy = �n +
1

2
� e2

h
. �2.15�

It is interesting to ask whether such a “fractional” integer
quantum Hall effect could be measured. Unfortunately, in a
standard transport experiment in which currents and voltages
are measured by attaching leads to a sample, the 1/2 cannot
be directly measured. The problem is that in a slab geometry,
there is no simple way to isolate the “top” surface from the
“bottom” surface. The two will always be measured in par-
allel, and the two half integers will always add up to an
integer. For such a transport experiment, there is no getting
around the “fermion doubling problem.” What is required is
a method for measuring the current on the top surface with-
out measuring the bottom surface. If it can be established
that the currents are flowing on both surfaces, then dividing
the measured Hall conductance by 2 could, in principle,
demonstrate the half quantization.

A lattice realization of the parity anomaly was proposed
by Fradkin and co-workers,36,37 who studied a tight-binding
model for PbTe in the presence of a domain wall where the
Pb and Te atoms are interchanged. They showed that in their
model, the domain wall exhibits massless Dirac fermions and
has a finite Hall conductivity even at zero magnetic field.
Their model, however, is rather different from ours. In the
presence of the domain wall, their Hamiltonian explicitly
violates time-reversal symmetry,4 and it leads to an even
number of species of Dirac fermions on the domain wall.
Haldane introduced a model of the quantum Hall effect on
honeycomb lattice in a periodic magnetic field.4,38 This
model, which also breaks time-reversal symmetry, realizes
the parity anomaly �with a single Dirac fermion� when the
Hamiltonian is tuned to the transition between the quantum
Hall phase and the insulator. In this model, however, the Hall
conductivity is an integer.

The surface of the strong topological insulator is thus
unique in that it can generate a single Dirac fermion without
violating time-reversal symmetry and, in principle, exhibits
the half quantized quantum Hall effect.

2. Weak topological insulator

When �0=0, states are classified according to G�. We re-
fer to the states with G��0 as weak topological insulators.15

�0=0 implies that for any surface, the associated time-
reversal polarizations will satisfy �1�2�3�4= +1. This im-
plies that either �1� all of the �a�s are the same or �2� two will
be positive and two will be negative. The former case occurs
for surfaces G=G� mod 2, where G� is given in Eq. �2.13�.
For these surfaces, there are no topologically protected sur-
face states. For G�G� mod 2, two of the 
a’s are positive
and two negative. The Fermi arc encloses the two 
a’s which
have the same sign for �a.

These states can be interpreted as layered two-
dimensional quantum spin-Hall states. To see this, consider
two-dimensional planes in the quantum spin-Hall state
stacked in the z direction. When the coupling between the
layers is zero, the electronic states will be independent of kz.
It follows that the four �i’s associated with the plane kz
=� /a will have product −1 and will be the same as the four

associated with the plane kz=0. The topological invariants
will then be given by �0=0 and G�= �2� /a�ẑ. This structure
will remain when weak coupling between the layers is intro-
duced. More generally, quantum spin-Hall states stacked in
the G direction will have G�=G mod 2. This implies that
quantum spin-Hall states stacked along different directions
G1 and G2 are equivalent if G1=G2 mod 2.

The surface states can also be understood in this manner.
When the coupling between the layers is zero, it is clear that
the gap in the 2D system implies that there will be no surface
states on the top and bottom surfaces. On the sides, however,
the Fermi points guaranteed that the edges of the two-
dimensional system will become straight Fermi lines in the
kz direction. The two Fermi lines will enclose two time-
reversal invariant momenta, which occur at kz=0 and kz
=� /a, as in Fig. 3.

Since the surface Fermi arc encloses an even number of
surface time-reversal invariant momenta �and hence an even
number of 2D Dirac points�, it follows that the Berry’s phase
associated with the Fermi arc is zero. Thus, the surface states
of the weak topological insulators do not enjoy the same
level of topological protection as those of the strong topo-
logical insulator. Below we will argue that in the presence of
disorder, the weak topological invariants lose their meaning.

D. Z2 invariant and boundary-condition sensitivity

Niu et al. generalized the topological characterization of
the integer quantum Hall effect to express the Chern invari-
ant in terms of the sensitivity of the ground state of a bulk
crystal to phase twisted boundary conditions.39 This is more
fundamental than the characterization in terms of Bloch
wave functions because it does not rely on the translational
symmetry of the crystal. It explains the topological stability
of the Hall conductance in the presence of weak disorder. In
this section, we consider a corresponding generalization of
the Z2 invariant.

To do so, we consider large �but still finite� crystal with
periodic boundary conditions in all but one direction. A
phase twist ei�i is associated with each periodic boundary
condition. This has the same structure as the cylinder �and
generalized cylinder� considered in Sec. II B, but now the
circumferences are much larger. The fluxes now correspond
to the phase twists �i=	ie /�. Since the cylinder is still finite,
the discrete states associated with the ends can be character-
ized by their degeneracy. This allows us to characterize the
change in time-reversal polarization when the phase twists
are changed by �. For noninteracting electrons, the invari-
ants characterizing a large cylinder can be deduced from the
band-structure invariants by treating the entire sample to be a
unit cell of an even larger crystal. It is therefore necessary to
consider the effect of enlarging the unit cell on the topologi-
cal invariants.

The 2D invariant � is preserved when the unit cell is
enlarged. This is easiest to see by considering the effect of
doubling the unit cell on the surface spectra of Fig. 2. The
effect of doubling the unit cell will be to fold the momenta

a and 
b back on top of each other. If after enlarging the
unit cell we add a small random potential, which lowers the
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translational symmetry, then all “accidental” degeneracies in-
troduced by the zone folding will be lifted, while the Kram-
ers degeneracies at the time-reversal invariant momenta will
remain. It is then clear that the manner in which the degen-
erate states at 
a are connected to each other is preserved
when the bands are folded back. Since the invariant � is
unchanged when the unit cell is enlarged, it may be used to
characterized the bulk system.

In three dimensions, the strong topological invariant �0 is
also invariant under enlarging the unit cell. This can be seen
by noting that if the surface Fermi arc is folded back, the
number of time-reversal invariant momenta enclosed is pre-
served modulo 2. The weak topological invariants �k, how-
ever, are not preserved by this procedure. It is possible that
for a Fermi arc which encloses two time-reversal invariant
momenta, the two points can be folded back on top of each
other. When the two bands are coupled to each other, a gap
can then open at the Fermi energy, so that the Fermi arc can
disappear.

We thus conclude that the weak topological invariants are
only defined for the band structure of a perfect crystal and
rely on the lattice translational symmetry. For a clean system,
they have important implications for the surface-state spec-
trum, but the topological distinction is eliminated by disor-
der. The strong topological invariant �0, however, is robust
and characterizes a bulk three-dimensional phase.

The fragility of the weak topological invariants can also
be understood by considering stacked two-dimensional quan-
tum spin-Hall states. If two identical quantum spin-Hall
states are coupled together, the resulting two-dimensional
system will be a simple insulator and will not have topologi-
cally protected edge states. Thus, a stack of an even number
of layers will be equivalent to a stack of insulators, while a
stack of an odd number of layers will define a �thicker� 2D
quantum spin-Hall state. This sensitivity to the parity of the
number of layers indicates that the weak topological invari-
ants do not characterize a robust three-dimensional phase
but, rather, are only properties of the band structure.

This formulation of the Z2 invariant in terms of the
change in the time-reversal polarization of a large system as
a function of twisted boundary conditions can be generalized
to interacting systems. This suggests that the strong topologi-
cal insulator phase remains robust in the presence of weak
interactions.22

III. Z2 INVARIANTS WITH INVERSION SYMMETRY

In this section, we show how the presence of inversion
symmetry greatly simplifies the evaluation of the Z2 invari-
ants. We will prove Eq. �1.1�, which allows topological in-
sulators to be identified in a straightforward manner.

Suppose that the Hamiltonian H has an inversion center at
r=0. It follows that �H , P�=0, or equivalently H�−k�
= PH�k�P−1, where the parity operator is defined by

P�r,sz� = �− r,sz� . �3.1�

Here, r is the �three-dimensional� coordinate and sz is the
spin which is unchanged by P because spin is a pseudovec-
tor. The key simplification for problems with combined in-

version and time-reversal symmetries is that the Berry cur-
vature F�k� must vanish because it must simultaneously be
odd under time-reversal �F�−k�=−F�k�� and even under in-
version �F�−k�= +F�k��.17 The Berry curvature is given by
�k�A�k�, where the Berry’s potential is

A�k� = − i�
n=1

2N

�un,k��k�un,k� , �3.2�

where the sum is over the 2N occupied bands. The fact that
F�k�=0 suggests that it is possible to choose a globally con-
tinuous “transverse” gauge in which A�k�=0. We will show
that in this special gauge, the �i defined in Eq. �2.4� are given
by Eq. �1.1�, so the Z2 invariants can be easily evaluated.

The transverse gauge may be explicitly constructed as fol-
lows. In an arbitrary gauge, consider the 2N�2N matrix

vmn�k� = �um,k�P��un,k� . �3.3�

Since �a�b�= ��b��a� and �2=−1, it follows that v�k� is
antisymmetric. Since �P� ,H�k��=0, v�k� is unitary. Thus,
the Pfaffian of v�k� is defined and has unit magnitude. The
phase of Pf�v�k�� depends on the gauge, and its gradient is
related to A�k�:

A�k� = −
i

2
Tr�v�k�†�kv�k�� = − i�k log Pf�v�k�� .

�3.4�

The first equality is derived by differentiating Eq. �3.3� and
using the unitarity of v�k�. The second equality follows from
the facts that det�v�=Pf�v�2 and �k log det�v�
=Tr��k log v�k��=Tr�v†�k��kv�k��.

To set A�k�=0, we thus adjust the phase of �unk� to make

Pf�v�k�� = 1. �3.5�

This can be done, for instance, by a transformation of the
form of Eq. �2.7�, under which Pf�v�k��→Pf�v�k��e−i�k. In
this gauge, the problem of continuing 	det�w�k�� between
the �i in Eq. �2.4� is eliminated because det�w�k��=1 for all
k. This can be seen by noting that v�k� has the property
v�−k�=w�k�v�k�*w�k�T and using the identity Pf�XAXT�
=Pf�A�det�X�.

All that remains for Eq. �2.4� is to evaluate Pf�w��i��. To
this end, we note that

wmn��i� = ��m,�i
�P�P����n�i

� . �3.6�

Here, we have used P2=1, along with the antilinearity of �,
which allows us to replace �un�i

� by ��n�i
�= ��n−�i

� in Eq.
�2.5�. Since �H , P�=0, ��n�i

� is an eigenstate of P with ei-
genvalue �n��i�= ±1. After changing ��n�i

� back to �un�i
�, it

follows that

wmn��i� = �m��i�vmn��i� . �3.7�

The Pfaffian can be deduced from the following argument,
which uses the fact that the Pf�w� will be a polynomial in �n.
First, note that
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Pf�w�2 = det�w� = det�v��
n=1

2N

�n. �3.8�

Due the Kramers degeneracy, the distinct states �u2m,�i
� and

�u2m+1,�i
�
� �u2m,�i

� share the same parity eigenvalue. Thus,
each eigenvalue appears twice in the product in Eq. �3.8�.
Taking the square root, we find

Pf�w� = Pf�v��
m=1

N

�2m. �3.9�

The sign of the square root is fixed by the special case in
which all �n=1, so that w=v. Since Pf�v�=1, we conclude
that in the transverse gauge,

�i = �
m=1

N

�2m��i� . �3.10�

Equation �3.10� is a central result of this paper. It means
that with inversion symmetry, the Z2 topological invariants
can be deduced from the knowledge of the parity of each pair
of Kramers degenerate occupied energy bands at the four �or
eight in three dimensions� time-reversal and parity invariant
points in the Brillouin zone. This provides a simple method
for determining the topological phase of any inversion sym-
metric insulator, without having to know about the global
properties of the energy bands.

In Eq. �3.10�, it appears as though each of the four �or
eight� �i have gauge independent meaning and thus provide
extra topological invariants in addition to the one �or four�
time-reversal symmetry based invariant discussed in Sec.
II B. These extra invariants, however, rely on the presence of
inversion symmetry and lose their meaning in the presence
of surfaces, disorder, or other perturbations which violate
inversion symmetry. In contrast, the invariants obtained from
the product of four �i’s do not rely on inversion symmetry
for their existence. They depend only on time-reversal sym-
metry, so they retain their value in the presence of inversion
symmetry-breaking perturbations.

IV. TIGHT-BINDING MODELS

In this section, we construct a class of inversion symmet-
ric tight-binding models that exhibit topological insulating
states and apply the method presented in Sec. III to deter-
mine their topological classes. We will consider minimal
models with four bands which result from four degrees of
freedom per unit cell. We will focus on lattices in which the
unit cell can be chosen to be inversion symmetric. We will
see that this latter assumption makes the analysis of the to-
pological phases particularly simple. While this assumption
can always be satisfied for continuum models, it rules out
certain inversion symmetric lattice models, such as the rock-
salt lattice. It is satisfied, however, for the specific examples
we will consider.

In Sec. IV A, we study the general structure of this class
of models, and then in Secs. IV B and IV C consider the
specific examples of the honeycomb lattice of graphene and
the diamond lattice. In Sec. IV D, we analyze a model for

HgTe/CdTe quantum wells introduced recently by Bernevig
et al.40

A. General model

We assume that each unit cell associated with Bravais
lattice vector R has four states �R ,n�. If the unit cell is parity
invariant, then the parity operator P may be represented as a
4�4 matrix as

P�R,n� = �
m

P̂nm�− R,m� . �4.1�

In Secs. IV B and IV C, we will consider examples in which
each unit cell consists of two sublattices �denoted by Pauli
matrix �z� which are interchanged by inversion and two spin
degrees of freedom �denoted by sz�. Therefore,

P̂ = �x
� I , �4.2�

where I is the identity for the spin indices. In Sec. IV D, P̂
will have a slightly different form. The time-reversal opera-
tor acting on the four component basis states is represented
by

�̂ = i�I � sy�K , �4.3�

where K is complex conjugation and I acts on the orbital
indices.

Given a lattice Hamiltonian H in the �R ,n� basis, we now
consider the Bloch Hamiltonian

H�k� = eik·RHe−ik·R, �4.4�

which for lattice periodic Bloch functions now becomes a
4�4 matrix. Note that this transformation is slightly differ-
ent than the standard transformation of a tight-binding model
for which R in Eq. �4.4� is replaced by r=R+dn, where dn is
a basis vector. The difference is a choice of gauge. With this
choice, H�k� has the properties H�k+G�=H�k� and H�−k�
= P̂H�k�P̂−1. Thus, at the time-reversal invariant momenta,

�H�k=�i� , P̂�=0.
It is convenient to express the 4�4 matrix H�k� in terms

of the identity I, five Dirac matrices �a, and their ten com-
mutators �ab= ��a ,�b� / �2i�.41 The Dirac matrices satisfy the
Clifford algebra, �a�b+�b�a=2�abI. In this section, in order
to avoid confusion of notation, the Dirac matrices �a will
always appear with a superscript, and the time-reversal in-
variant momenta will always be written as k=�i.

The choice of Dirac matrices is not unique. For example,
in Ref. 10, the Dirac matrices were chosen to be even under

time reversal, �̂�a�̂−1=�a. In the presence of both inversion
and time-reversal symmetries, it is more convenient to

choose the Dirac matrices to be even under P̂�̂. Given the

form of P̂ and �̂, the five matrices are

��1,2,3,4,5� = ��x
� I,�y

� I,�z
� sx,�z

� sy,�z
� sz� .

�4.5�

With this choice of Dirac matrices, the commutators are odd

under P̂�̂, �P̂�̂��ab�P̂�̂�−1=−�ab. Note that �1= P̂. It fol-
lows that
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�̂�a�̂−1 = P̂�aP̂−1 = �+ �a for a = 1

− �a for a � 1.

 �4.6�

Time-reversal and inversion symmetries imply that

�H�k� , P̂�̂�=0. The most general Hamiltonian matrix is then

H�k� = d0�k�I + �
a=1

5

da�k��a. �4.7�

Written in this form, the energy eigenvalues naturally come
in Kramers degenerate pairs with energy

E�k� = d0�k� ± 	�
a

da�k�2. �4.8�

At the time-reversal invariant points k=�i, only �1= P̂ is

even under P̂ and �̂. Therefore,

H�k = �i� = d0�k = �i�I + d1�k = �i�P̂ . �4.9�

The parity eigenvalues �n for the states at k=�i are given by

the eigenvalues of P̂. It then follows from Eq. �1.1� that,
provided there is an energy gap throughout the Brillouin
zone, the Z2 invariants characterizing the valence band are
determined by

�i = − sgn„d1�k = �i�… . �4.10�

We will use the above equation to determine the topological
class of specific tight-binding models in the following.

B. Graphene

Graphene consists of a honeycomb lattice of carbon atoms
with two sublattices. A tight-binding model which incorpo-
rates the symmetry allowed spin-orbit interactions was intro-
duced in Refs. 9 and 10,

H = t�
�ij�

ci
†cj + i�SO �

��ij��
ci

†s · êijcj . �4.11�

The first term is a nearest-neighbor hopping term, and the
second term is spin-orbit interaction which involves spin de-
pendent second-neighbor hopping. This term is written in a
way which can easily be generalized to three dimensions. s is
the spin, and we have defined the unit vector

êij =
dij

1 � dij
2

�dij
1 � dij

2 �
, �4.12�

where dij
1 and dij

2 are bond vectors along the two bonds the
electron traverses when going from site j to i. Thus, êij ·s
= ±sz.

Choosing the unit cell shown in Fig. 4, the Hamiltonian
matrix H�k� can be determined using Eq. �4.4� and expressed
in terms of Dirac matrices as in Eq. �4.7�. The coefficients
da�k� are displayed in Table I. The time-reversal invariant
momenta, in the notation of Eq. �2.3�, occur at k=�i=�n1n2�
for nl=0,1. The Hamiltonian at these points can be deduced
by noting that at k=�i=�n1n2�, xl
k ·al=nl�. �i=�00� is com-
monly referred to as the � point. The other three, which are

equivalent under threefold rotations, are called the M points.
Using Eqs. �1.1�, �1.2�, and �4.10�, it is then straightforward
to see that �i=�00�=�i=�10�=�i=�01�=−1 while �i=�11�= +1. The
product is negative, so �=1, and provided that the energy
gap is finite throughout the Brillouin zone, the system is a
topological insulator in the quantum spin-Hall phase. The
finite gap follows from the fact that d0�k�=0 and there are no
values of k for which all da�k�=0.

The reason the three M points are not all the same is that
the center of inversion defined by our unit cell is at the center
of a bond, which does not have the threefold rotational sym-
metry. By choosing a different unit cell, with inversion cen-
ter at the center of a hexagon, the M points would be equiva-
lent. Our conclusion about the topological class, however,
remains the same.

It is interesting to note that the value of �i does not appear
to have anything to do with the spin-orbit interaction. The
role that the spin-orbit interaction plays is simply to ensure
that the energy gap is finite everywhere in the Brillouin zone.
We will now argue for a parity and time-reversal invariant
system that if the spin-orbit interaction is absent, then the
negative product of �i implies that the energy gap must van-
ish somewhere in the Brillouin zone. This gives insight into
the topological stability of the Dirac points in graphene in
the absence of spin-orbit interactions.

We prove this by contradiction. In the absence of the spin-
orbit interaction, we can consider spinless fermions. Suppose
there is a finite gap everywhere, and the valence band is well
defined throughout the Brillouin zone. Then, on the one
hand, the Berry curvature F=��A is identically zero due to
inversion and time-reversal symmetries. On the other hand,
we will show that the Berry’s phase for the path �1/2 shown
in Fig. 4 which encloses half the Brillioun zone satisfies

FIG. 4. �a� Honeycomb lattice of graphene, with a unit cell
indicated by the dashed lines. �b� Brillouin zone with the values of
�i associated with the time-reversal invariant momenta labeled. �1/2

describes the loop enclosing half the zone used in Eq. �4.13�.

TABLE I. Parameters for tight-binding model of graphene with
xl=k ·al in a notation slightly different from Ref. 10.

d0 0

d1 t�1+cos x1+cos x2�
d2 t�sin x1+sin x2�
d3 0

d4 0

d5 2�SO�sin x1−sin x2−sin�x1−x2��
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exp�i�
�1/2

A�k� · dk� = �1�2�3�4. �4.13�

Thus, if �1�2�3�4=−1, it would violate Stoke’s theorem and
leads to a contradiction. The � Berry’s phase thus requires
that there either be a Dirac point in each half of the Brillouin
zone or a Fermi arc enclosing a Dirac point.

To obtain Eq. �4.13� for spinless electrons, we consider
the unitary matrix

mij�k� = �ui,−k�P�uj,k� , �4.14�

which is related to the Berry’s potential via
�k log det�m�k��=−i�A�k�+A�−k��. Equation �4.13� is then
obtained by breaking the line integral into segments connect-
ing the time-reversal invariant momenta and using the fact
that det�m�k=�i��=�i.

C. Diamond lattice

We now consider the tight-binding model on a diamond
lattice introduced in Ref. 15. This model exhibits both weak
and strong topological insulator phases.

The diamond structure consists of two interpenetrating
face-centered-cubic lattices displaced from each other by a
basis vector d=a�1,1 ,1� /4. The primitive translation vectors
a1, a2, and a3 are a�0,1 ,1� /2, a�1,0 ,1� /2, and a�1,1 ,0� /2,
respectively. Our model has the same form as Eq. �4.11� and
includes a nearest-neighbor hopping term as well as a
second-neighbor spin-orbit interaction.

It turns out that with this spin-orbit interaction term, the
valence bands and conduction bands meet at 3D Dirac points
at the three inequivalent X points on the 100, 010, and 001
faces of the Brillouin zone. In order to lift the degeneracy
and obtain a gapped phase, we introduced a distortion, which
changes the nearest-neighbor hopping amplitudes. For sim-
plicity, we will focus here on a distortion in the 111 direc-
tion, which changes the nearest-neighbor bond in the 111
direction but leaves the other three bonds alone. The result-
ing model can be expressed in the form of Eq. �4.7�, and the
resulting da�k� are listed in Table II. For �SO ,�t�0, the gap
is finite throughout the Brillouin zone.

As in the previous section, the time-reversal invariant mo-
menta occur at k=�i=�n1n2n3� as in Eq. �2.3�. At these points,
xl
k ·al=nl�. At the � point, k=0, �n1n2n3�= �000�. The
three inequivalent X points �at k= �2� /a��1,0 ,0� and related
points� have �n1n2n3�= �011�, �101�, and �110�. The four in-
equivalent L points �at k= �� /a��1,1 ,1� and related points�

have �n1n2n3�= �100�, �010�, �001�, and �111�. The 111 dis-
tortion makes the first three L points distinct from the fourth,
which will be referred to as T.

From Table II, we can deduce the sign of d1�k� and,
hence, �i at these points. We find �i=−1 at � and the three L
points, while �i= +1 at T. At the X points, �i=−sgn��t1�.
Combining these, we then find that

��0;�1�2�3� = ��1;111� for �t1 � 0

�0;111� for �t1 � 0.

 �4.15�

When the 111 distorted bond is stronger than the other three
bonds, so that the system is dimerized, the system is a strong
topological insulator. When the 111 bond is weaker than the
other three, so that the system is layered, it is a weak topo-
logical insulator with G�= �2� /a��1,1 ,1�, which can be
viewed as two-dimensional quantum spin-Hall states stacked
in the 111 direction.

In Ref. 15, we computed the two-dimensional band struc-
ture for the diamond lattice model in a slab geometry. The
results displayed the expected surface states, which behave
according to the general principles discussed in Sec. II C.

D. Bernevig-Hughes-Zhang model

After this paper was originally submitted, an interesting
proposal appeared for the 2D quantum spin-Hall effect in
quantum well structures in which a layer of HgTe is sand-
wiched between crystals of CdTe.40 Bernevig-Hughes-Zhang
�BHZ� showed that for an appropriate range of well thick-
ness, the HgTe layer exhibits an inverted band structure,
where the s and p levels at the conduction- and valence-band
edges are interchanged. In this inverted regime, the structure
exhibits a 2D quantum spin-Hall effect. BHZ introduced a
simple four band tight-binding model which captures this
effect. Though real HgTe does not have inversion symmetry,
their toy model does. In this section, we analyze this model
and directly evaluate the Z2 topological invariant using Eq.
�1.1�.

BHZ considered a four band model on a square lattice in
which each site has two s1/2 states �s , ↑ � and �s , ↓ � and two of
the crystal field split p3/2 states �with mj = ±3/2�, �px
+ ipy , ↑ � and �px− ipy , ↓ �. The Hamiltonian is

H = �
i,�,�

��ci��
† ci�� − �

ia���

ta�,��ci+a��
† ci��, �4.16�

where a labels the four nearest neighbors, �= ±1 describes
the spin, and � ,�=s , p is the orbital index. The hopping term
involves the matrix

ta� = � tss tspei��a

tspe−i��a − tpp
� , �4.17�

where �a gives the angle of nearest-neighbor bond a with the
x axis.

As in Sec. IV A, it is convenient to express this Hamil-
tonian in the form of Eq. �4.7� using Dirac matrices which

are even under P̂�̂. The form of the parity operator, how-
ever, is slightly different in this model, and Eq. �4.2� is re-
placed by

TABLE II. Parameters for diamond lattice tight-binding model,
with xk=k ·ak.

d0 0

d1 t+�t1+ t�cos x1+cos x2+cos x3�
d2 t�sin x1+sin x2+sin x3�
d3 �SO�sin x2−sin x3−sin�x2−x1�+sin�x3−x1��
d4 �SO�sin x3−sin x1−sin�x3−x2�+sin�x1−x2��
d5 �SO�sin x1−sin x2−sin�x1−x3�+sin�x2−x3��
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P̂ = �z
� I , �4.18�

where �z= +1�−1� describes s �p� states. The Dirac matrices
are then the same as Eq. �4.5�, except that �x and �z are
interchanged. The coefficients of these new Dirac matrices
for this model are displayed in Table III.

The analysis between Eqs. �4.6� and �4.10� proceeds ex-
actly the same as before, and �i=−sgn�d1�k=�i��. We con-
clude that for k= �� /a��n1 ,n2�,

�i=�n1n2� = − sgn��s − �p

2
− �tss + tpp���− 1�n1 + �− 1�n2�
 .

�4.19�

For �s−�p�4�tss+ tpp�, all of the �i=�n1n2� are negative, so that
the product �= +1. The system is a simple insulator. In this
regime, the bands have a conventional ordering throughout
the Brillouin zone, with the s states in the conduction band
and the p states in the valence band. For �s−�p�4�tss+ tpp�,
the bands near k=0 become inverted, and �i=�00� becomes
positive, signaling a transition into the quantum spin-Hall
phase in which �=−1.

V. TOPOLOGICAL PHASES IN SPECIFIC MATERIALS

In this section, we apply our method for evaluating the
topological invariants to identify specific three-dimensional
materials that should exhibit a strong topological insulating
phase.

A. Bismuth-antimony alloy

Bi and Sb are group-V semimetals in which there is a
finite direct energy gap throughout the Brillouin zone but a
negative indirect gap due to band overlap. They have very
close lattice parameters and form the solid alloy
Bi1−xSbx.

42,43 For 0.07�x�0.22, the indirect gap becomes
positive, leading to semiconducting behavior, with a maxi-
mum energy gap of order 30 meV for x=0.18. In this sec-
tion, we will argue, based on the known band structure of
these materials, that this alloy is a strong topological insula-
tor, which will have topological metal surface states.

Bulk bismuth and antimony have the rhombohedral A7
structure, which consists of two interpenetrating, face-
centered-cubic lattices which are displaced in the 111 direc-
tion and slightly distorted in the 111 direction. In
bismuth,44,45 the valence band crosses the Fermi energy in
the vicinity of the T point, which is located on the 111 face
of the Brillouin zone, giving rise to a small pocket of holes.

The conduction band crosses the Fermi energy near the three
equivalent L points, which reside at the other three-body cen-
ter zone faces, giving rise to pockets of electrons. At the L
points, the bottom of the conduction band, which has Ls sym-
metry, is only slightly higher in energy than the next lower
band, which has La symmetry. In antimony,45 the electrons
are again near the L point. However, unlike bismuth, the
bottom of the conduction band has La symmetry. The holes
are not at the T point but, rather, at the lower-symmetry H
point.

Despite the fact that bismuth and antimony have negative
indirect gaps, the finite direct gap throughout the Brillouin
zone allows for the topological characterization of the va-
lence energy bands. Since both bismuth and antimony have
inversion symmetry, we can apply Eqs. �1.1� and �1.2� by
reading off the parity eigenvalues �n��i� from published band
structures.44,45 In Table IV, we display the symmetry labels
for the five occupied valence bands at the eight time-reversal
invariant momenta ��i=�, T, and the three equivalent L and
X points�. The parity eigenvalue �n��i� can be read from the
superscripts � or the subscripts s /a= + /−. �For an explana-
tion of this notation, see Ref. 46�. The right column displays
the product �i from Eq. �1.1�. Based on these data, we con-
clude that the valence band of bismuth is equivalent to that
of a conventional insulator, while the valence band of anti-
mony is that of a strong topological insulator. The difference
between the two is due to the inversion between the Ls and
La bands.

The evolution of the band structure of the alloy Bi1−xSbx
as a function of x has been well studied42,43,47 and is summa-
rized in Fig. 5. As the Sb concentration is increased, two
things happen. First, the gap between the Ls and La bands
decreases. At x=0.04, the bands cross and the gap reopens
with the inverted ordering. Second, the top of the valence
band at T comes down in energy and crosses the bottom of
the conduction band at x=0.07. At this point, the indirect gap
becomes positive, and the alloy is a semiconductor. At x

TABLE III. Parameters for the BHZ model with xk=k ·ak.

d0 ��s+�p� /2− �tss− tpp��cos x1+cos x2�
d1 ��s−�p� /2− �tss+ tpp��cos x1+cos x2�
d2 2tsp sin x1

d3 0

d4 0

d5 2tsp sin x2

TABLE IV. Symmetry labels for the five valence bands of bis-
muth and antimony at eight time reversal invariant momenta ac-
cording to Ref. 45. The parity eigenvalues can be read from �/�
and s /a. Using Eqs �1.1� and �1.2�, they determine the topological
class. The indices �111� define a mod 2 vector �Eq. �2.13� in the
direction of the T point.

Bismuth

1� �6
+ �6

− �6
+ �6

+ �45
+ �

3L Ls La Ls La La �

3X Xa Xs Xs Xa Xa �

1 T T6
− T6

+ T6
− T6

+ T45
− �

Z2 class �0;000�

Antimony

1� �6
+ �6

− �6
+ �6

+ �45
+ �

3L Ls La Ls La Ls �

3X Xa Xs Xs Xa Xa �

1 T T6
− T6

+ T6
− T6

+ T45
− �

Z2 class �1;111�

LIANG FU AND C. L. KANE PHYSICAL REVIEW B 76, 045302 �2007�

045302-12



=0.09 the T valence band clears the Ls valence band, and the
alloy is a direct-gap semiconductor at the L points. As x is
increased further, the gap increases until its maximum value
of order 30 meV at x=0.18. At that point, the valence band at
H crosses the Ls valence band. For x�0.22, the H band
crosses the La conduction band, and the alloy is again a
semimetal.

Since the inversion transition between the Ls and La bands
occurs in the semimetal phase adjacent to pure bismuth, it is
clear that the semiconducting Bi1−xSbx alloy inherits its to-
pological class from pure antimony and is thus a strong to-
pological insulator. Of course, this conclusion is predicated
on a “virtual-crystal approximation� in which the disorder
due to the random mixture is ignored, so that inversion sym-
metry is preserved in the alloy. However, since this inherent
disorder does not destroy the bulk energy gap, it is unlikely
to change the topological class, which does not require in-
version �or translation� symmetry. We thus conclude that in-
trinsic Bi1−xSbx, despite its bulk energy gap, will have con-
ducting surface states, which form a topological metal.

Semiconducting Bi1−xSbx alloys have been studied experi-
mentally because of their thermoelectric properties, which
make them desirable for applications as thermo-
couples.43,48–50 Transport studies have been carried out both
on bulk samples43 and epitaxial thin films.49 For T�50 K,
semiconducting behavior is observed, while at lower tem-
peratures, the resistivity saturates at a value in the range
5–50 
�m. This observed residual resistivity is probably
too small to be explained by surface states. It has been at-
tributed to residual charged impurities,43 which act as shal-
low donors, making the alloy slightly n type. In order to
separate the surface properties from the bulk transport, it will
be necessary either to improve the purity of the samples or
perhaps use gating in a heterostructure to push the Fermi
energy into the gap.

B. Gray tin and mercury telluride

Tin is a group-IV element, which in its � �or gray� phase
has the inversion symmetric diamond structure. Unlike car-
bon, silicon, and germanium, though, it is a zero gap semi-
conductor, in which the ordering of the states at the
conduction- and valence-band edge is inverted �see Fig.
6�a��.51,52 The Fermi energy lies in the middle of a fourfold

degenerate set of states with �8
+ symmetry, which can be

derived from p states with total angular momentum j=3/2.
The fourfold degeneracy at the �8

+ point is a consequence of
the cubic symmetry of the diamond lattice. Applying uniaxial
strain lifts this degeneracy into a pair of Kramers doublets
and introduces an energy gap into the spectrum.53 For pres-
sures of order 3�109 dyn/cm2, the induced energy gap is of
order 40 meV. We now argue that this insulating phase is, in
fact, a strong topological insulator.

Table V shows the symmetry labels for unstrained �-Sn
associated with the four occupied valence bands at the eight
time-reversal invariant momenta.54 Uniaxial strain lowers the
symmetry, so the cubic symmetry labels no longer apply.
However, since the strain does not violate inversion symme-
try, the parity eigenvalues are unchanged. The only effect is
to split the degeneracy of the �8

+ level into two sets of even-
parity Kramers doublets �see Fig. 6�b��. In Table V, �8

+* re-
fers to the occupied doublet. Based on the parity eigenvalues,
we conclude that strained gray tin is a strong topological
insulator.

HgTe is a II-VI material with the zinc-blende
structure.52,55 It is a zero gap semiconductor with an elec-
tronic structure closely related to gray tin. The Fermi energy
is in the middle of the fourfold degenerate �8 states, whose
degeneracy follows from the cubic symmetry of the zinc-
blende lattice. As in gray tin, uniaxial strain lifts this degen-
eracy and opens a gap at the Fermi energy.

Though HgTe lacks inversion symmetry, we now argue
based on adiabatic continuity that the gap induced by
uniaxial strain leads to a strong topological insulator. The
electronic structure of II-VI materials can be understood by
adding an inversion symmetry-breaking perturbation to a in-
version symmetric group-IV crystal.52,56 Provided that this
perturbation does not lead to any level crossings at the Fermi
energy, we can conclude that the II-IV material is in the same

FIG. 5. Schematic representation of band energy evolution of
Bi1−xSbx as a function of x. Adapted from Ref. 43.

FIG. 6. �a� Band structure of �-Sn near the � point, which
describes zero gap semiconductor due to the inverted �8

+ and �7
−

bands. �b� In the presence of uniaxial strain, the degeneracy at � is
lifted, opening a gap in the spectrum. The parity eigenvalues remain
unchanged.

TABLE V. Symmetry labels for the four valence bands of gray
tin at eight time-reversal invariant momenta, according to Ref. 54.

1� �6
+ �7

+ �7
− �8

+* �

3X 2X5 2X5v �

4L L6
− L6

+ L6v
− L45

− �

Z2 Class �1;000�
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topological class as the group-IV crystal. The band structures
of gray tin and HgTe are very similar, and the cubic symme-
try labels of the energy bands show how the bands evolve
between the two. This allows us to conclude that strained
�-Sn and HgTe will be in the same topological class, which
is that of the strong topological insulator.

In Ref. 25, Murakami et al. introduced a four band tight-
binding model based on p3/2 atomic levels on a fcc lattice to
describe strained �-Sn and HgTe. As argued in Ref. 10, this
model predicts that these materials are simple insulators in
the 0; �000� class. This can be understood by noting that
since the model includes only p3/2 atomic levels, the parity
eigenvalues in Eq. �1.1� are all �i=−1. This contradicts the
known band structure of these materials, as displayed in
Table V. This model correctly describes the electronic states
near the � point, but it gets the global topology of the bands
wrong. To capture the global topology, a tight-binding model
of these materials must include both s and p levels. The more
recent theory40 of the 2D quantum spin-Hall effect in
HgTe/CdTe quantum wells discussed in Sec. IV D correctly
incorporates s and p levels.

C. Lead-tin telluride

PbTe and SnTe are narrow gap IV-VI semiconductors
with the rocksalt structure.57 The band gap in these materials
is direct and occurs at the four equivalent L points in the fcc
Brillouin zone. PbTe has an inverted band structure relative
to SnTe, in which the relative ordering of the L6

+ and L6
−

bands at the conduction- and valence-band edges are
switched. Nonetheless, both of these materials are conven-
tional insulators. In Table VI, we display the symmetry labels
at the eight time-reversal invariant points ��, three equivalent
X points, and four equivalent L points�.59 Since the inversion
occurs at an even number of points in the Brillouin zone,
both materials belong to the conventional insulator topologi-
cal class.

PbTe and SnTe form an alloy Pb1−xSnxTe. At x�0.4,
there is an inversion transition where the band gap at the four
L points vanishes, giving rise to three-dimensional Dirac
points.57,58 The phases on either side of this transition are
only distinct if inversion symmetry is present. Thus, disorder,

which is inevitably present in the alloy, blurs the transition.
However, uniaxial strain oriented along the 111 direction will
distinguish one of the L points �call it T now� from the other
three L points. It follows that the inversion transitions at the
L and T points will occur at different values of x. Thus, there
will be an intermediate phase in which L is inverted, but T is
not �or vice versa�. From Eqs. �1.1� and �1.2�, this interme-
diate phase will be a strong topological insulator with surface
states forming a topological metal. Note that this direction
depends on the orientation of the uniaxial strain. For in-
stance, strain along the 100 direction will distinguish two L
points from the other two and will not lead to an intermediate
topological phase. In Fig. 7, we show a schematic phase
diagram as a function of x and 111 strain.

The band inversion between SnTe and PbTe has been dis-
cussed by a number of authors previously. Volkov and
Pankratov60 argued that PbTe and SnTe can be described by
a low-energy field theory consisting of three-dimensional
Dirac fermions with masses of opposite signs. They con-
cluded that a planar interface between PbTe and SnTe will
exhibit interface states described by a two-dimensional mass-
less Dirac equation. The appearance of such domain-wall
fermions is similar to the appearance of midgap states in a
one-dimensional Peierls insulator at a soliton.34 A related
proposal was made by Fradkin and co-workers,36,37 who con-
sidered a domain wall in PbTe in which on one side the Pb
and Te atoms are interchanged. This was also modeled as 3D
Dirac fermions with a mass which changes sign at the inter-
face.

The domain-wall fermions which appear in these theories
are similar to the states we predict at the surface of a strong
topological insulator. Indeed, if one views the vacuum as a
band insulator with a large gap, then the surface can be
viewed as an interface between a band insulator and a topo-
logical insulator, which can be described as an inversion
transition, where there is a change in the sign of the mass of
a 3D Dirac fermion. However, there is an important differ-
ence between the proposals discussed above and the surface
states of the topological insulator: the strong topological-
insulator–band-insulator interface involves a sign change in
an odd number of Dirac points, while the interface models
above involve four Dirac points. Having an odd number is
crucial for the topological stability of the surface states.

TABLE VI. Symmetry labels for the five valence bands of tin
telluride and lead telluride at eight time-reversal invariant momenta,
according to Ref. 59.

Tin Telluride

1� �6
+ �6

+ �6
−2�8

+ �

3X X6
+ X6

+ X6
− X6

− X7
− �

4L L6
− L6

+ L6
+ L45

+ L6
− �

Z2 class �0;000�

Lead telluride

1� �6
+ �6

+ �6
− 2�8

+ �

3X X6
+ X6

+ X6
− X6

− X7
− �

4L L6
− L6

+ L6
+ L45

+ L6
+ �

Z2 class �0;000�

FIG. 7. Schematic uniaxial strain-composition phase diagram
for Pb1−xSnxTe. Away from the inversion transition at x�0.4, the
material is a conventional insulator �I�. Near the transition, it is a
strong topological insulator �STI�.
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D. Other materials

The materials we have proposed above should not be con-
sidered to be an exhaustive list. In general, it is necessary to
consider insulators composed of heavy elements. Another
candidate for a topological insulating phase is Bi2Te3, which,
like Bi1−xSbx, is known for its thermoelectric properties.61

This material is also a narrow gap semiconductor, with an
energy gap of order 0.13 eV. Though the crystal structure of
this material is inversion symmetric, we have been unable to
locate band theory calculations which display the parity ei-
genvalues.

Another possible candidate is the zinc-blende semicon-
ductor �−HgS. The electronic structure of this material has
been a subject of some controversy. According to Delin,62 it
is a semiconductor which has an unusual band ordering, with
the �6 and �8 levels in the valence band and the �7 level in
the conduction band. If this is the case, we expect the mate-
rial to be a strong topological insulator. However, this con-
clusion has been challenged by Moon and Wei,63 who find a
more conventional band ordering with the �6 level in the
conduction band and the �7 and �8 levels in the valence
band, leading to a conventional insulator.

VI. EXPERIMENTAL IMPLICATIONS

We now briefly consider possible experimental probes of
topological insulators. We will focus here on the three-
dimensional strong topological insulator phase, for which we
suggested several materials in the previous section.

The most direct probe of the topological insulators is
transport. Since there is a bulk excitation gap, transport in
intrinsic samples at very low temperature will be dominated
by the surfaces, which can be probed by the geometry de-
pendence of the conductance. For example, for a wire geom-
etry, the conductance will be proportional to the circumfer-
ence of the wire, rather than the area.

In addition, since the topological metal phase is in the
symplectic universality class the conductivity is expected to
increase logarithmically at low temperature: ��T�
� log�Lin�T� /��,64 where Lin is the inelastic scattering length
and � is the mean free path.

An interesting prediction for the surface states is that due
the � Berry’s phase associated with the surface Fermi arc,
the surface quantum Hall effect in a perpendicular magnetic
field should be quantized in half odd integers, �xy = �n
+1/2�e2 /h. As discussed in Sec. II C 1, this is difficult to
measure directly without separately measuring the currents
flowing on the top and bottom surfaces of the sample. How-
ever, if the parallel combination of the two surfaces could be
measured, the resulting Hall effect would be quantized in
odd multiples of e2 /h. This is similar to the quantum Hall
effect in graphene,65,66 which is quantized in odd multiples
of 2e2 /h. The difference is due to the fact that graphene has
four Dirac points, including spin.

A practical difficulty with transport measurements is that
it is necessary to distinguish surface currents from bulk cur-
rents. Since bulk currents scale with the sample width W,
even though there is a bulk energy gap Eg, the temperature

must be low: T�Eg / log�W /a�, where a is the lattice con-
stant. Moreover, since the materials we have suggested have
rather small energy gaps, samples with high purity will be
required to reach the intrinsic limit. As discussed in Sec.
IV A, the low-temperature behavior of Bi1−xSbx is dominated
by a low concentration of charged impurities, which form an
impurity band.43 This is a ubiquitous problem for narrow gap
semiconductors due to their low effective mass and high di-
electric constant. Clearly, it would be desirable to have a
transport geometry which probes the surface states while
controlling the position of the bulk Fermi energy. Perhaps,
this may be possible in a clever heterostructure geometry,
where the bulk Fermi energy can be adjusted with a gate.

An alternative probe of the surface states would be to map
the surface Fermi arc using angle-resolved photoemission.
Such measurements could establish that the surface Fermi
arc encloses an odd number of time-reversal invariant mo-
menta in the strong topological insulator phase. Detailed
angle-resolved photoemission spectroscopy studies have
been carried out on the surfaces of bismuth67–69 and
antimony.70 However, the presence of the bulk Fermi surface
complicates the analysis of these materials. It would be in-
teresting to see how the results are modified in the semicon-
ducting Bi1−xSbx alloy.

Finally, since the surface states are spin filtered, electrical
currents flowing on the surface will be associated with spin
accumulation, leading to a spin-Hall effect. In GaAs, spin
accumulation on a surface has been measured.71,72 The nar-
row energy gaps in our proposed materials make detection of
the spin accumulation more difficult. Perhaps, a heterostruc-
ture geometry could make this possible.

VII. CONCLUSION

In this paper, we discussed topological insulator phases in
two and three dimensions. We discussed in detail how the Z2
topological invariants characterizing these phases influence
the surface-state spectrum. In particular, the quantum spin-
Hall phase in two dimensions and the strong topological in-
sulator in three dimensions have robust conducting surface
states, which we have characterized as a topological metal.
We showed that the Z2 invariants can be determined easily in
parity invariant crystals from the knowledge of the parity
eigenvalues for states at the time-reversal invariant points in
the Brillouin zone. Using this method, we deduced that the
semiconducting alloy Bi1−xSbx is a strong topological insula-
tor, as are �-Sn and HgTe in the presence of uniaxial strain.

There remain a number of further issues which need to be
understood better. High among them are the effects of disor-
der and interactions. These are important both for the topo-
logical metal surface states as well as for the bulk topological
phases. Numerical work by Onoda et al.73 has suggested that
the transition between the conventional insulator and the
quantum spin-Hall phase in two dimensions belongs to a new
universality class. It will be of interest to understand this
transition better, along with the related transition between the
topological insulator and the Anderson insulator, which pre-
sumably occurs when disorder is increased beyond a critical
value.
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Finally, it would be desirable to develop a field theory for
the topological insulating phases analogous to the Chern-
Simons theory of the quantum Hall effect. Perhaps, this may
lead to analogs of the fractional quantum Hall effect for the
topological insulators.
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