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An analytical theory based on the effective medium approach �EMA� is formulated to describe the charge
carrier mobility as a function of the charge carrier concentration in a disordered organic material with a
Gaussian density-of-state distribution using jump rate expressions based on either the Miller-Abrahams or
polaron model. In this study, we address the problem of how the carrier density dependence of charge mobility
is affected by the type of jump rate and, consequently, by polaron effects. Our theoretical consideration
employs the concept of the effective transport energy. Results of the EMA calculations in the framework of the
Miller-Abrahams jump rate model show a considerable increase of the drift charge carrier mobility with
increasing carrier concentration, in good agreement with previous theoretical studies, numerical simulation
data, and experiment. At very large carrier densities, however, the theory predicts an abrupt decrease of the
charge mobility. A key result of the present study is that a considerably weaker dependence of the mobility on
the carrier concentration is found for the polaron jump rate model. Also, with this model, the polaron mobility
dramatically decreases at very high carrier densities. An important implication of this study is that the common
observation of a field-effect mobility that is orders of magnitude larger than time-of-flight �ToF� or space-
charge-limited-current mobilities is incompatible with a polaron binding energy large compared to the width of
the distribution of states. On the other hand, the existence of a significant polaron binding energy offers a
plausible explanation why, in certain organic disordered materials, field-effect transistor and ToF mobilities are
similar.

DOI: 10.1103/PhysRevB.76.045210 PACS number�s�: 72.20.Jv, 72.20.Ee, 71.38.�k, 66.30.�h

I. INTRODUCTION

Charge carrier hopping within a positionally and energeti-
cally disordered system is a commonly accepted model de-
scribing charge carrier transport in disordered organic semi-
conductors �see for review Refs. 1–4�. In an energetically
disordered hopping system, charge carriers present in the
semiconductor after photogeneration or injection from elec-
trodes tend to relax toward the tail states of the density-of-
states �DOS� distribution. For organic semiconductor, the
DOS is usually assumed to be of Gaussian shape, character-
ized by a width �.5,6 Depending on the magnitude of ener-
getic disorder, quasiequilibrium is established sooner or later,
as described by the Gaussian disorder model of Bässler.1 A
notorious feature of the Gaussian DOS is that at small carrier
concentrations, when charge carriers are noninteracting, the
majority of equilibrated carriers mostly occupy weakly filled
states well above the Fermi level. In this case, the equilib-
rium occupational DOS �ODOS� is also a Gaussian with
width � but offset from the center of the intrinsic DOS by an
energy �0=−�2 /kBT. The charge transport is controlled by
carrier jumps from states around the energy level �0 to the
so-called effective transport energy level �see below�. There-
fore, at low carrier concentration, the position of the Fermi
level in case of an empty DOS is irrelevant for the charge
carrier mobility. This case is typically realized in time-of-
flight �ToF� experiments of study of charge carrier mobility.

Recently, however, it was recognized that this is no longer
true at high carrier concentrations when the deep tail states of

the DOS are completely filled by carriers and the Fermi level
raises above the mean quasiequilibrium energy level.7–9 At
sufficiently high carrier densities, charge transport is then
controlled by carrier jumps from states around the Fermi
level to the transport energy level. In this case, the equilib-
rium energy distribution of carriers is described by the
Fermi-Dirac distribution.7–9 Such a situation is realized in an
organic thin-film transistor �OTFT� and in chemically doped
organic semiconductors. Experimentally, it was found that
charge mobility in the same material can differ up to 3 orders
of magnitude depending on whether the mobility is measured
in a diode or a field-effect transistor �FET� device
geometry.7,8,10 This demonstrates that the concentration de-
pendence of the mobility must be taken into account in an
adequate description of charge transport properties in organic
electronic devices such as organic FETs �OFETs�.

There were already several attempts to describe charge
transport at high carrier densities.10–17 Arkhipov et al.7

pointed out that in chemically doped materials and in the
conductive channel of a FET, the number of charge carriers
occupying deep tail states of the Gaussian DOS distribution
can be comparable to the total density of the localized states.
They suggested a stochastic hopping theory incorporating the
Fermi-Dirac distribution to describe the temperature depen-
dence of the charge mobility at high concentration and
proved that the activation energy of the mobility decreases
with increasing carrier concentration.7 This can explain the
much higher mobility in FET devices compared to that in
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organic light emitting diodes. It should be mentioned that
there exist, however, organic disordered materials with a
rather small difference in FET and ToF mobilities. A repre-
sentative example is the polyfluorene derivative where these
mobilities are all within the same order18 and this observa-
tion has no plausible explanation.

The problem of carrier density effect on charge transport
was further considered by several groups �Tanase et al.8

Rubel and co-workers,11–13 Arkhipov et al.,16 Roichman and
co-workers,9,15,17 and Pasveer and co-workers.10,14�. A mean
medium approximation �MMA� analytical theory9,15 was
used to calculate the carrier concentration dependence of the
charge mobility assuming the Miller-Abrahams jump rate
and a Gaussian DOS distribution. In this treatment, however,
local fluctuations of the electrochemical potential were ne-
glected, which, as mentioned in Ref. 10, has resulted in con-
siderable overestimation of the mobilities by several orders
of magnitude at low temperatures, thus making this model
unrealistic. Besides, MMA calculations of the carrier density
effect have not been performed for the polaron jump rate
model.

To our knowledge, an influence of possible polaron for-
mation on the charge mobility at high carrier densities has
not been considered, although for some organic systems, it is
believed that the deformation energy due to polaron effects
might be comparable to the disorder energy and polaron for-
mation has to be taken into account to describe the observed
temperature dependence of mobility.19 The polaron transport
under the influence of energetic disorder was considered for
the small-concentration limit by an analytical theory of Ken-
kre and co-worker19,20 using the variable range hopping
technique20 assuming that disorder plays the key role and
polarons are always in the diabatic limit. Later on, computer
simulations by Parris et al.21 suggested a polaronic correlated
disorder model incorporating a small polaron transfer rate to
explain the Poole-Frenkel-type dependences of polaron mo-
bility with electric field. With this model, the polaron trans-
port with realistic values for the transfer integral and the
polaron binding energies can be in good agreement with ex-
perimental observations for low carrier concentrations. These
results have been recently supported also by analytical
theory of Fishchuk et al.22 using an effective medium ap-
proach.

In the present work, an analytical theory based on the
effective medium approximation �EMA� is formulated to de-
scribe the charge carrier mobility as a function of the carrier
concentration in a disordered organic material with a Gauss-
ian density-of-state distribution using jump rate expressions
based on either the Miller-Abrahams or polaron model �for
application of the EMA method for low carrier concentra-
tions, see Refs. 22 and 23�. It will be shown that EMA cal-
culations in the framework of the Miller-Abrahams model
predict a considerable increase of the drift charge carrier mo-
bility with increasing carrier concentration, in agreement
with earlier calculations and experiments. The key result of
the present study is that a much weaker carrier concentration
dependence of the charge mobility is found for the polaron
jump rate. Also, the theory demonstrates that the observation
of a FET mobility that is orders of magnitude larger than a
ToF or space-charge-limited-current �SCLC� mobility is in-

compatible with the notion of a large polaron binding energy
�Ea /��3�. On the other hand, the present theory offers a
possible explanation why certain organic disordered materi-
als show a rather small difference between these mobilities.
This agrees with predicted charge transport properties in or-
ganic semiconductors with large polaron binding energies.
The effect was observed in polyfluorene copolymers where,
indeed, a quite considerable polaron binding energy has been
recently found from analysis of the charge transport data.24

This paper is organized as follows. First, we formulate
basic equations of our EMA approach �Sec. II�. Section III
considers the carrier density effect on charge mobility within
the EMA formalism. In Sec. IV, we discuss the configura-
tional averaging procedures which have been used in charge
transport theories for disordered organic solids. Section V
considers the effective transport energy concept in the frame-
work of the Miller-Abrahams and polaron jump rate models.
Finally, in Sec. VI, we present the EMA calculation results
for the Miller-Abrahams and polaron jump rate models and
compare the prediction of the theory with available calcula-
tions and experimental results.

II. GENERAL EFFECTIVE MEDIUM APPROXIMATION
FORMULATION

In the present paper, the EMA formalism is applied to
consider the dependence of the drift charge carrier mobility
on carrier concentration and temperature employing both
the Miller-Abrahams- and the polaron-type of the jump rates.
Hence, we investigate how a specific jump rate, i.e., presence
or absence of the polaron effects, affects the charge transport
properties at high carrier densities. We note that, in principle,
two approaches could be used to calculate the charge carrier
mobility at higher carrier concentrations. In the first ap-
proach, the many-particle problem of the kinetic equation is
reduced by calculations to the effective single-particle trans-
port by already applying the so-called mean-field approxima-
tion at the beginning.25 The second approach implies the the-
oretical treatment of the single-particle charge carrier
mobility, while the many-particle nature of the problem is
accounted for at the stage of configuration averaging, as
shown recently by Arkhipov et al.16 We consider the second
approach to be more appropriate and use it further in the
present work. Within our single-particle EMA approach, we
replace the disordered organic system by an effective three-
dimensional �3D� manifold of localized sites with average
intersite distance a=N−1/3, where N is the concentration of
the localized states.

To consider the charge transport issue for an arbitrary
type of jump rate Wij between localized states, we proceed
from the general expression for the effective jump rate We
and which has been obtained by the EMA formalism for
three-dimensional disordered systems based on a two-site
cluster approximation,26

� W12 − We

W12 + W21

2
+ 2We� = 0. �1�

Here, the angular brackets denote in the general case the
configuration averaging over the distribution of site energies
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and distance between two sites in jump rates W12 and W21. If
the energy disorder is absent, one has W12=W21=W. Then,
from Eq. �1�, the well-known expression ��W−We� / �W
+2We��=0 can be derived. The energetic averaging must be
performed over the equilibrium energy distribution of charge
carriers in their starting states P��1� and over the distribution
of target unoccupied localized states Q��2�.

In our treatment, we hereafter consider two conventional
jump rate models of the hopping transport and corresponding
expressions for the intersite jump rates Wij which have been
extensively used before in analytical calculations and com-
puter simulations of the charge transport phenomena,
namely:

�1� The Miller-Abrahams model assuming the jump rate

Wij = �0 exp�− 2
rij

b
−

�� j − �i� + �� j − �i�
2kBT

	 , �2�

where �i is the energy of site i, rij the distance between sites,
b the localization radius of a charge carrier, and �0 the
attempt-to-escape frequency.

�2� The polaron model where Wij is described by the Mar-
cus jump rate expression

Wij = W0 exp
− 2
rij

b
−

� j − �i

2kBT
� , �3�

where

W0 = W1 exp
−
Ea

kBT
�, W1 =

J0
2

�
� �

4EakBT
. �4�

Here, Ea is the polaron activation energy. It should be noted
that Eq. �3� is a somewhat simplified version of the exact
Marcus rate expression, in which only linear terms in the
exponent with respect to the energy of localized states have
been retained. Such approximation is valid when ��Ea,
which is justifiable for disordered organic materials where
the importance of polaron effects has been found.22,24

Employing the Miller-Abrahams jump rate model Eq.
�2��, it follows that

W12 + W21

2
� �0 exp
− 2

r12

b
� . �5�

Then, by neglecting the positional disorder, Eq. �1� yields the
following for the effective Miller-Abrahams jump rate:

We = �W12� . �6�

In the case of polaron jump rate given by Eq. �3�, one
obtains

W12 + W21

2
� W0 exp
− 2

r12

b
�exp
 ��2 − �1�

2kBT
� . �7�

Upon ignoring the positional disorder and in the approxima-
tion iterative with respect to We, Eq. �1� yields the effective
polaron jump rate

We =

�W12 exp
−
��2 − �1�

2kBT
��

�exp
−
��2 − �1�

2kBT
�� . �8�

Thus, in the case of polaron hopping transport, the EMA
calculation of the effective jump rate We by Eq. �8� cannot be
reduced to just a configuration averaging of the W12. This is
in contrast to the Miller-Abrahams model cf. Eq. �6��.

III. CARRIER DENSITY EFFECT

We consider now the carrier density effect on charge mo-
bility within our EMA formalism. We assume that double
occupancy of a hopping site with carriers of equivalent sign
is prohibited and that the DOS distribution is not affected by
carrier density. The latter can be justified by the fact that the
interaction between charges of the same sign is repulsive
and, therefore, cannot create the Coulomb traps, and as a
result, the broadening of the DOS distribution is much
weaker than in the case of chemically doped materials. To
calculate We for arbitrary carrier concentration n �n	N�, one
should account for the many-particle nature of the charge
transport process by proper choice of the energy distribution
functions for starting and target states: P��1� and Q��2� func-
tions, respectively. If the intrinsic DOS distribution is a
Gaussian with the width �,

g��� =
N

��2�
exp�−

1

2

 �

�
�2	 , �9�

then the normalized P��1� distribution can be presented as

P��1� =
g��1�f��1,�F�

�
−





d�g���f��,�F�
�10�

and the normalized Q��2� distribution as

Q��2� =
g��2�1 − f��2,�F��

�
−





d�g���1 − f��,�F��
. �11�

Here, f�� ,�F� is given by the Fermi-Dirac statistics

f��,�F� =
1

1 + exp
� − �F

kBT
� . �12�

The value of the Fermi level �F can be determined from the
following transcendental equation for the carrier concentra-
tion n:

n = �
−





d�g���f��,�F� . �13�

In the limit of vanishing charge carrier concentrations
�n /N→0�, one obtains ��−�F� /kBT�1. In such case of one-
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particle approximation, the position of the Fermi level is un-
important as the function P��1� has the form of the normal-
ized equilibrium ODOS distribution function,

P��1� =
1

��2�
exp�−

1

2

�1 − �0

�
�2	 , �14�

At the same time, the function Q��2� takes the form of the
DOS distribution function:

Q��2� =
1

��2�
exp�−

1

2

�2

�
�2	 . �15�

The drift mobility �e=ea2We /kBT at arbitrary concentra-
tion of the charge carriers can be calculated by employing
the concept of the effective transport energy �t, which has
been proven to be especially efficient for calculating the car-
rier mobility in disordered materials.16,27 The effective trans-
port energy level implies the energy of a target site to which
most of localized carriers make thermally activated jumps
and which does not depend on the energy of a starting state
�1 when �1	�t. This approach accounts for changing the
jump distance with changing temperature in the two-site
transitions. By employing this concept, one can replace the
Q��2� function by

Q��2� = ��2 − �t� . �16�

The �t level depends on the temperature and carrier concen-
tration.

Substituting Eqs. �2�, �10�, and �16� into Eq. �6�, for the
Miller-Abrahams model, we obtain the following for the ar-
bitrary carrier density:

We =

�
−


�t

d�W��,�t�g���f��,�F�

�
−


�t

d�g���f��,�F�
, �17�

where

W��,�t� = �0 exp
− 2
rt

b
�exp
−

�t − �

kBT
� . �18�

Here, rt=r��t� is the jump distance at and below the transport
energy level �t. In Eq. �17� and further, only hopping transi-
tions to the transport energy level from the states below the
�t have been taken into account at the configuration averag-
ing. Then, Eq. �17� for the effective Miller-Abrahams jump
rate can be rewritten as

We = �0 exp
− 2
rt

b
�exp
−

�t

kBT
�

�

�
−


�t

d� exp
 �

kBT
�g���f��,�F�

�
−


�t

d�g���f��,�F�
. �19�

In the case of the polaron model, the effective jump rate
for the arbitrary carrier �polaron� density can be obtained by

substituting Eqs. �3�, �10�, and �16� into Eq. �8�,

We =

�
−


�t

d�W��,�t�exp
 �

2kBT
�g���f��,�F�

�
−


�t

d� exp
 �

2kBT
�g���f��,�F�

, �20�

where

W��,�t� = W1 exp
−
Ea

kBT
�exp
− 2

rt

b
�exp
−

�t − �

2kBT
� .

�21�

Correspondingly, Eq. �20� can be rewritten as

We = W1 exp
− 2
rt

b
�exp
−

Ea

kBT
�exp
−

�t

2kBT
�

�

�
−


�t

d�g���exp
 �

kBT
� f��,�F�

�
−


�t

d�g���exp
 �

2kBT
� f��,�F�

. �22�

The effective drift mobility �e for the arbitrary jump rate
model can be calculated using the generalized Einstein equa-
tion, which can be written, as suggested recently by Roich-
man and Tessler,28 as

�e = ek0rt
2We/kBT , �23�

where k0 can be obtained as

k0 = 1 −

�
−





d�g���f2��,�F�

�
−





d�g���f��,�F�
. �24�

In the case of negligible carrier concentration, i.e., n /N→0,
Eq. �24� predicts k0→1.

In the framework of the Miller-Abrahams jump rate
model, the effective charge carrier mobility �e can be calcu-
lated using Eqs. �9�, �19�, and �23� as

�e = �0k0x
 rt

a
�2

exp
− 2
rt

b
�exp�− xxt�

�

�
−


xt

dt

exp
−
1

2
t2 + xt�

1 + expx�t − xF��

�
−


xt

dt

exp
−
1

2
t2�

1 + expx�t − xF��

, �25�

where �0=ea2�0 /�, a=N−1/3, x=� /kBT, xt=�t /�, and xF
=�F /�.

Within the polaron model, the effective carrier mobility
�e can be obtained using Eqs. �9�, �22�, and �23� and the
result reads
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�e = �0k0x
 rt

a
�2

exp
− 2
rt

b
�exp�− xxa�exp
−

1

2
xxt�

�

�
−


xt

dt

exp
−
1

2
t2 + xt�

1 + expx�t − xF��

�
−


xt

dt

exp
−
1

2
t2 +

1

2
xt�

1 + expx�t − xF��

, �26�

where �0=ea2W1 /� and xa=Ea /�.
In the case of infinitesimally low concentration of charge

carriers �n�N� in the framework of the Miller-Abrahams
model, Eq. �25� yields

�e = �0x
 rt

a
�2

exp
− 2
rt

b
� 1 + erf
 xt

�2
�

1 + erf
 x + xt

�2
� exp
−

1

2
x2 − xxt� ,

�27�
while in the framework of the polaron model, Eq. �26� leads
to

�e = �0x
 rt

a
�2

exp
− 2
rt

b
� 1 + erf
 xt

�2
�

1 + erf
 x + 2xt

2�2
� exp�− xxa�

�exp
−
1

8
x2 −

1

2
xxt� . �28�

IV. AVERAGING OF THE HOPPING RATE VERSUS
HOPPING TIMES

In this section, we shall discuss the configurational aver-
aging procedures used in theories on charge carrier transport
in disordered organic solids. It should be mentioned that
there has been a vivid discussion regarding the problem of a
general approach to the calculation of the drift mobility in
disordered organic systems �see, for instance, Refs. 11 and
29�. In fact, the discussion concerns the validity of the use of
two expressions for the calculation of the charge mobility
within the variable range hopping approach accounting for
the transport energy concept,29 namely,

�e �
e

kBT
rt

2We, �29�

where

We = �W� , �30�

and

�e �
e

kBT
rt

2We, �31�

where

We = �W−1�−1. �32�

rt=r��t� is the jump distance at and below the transport en-
ergy level �t and W is the jump rate between adjacent sites
within the Miller-Abrahams model.30 Nevertheless, this issue
can be readily solved if one considers that there are two ways
to do the configuration averaging using Eqs. �30� and �32�.

Indeed, we mention that the effective jump rate can also
be calculated by a different method than has been described
in the previous section. It has been shown by Baranovskii
and co-workers12,27 that We can be obtained for the low car-
rier density limit within the Miller-Abrahams model by av-
eraging times of hopping intersite transitions. Hence, instead
of Eq. �6�, the following equation was used:

We = �W12
−1�−1, �33�

where

�W12
−1� =

�
−


�t

d�W12
−1g���

�
−


�t

d�g���
. �34�

Here,

W12
−1 = �0

−1 exp
2
rt

b
�exp
�t − �

kBT
� . �35�

Upon averaging in Eq. �34�, only transitions from the states
below the transport energy level to this level have been taken
into consideration.

In the general case of arbitrary charge carrier concentra-
tion, one should average times of hopping transitions over
the distribution of empty �target� localized states, i.e., by
using the function given by Eq. �11�. Therefore, instead of
Eq. �34�, one obtains

�W12
−1� =

�
−


�t

d�W12
−1g���1 − f��,�F��

�
−


�t

d�g���1 − f��,�F��
. �36�

Substituting Eqs. �35� and �36� into Eq. �33�, one obtains the
expression for We which coincides exactly with Eq. �19�. If
the W12 is obtained within the polaron model cf. Eq. �3��
and substituted into Eq. �36�, then, by using also Eq. �33�,
the resulting expression for We is identical with Eq. �22�.

It should be stressed, however, that configurational energy
averaging has been performed in a different way when ob-
taining the above expressions. In Eq. �30�, the calculation of
the drift mobility implies averaging of the hopping rates over
the normalized equilibrium energy distribution of charge car-
riers. However, when calculating the mobility by averaging
of hopping times, as done in Eq. �32�, averaging is performed
over the normalized energetic distribution of the empty �tar-
get� states. Both approaches for the calculation of the zero-
field effective drift mobility are eventually equivalent pro-
vided that the effective transport energy concept is used. The
same problem has been also discussed recently in Ref. 22.
Thus, the above consideration clearly shows that the recent
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criticism in Refs. 11, 27, and 29 regarding the validity of the
configurational averaging of the hopping rates over the equi-
librium energetic distribution of charge carriers16 is actually
unfounded. We should, however, emphasize that Eqs. �30�
and �6� are only valid in the presence of energetic disorder. It
is not valid for solely positionally disordered system, as it
has been noticed correctly by Baranovskii et al.11,27,29 In the
latter case, the calculation of We should be performed using
the general universal expression Eq. �1�. Then, W12=W21
=W, and from Eq. �1�, the following known EMA expression
can be derived:

� W − We

W + 2We
� = 0. �37�

Here, the angular brackets denote positional averaging.
The consistency of the results obtained by different meth-

ods justifies the validity of Eq. �1� obtained by the EMA
theory for calculating the effective jump rate We, as well as
the validity of their different forms given by Eqs. �6� and �8�,
deduced from Eq. �1� for calculating We in the framework of
the Miller-Abrahams and polaron models, respectively.

V. EFFECTIVE TRANSPORT ENERGY

For further treatment of the charge mobility at large car-
rier densities, the effective transport energy level xt �xt

=�t /�� will be calculated employing both the Miller-
Abrahams and polaron models. For the general case of the
DOS distribution function g��� and arbitrary concentration of
charge carriers, the transport energy �t can be introduced as
follows. One can roughly estimate the distance r�� f� between
the nearest neighbor sites for the charge carrier jump from a
site with arbitrary energy �i to a site with energy � f ��i
using the following relation:

4�

3B
r3�� f��

−


�f

d�g���1 − f��,�F�� � 1. �38�

Hence, we have

r�� f� � �4�

3B
�

−


�f

d�g���1 − f��,�F��	−1/3

. �39�

Here, parameter B=2.7 is determined according to percola-
tion criteria.12 Let us assume that all localized states partici-
pate in the transitions, i.e., �t→
. Then, for the case of
negligible charge carrier concentration, Eq. �39� yields the
percolation radius r�
�=0.86a.31 This implies that Eq. �39�
is valid for arbitrary �t values and not only for �t�−� /2,
as it has been claimed in Ref. 12. It should be noted,
however, that the theoretical results obtained below for the
temperature dependence of the charge mobility in the frame-
work of the Miller-Abrahams model and the transport energy
concept show better agreement with available results of
computer simulations when one assumes B=1 �by the way,
the same value was also used before by Baranovskii et al.27

for the case of zero carrier density limit and the typical ratio
b /a=0.1�. Thus, assuming B=1, ln��e��−0.48�� /kBT�2

is derived, which is closer to the expression ln��e��
−�2� /3kBT�2�−0.44�� /kBT�2 obtained by previous com-
puter simulation studies1 compared to the relation ln��e��
−0.52�� /kBT�2 obtained assuming B=2.7. For this reason,
we will use the value B=1 in our subsequent calculations.

In the case of the Miller-Abrahams jump rate model Eq.
�2��, the probability of carrier jump from a site with energy �i
to the target site with energy � f �at � f ��i� is given by

W��i,� j� = �0 exp�− 2
r�� f�

b
−

� f − �i

kBT
	 . �40�

The target site energy � f can be calculated by determining
the maximum of the above jump rate function Eq. �40�� as
follows:

�W��i,� f�
�� f

= 0,

or 1 − f�� f,�F��g�� f��4�

3B
�

−


�t

d�1 − f��,�F��g���	−4/3

=
1

kBT

3b

2

3B

4�
. �41�

As one can see, � f value determined from the maximal jump
rate does not depend on the energy of the starting site �i and
defines the effective transport energy level �t. Taking into
account the Gaussian shape of the DOS Eq. �9��, one can
rewrite Eq. �41� in the form the convenient for the calcula-
tion of the transport energy xt �xt=�t /�� as

1
�2�

exp
−
1

2
xt

2�
1 + exp− x�xt − xF��

�� 1
�2�

�
−


xt

dt

exp
−
1

2
t2�

1 + exp− x�t − xF���
−4/3

=
3

2

4�

3B
�1/3

x
b

a
. �42�

The concept of the transport energy can also be applied
for the polaron jump rate model Eq. �3��. In this case, the
probability of the carrier transition from a site with energy �i
to the target site with energy � f �at � f ��i� can be written as

W��i,� j� = W0 exp�− 2
r�� f�

b
−

� f − �i

2kBT
	 . �43�

In this case, xt=�t /� value can be calculated from the fol-
lowing equation:
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1
�2�

exp
−
1

2
xt

2�
1 + exp− x�xt − xF��

�� 1
�2�

�
−


xt

dt

exp
−
1

2
t2�

1 + exp− x�t − xF���
−4/3

=
3

4

4�

3B
�1/3

x
b

a
. �44�

For both jump rate models, we have

rt = a�4�

3B

1
�2�

�
−


xt

dt

exp
−
1

2
t2�

1 + exp− x�t − xF���
−1/3

. �45�

Equations. �42� and �44� for the different jump rate models
differ only in the numeric coefficients in their right sides.
However, as it will be demonstrated below, this difference
proves to be of principal importance for the charge carrier
mobility at high carrier concentrations.

VI. RESULTS AND DISCUSSIONS

A. Comparison of the carrier density effects calculated within
the different jump rate models

Figure 1 shows the charge carrier mobility �e as a func-
tion of the carrier concentration n at different temperatures
calculated for b /a=0.1 within the Miller-Abrahams jump
rate model see Eq. �25�� using Eqs. �42� and �45� for differ-
ent values of � /kT. The observed increase of charge carrier
mobility with increasing carrier concentration presented in
Fig. 1 agrees well with previous numerical experiments by
the master equation approach.10,14 N is the concentration of
the localized states.

Temperature dependences of the charge carrier mobility
�e calculated within the Miller-Abrahams model for differ-
ent carrier concentrations are plotted in Fig. 2 semilogarith-
mically versus 1/T and 1/T2 parametric in the carrier con-
centration. It should be noted that the curve in Fig. 2�b�,
which was calculated in the limit of zero carrier concentra-
tion n /N→0 using Eq. �27�, can be approximated well by
the relation ln��e��−k1�� /kBT�2, where k1=0.48. As one
can see, a typical sub-Arrhenius temperature dependence �
versus 1/T2 observed at low carrier concentration clearly
changes to the Arrhenius-type dependence of the mobility ��
vs 1/T� with increasing carrier concentration.

Figure 3 shows the carrier concentration dependences of
the drift carrier mobility for different temperatures, which
were calculated in the framework of the polaron jump rate
model by Eq. �26� using Eqs. �44� and �45� at b /a=0.1 and
moderately large polaron activation energy Ea /�=3. Tem-
perature dependence of the zero carrier concentration mobil-
ity n /N→0 calculated with Eq. �28� for the polaron jump
rate can be approximated well by the relation ln��e��
−Ea /kBT−k2�� /kBT�2, where k2=0.12. Note that k1 /k2=4,
which coincides with results of our previous calculations of
polaron transport22 where carrier jumps with variable range
have not been considered. This implies that the ratio k1 /k2
=4 is a constant in the framework of the polaron transport
model. Unfortunately due to lack of relevant computer simu-
lation data, the obtained k2 parameter cannot be verified in-
dependently.

Figure 4 shows the dependence of the effective transport
energy �t on carrier concentration n calculated at � /kBT=6

FIG. 1. Dependence of the drift charge carrier mobility �e on
the carrier concentration n at different temperatures, calculated
within the Miller-Abrahams jump rate model by Eq. �25� using Eqs.
�42� and �45�. Parameter b /a=0.1.

FIG. 2. �a� Temperature dependence ln��e /�o� vs 1/T� of the
charge carrier mobility �e calculated within the Miller-Abrahams
jump rate model for different carrier concentrations. �b� The data of
ln��e /�o� versus 1/T2.
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and b /a=0.1 within the Miller-Abrahams and polaron mod-
els. As one can see, in both cases, the transport energy is
virtually a constant at small carrier concentrations but tends
to increase considerably at very high carrier densities. Here,
we should mention that charge carrier densities in an accu-
mulation channel in a OFET is typically limited by n /N
	0.01, therefore, such a concentration range is obviously of
most practical interest. However, for certain configurations,
much larger accumulation charges can be attracted to the
interface of an OTFT as, for instance, by using polarizable
gate dielectrics. In the latter cases, one can reach charge
density equivalent to that obtained by 10% chemical doping.
Thus, besides for fundamental science, extreme concentra-
tion of charge carriers may prove relevant.

It is remarkable that at low carrier concentrations, the
effective transport energy level lies below the DOS center in
the Miller-Abrahams model, but surprisingly, it is located
slightly above the DOS center in the polaron model. As one
can see from Fig. 5, at moderate carrier concentrations, the
effective transport energy is very close to the DOS center
and shifted by �0.3� at � /kBT=6. Qualitatively similar car-
rier concentration dependence of the effective transport en-
ergy was obtained by Arkhipov et al.16 employing the Miller-
Abrahams jump rate, but the authors obtained that the
transport energy always lies above the DOS center at all
carrier concentrations. Implications of the effective transport
energy position above the DOS center has been already thor-
oughly discussed elsewhere.32,33

We should further comment on the obtained difference in
the effective transport energy for bare charge carriers and
polarons. This difference basically comes from the difference
in the “energy” terms in asymmetric Miller-Abrahams and
symmetric polaron jump rate expressions Wij cf. Eqs. �2�
and �3��. The total activation energy for an elementary inter-
site carrier jump between hopping sites i and j �at � j ��i�
with the rate Wji�exp�−Eji /kBT� is Eji=� j −�i in the frame-
work of the Miller-Abrahams model, but it consists of two
components in the polaron model: Eji=Ea+ �� j −�i� /2 �at
Ea /��1�. We note that the presence of considerable polaron
effects has two important impacts, namely, �i� it results in the
appearance of a polaron activation energy component in the
total activation energy of the elementary carrier jump and �ii�
the energetic disorder component in the total activation en-
ergy is twice as small as that for the Miller-Abrahams model
for bare charge carriers. The latter effect gives rise to the
different transport energies for bare and polaron carriers
since the effective transport energy in both models is deter-
mined solely by the energetic disorder, as it follows from
Eqs. �42� and �44�. It should be also mentioned that the per-
colation threshold is also different in the Miller-Abrahams
and polaron models as its value calculated using the variable
range hopping formalism31 shows that it is sensitive to the
type of jump rate.

FIG. 3. Carrier concentration dependences of the drift charge
carrier mobility at different temperatures calculated in the frame-
work of the polaron model by Eq. �26� using Eqs. �44� and �45�.
Parameters Ea /�=3 and b /a=0.1.

FIG. 4. Dependence of the transport energy �t on carrier con-
centration n calculated within the Miller-Abrahams and polaron
models using Eqs. �42� and �44�, respectively. Parameters � /kBT
=6 and b /a=0.1.

FIG. 5. Temperature dependences of the transport energy at a
moderate carrier concentration as calculated within the Miller-
Abrahams and polaron models with Eqs. �42� and �44�, respectively.
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The carrier concentration dependence of the effective
transport energy in Fig. 4 sheds light on the effect of the
nonmonotonous behavior of mobility upon the carrier den-
sity presented in Fig. 1. The increase of the carrier mobility
with increasing carrier density can be explained as follows.
When the Fermi level �F approaches the mean equilibration
energy �0 of the charge carriers, the number of localized
carriers above �0 increases. Consequently, the density of va-
cant neighbor sites with a specific difference of energies
within the intersite hopping distance will be, in average,
larger. This results in an increase of mobility with increasing
carrier concentration. In this case, the effective transport en-
ergy level �t calculated employing the Miller-Abrahams
jump rate is �i� located below the DOS center in the consid-
ered range of carrier concentration n and �ii� is a constant
value dependent on � /kT except at very large charge con-
centration where a sharp increase of the �t is observed. This
gives rise to a decrease of the drift mobility �e at very large
carrier concentration and, consequently, to appearance of a
maximum on the carrier concentration dependence of the
charge mobility.

The temperature dependences of the drift mobilities pre-
sented in Fig. 2 agree qualitatively with results of recent
numerical simulations.7,14 They demonstrate that ln��e /�0�
in the framework of the Miller-Abrahams model can change
either quadratically or linearly with respect to reciprocal tem-
perature 1/T depending on the carrier concentration, i.e., it
depends on experimental conditions.

A remarkable result of the present EMA calculations is
that they predict a very different carrier density dependence
of the charge mobility within the polaron and Miller-
Abrahams jump rate models. As it follows from Fig. 3,
within the polaron model, a large increase in carrier density
has almost negligible effect on the polaron mobility, even at
low temperatures �� /kBT�1�, provided that the polaron ac-
tivation energy is moderately large �Ea /��3�. Conse-
quently, the temperature dependence of the polaron mobility
is also hardly sensitive to the increase of the carrier density.
Such a behavior of the carrier density dependence of the
charge mobility is due to the fact that, in this case, the effec-
tive transport energy level �t �see Fig. 5� lies above the cen-
ter of the DOS, i.e., essentially higher than in the case of the
Miller-Abrahams model.

For comparison of the above models, Fig. 5 shows tem-
perature dependences of the effective transport energy at
moderate carrier concentrations as calculated within the
Miller-Abrahams and polaron jump rate models. As one can
note, in the case of the polaron model, the transport energy
level lies higher than that in the case of the Miller-Abrahams
model over the whole range of considered temperatures.
Thus, a notable increase of polaron mobility with increasing
carrier concentration becomes possible only at considerably
higher carrier concentrations or lower temperatures com-
pared to the bare charge carriers obeying the Miller-
Abrahams jump rate. This is because at the same tempera-
ture, the effective energy barrier ��t−�F� is larger in the
former case and, consequently, its relative change due to the
lifting of the Fermi level up with increasing carrier density is
smaller. In the polaron model, the region of increasing mo-
bility with increasing charge carrier density may actually

never be reached. At sufficiently high carrier concentrations
�n→N�, the transport energy level considerably shifts up to
the upper DOS portion with low localized state density,
which leads to an abrupt decrease of the carrier mobility at
very large carrier density. In addition, the decrease of the
parameter k0 also results in the decrease of charge mobility
with increasing carrier concentration. Further, we should
note that, in reality, the polaron DOS is displaced with re-
spect to the “bare” charge carrier DOS distribution by the
polaron binding energy Ep=2Ea, while their profile shapes
are almost the same. However, for comparison of the tem-
perature dependences of the effective transport energies, the
above DOS distributions have been overlapped in Fig. 5 such
that their DOS centers coincide.

Hence, the key result of the present study is that it sug-
gests that in contrast to the Miller-Abrahams jump rate
model, the considerable change of charge carrier mobility
with increasing carrier concentration observed also in many
experiments is incompatible with a moderately large polaron
binding energy. On the other hand, this might suggest an
interesting explanation why in some materials, the SCLC
mobility is not much different from the FET mobility. It
might not be the only explanation of such experimental find-
ing but it might be true in materials with considerable po-
laron effects �large polaron binding energy�. Systematic ex-
perimental studies in this direction could provide a
straightforward test of the presented model. Finally, it should
be noted that at very large carrier concentrations, the polaron
mobility, however, shows similar strong decrease as in the
case of the Miller-Abrahams model.

It should be noted here that our calculations employing
the complete Marcus expression for the polaron jump rate
led to similar results on the effect of a large carrier concen-
tration on the polaron mobility. Moreover, the obtained
strong difference in the carrier density dependence of the
mobility for the Miller-Abrahams and polaron hopping mod-
els has also been supported by the EMA mobility calcula-
tions performed even without invoking the effective trans-
port energy concept �such calculations are justified for a
small-to-moderate degree of the energetic disorder�.

Unfortunately, computer simulation data based on the
Marcus jump rate Eq. �3�� are, to our knowledge, currently
not available, which precludes direct comparison with our
results obtained in the framework of the polaron model. We
hope that our results will stimulate such simulations studies.

B. Comparison with numerical calculations

In order to verify our approach, we compared the results
of our analytical calculations with available results of com-
puter calculations of charge carrier mobility at large carrier
concentrations. Recently Pasveer and co-workers10,14 calcu-
lated the dependence of the hopping charge carrier mobility
on carrier concentration by a numerical solution of the mas-
ter equation for hopping transport in a disordered solid with
a Gaussian DOS using the Miller-Abrahams jump rate for a
regular cubic lattice with lattice constant a. Their method
takes into account variable range hopping but, as the authors
stated, it was sufficient to consider hops with a maximum
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distance of �3a for the considered range of parameters. In
order to compare our results with their data, we set rt=a into
the general equations Eqs. �25� and �27� and rewrite them as

�e = �0k0x exp
− 2
a

b
�exp�− xxt�

�
−


xt

dt

exp
−
1

2
t2 + xt�

1 + expx�t − xF��

�
−


xt

dt

exp
−
1

2
t2�

1 + expx�t − xF��

�46�

and

�e = �0x exp
− 2
a

b
� 1 + erf
 xt

�2
�

1 + erf
 x + xt

�2
� exp
−

1

2
x2 − xxt� .

�47�

For calculating the transport energy �t within the Miller-
Abrahams model for a regular cubic lattice parameter cf
Eqs. �46� and �47��, we assume the term exp�−�1/2�x2−xxt�
in Eq. �47� to be equal to the convenient expression �
�exp−�4/9�x2� obtained by computer simulation studies of
the charge transport. Hence, we obtain

�t

�
= −

1

18

�

kBT
. �48�

Let us assume that under equilibrium, all carriers are located
at the energy �0. In this case, Eq. �14� reduces to P��1�
=��1−�0�. Consequently, the term exp−x2−xxt� arises in
Eq. �47� and by the comparison, we obtain �t /�=−�5/9�
��� /kBT�. This corresponds to the value of the transport
energy in the two-level model for the energetically disor-
dered system.34 Note that in this approximation, the transport
energy �t does not depend on the carrier concentration.

The carrier concentration dependence of the charge mo-
bility calculated with the use of Eqs. �13�, �24�, �46�, and
�48� for the Miller-Abrahams jump rate and at a /b=10 is
presented in Fig. 6�a� �solid curves� and results of the recent
computer simulations of Pasveer et al.10 are given by sym-
bols for different degrees of the energetic disorder � /kT. It
should be noted that an iteration procedure similar to that
suggested earlier by Yu et al.35 has been used for solving the
master equation in computer simulation studies of hopping
transport.10 The same procedure can be used also in the case
of the Marcus jump rate. As one can see from Fig. 6�a�, our
analytical results are in very good quantitative agreement
with computer simulation data within the carrier density
range where charge mobility increases with increasing of
charge carrier concentration.

The present EMA approach can be further supported by
comparison with the recently developed variable range hop-
ping �VRH� theory of Arkhipov et al.16 Indeed, the VRH
theory fits quantitatively very well numerical calculation
data, as can be seen from Fig. 6�b�. The calculated carrier

density dependence of the charge mobility are presented by
solid curves in Fig. 6�b� and compared to an equivalent set of
numerical simulation data �symbols� as in Fig. 6�a�. The
charge mobility is calculated16 by

� =
e�0

kTn��−


0 g���d�

1 + exp
−
� − �F

kBT
��

−2/3

��
−


�tr
g���exp
−

�tr − �

kBT
�

1 + exp
� − �F

kBT
� d� ,

n = �
−



 g���

1 + exp
� − �F

kBT
�d� . �49�

The effective transport energy was derived within the above
VRH theory from the following transcendental equation:

4�

3
�

−


�t g���

1 + exp
−
� − �F

kBT
�


�t − �

2�kBT
�3

d� = � , �50�

where � is the inverse localization radius ��=10�Nt
1/3

=10/a, a=Nt
−1/3, and Nt=1021 cm−3 is the total density of

intrinsic sites� and �=5 is a fitting coefficient.

FIG. 6. �a� Carrier concentration dependence of the charge mo-
bility calculated using Eqs. �13�, �24�, �46�, and �48�, for a /b=10
�solid curves� and results of computer simulations �symbols� �Ref.
10�. �b� Fitting results of the same set of numerical calculation data
�symbols� as in Fig. 6�a� by the variable range hopping theory �solid
curves� developed in Ref. 16.
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As one can see from comparison of Figs. 6�a� and 6�b�,
the above analytical theories describe successfully the nu-
merical simulation results of the charge mobility as a func-
tion of carrier density. It should be, however, noted that in
contrast to the above numerical simulation results, our model
predicts a decrease of the charge mobility at very high carrier
densities. The maximum of mobility might still occur at
somewhat lower charge carrier density than predicted by our
theory �and presented in Figs. 1 and 3�, since it follows from
the maximum for conductance occurring exactly at n /N
=0.5 due to particle-hole symmetry in the master equation.10

Thus, in the range of very high carrier concentrations, the
present EMA theory provides just a qualitative description of
the carrier density dependence of the charge mobility.

C. Comparison with experimental results

Figure 7 presents the fitting of experimental data of the
FET mobility measured in two different conjugated
polymers,8 namely, poly-3-hexylthiophene �P3HT� and
poly�2-methoxy-5-�3� ,7�-dimethyloctyloxy�-p-phenylene vi-
nylene� �OC1C10-PPV�, by Eqs. �25�, �42�, and �45� of the
present EMA theory. Here, we used the total density of the
localized states N=6.7�6.420 cm−3 for P3HT.16 Parameter
�0=a2�0e /� cf. Eq. �25�� due to Pasveer et al.10 was 106.4

and 107.3 cm2/V s for P3HT and OC1C10-PPV, respectively,
which correspond to the conventional prefactors of mobility
�0= �a2�0e /��exp�−2a /b� to become 5.2�10−3 and 4.2
�10−2 cm2/V s for a /b=10. The fitting parameter was the
parameter of the energetic disorder � /kBT, which was 4.5 for
P3HT and 6 for OC1C10-PPV. As one can see, a reasonably
good agreement between the experiment and the EMA
theory is observed.

VII. CONCLUSION

The present theoretical consideration bears out that the
charge carrier mobility strongly depends on carrier density in

disordered organic semiconductors with hopping charge
transport obeying the Miller-Abrahams jump rate which ne-
glects polaron effects and assuming a Gaussian DOS distri-
bution. On the other hand, we demonstrated that the carrier
concentration effect depends considerably on polaron forma-
tion. The theory predicts that the presence of a large polaron
binding energy compared to the width of the distribution of
states should result in much weaker carrier concentration de-
pendence of the charge mobility. The physical reason for the
latter is that the polaron activation energy, which contributes
considerably to the polaron hopping transport, does not de-
pend on the concentration of polarons.

We showed that the analytical calculations within both the
present EMA and the VRH theory of Arkhipov et al.16 �i� are
able to describe quantitatively well the results of the numeri-
cal experiment of Pasveer et al.,10 which are considered here
as a reference for examining our models, and �ii� both ana-
lytical theories predict a decrease of the carrier mobility at
very high carrier densities, hence predicting the existence of
an optimal carrier concentration at which the mobility peaks.
A nice agreement between the results of the above analytical
theories justifies the basic premises of these models. We
should, however, note that some difference between lateral
�FET measurements� and transverse �diode� mobilities in or-
ganic solids can, at least partially, result from organic film
anisotropy, as demonstrated recently in Ref. 36

It is interesting to compare the above EMA analytical
model to the VRH16 model. Both models employ the same
kind of configurational averaging over the equilibrium distri-
bution of starting states for charge carriers. Also, both theo-
ries use the concept of the effective transport energy, al-
though different approaches have been employed for its
calculations, as can be seen from the comparison of Sec. V
of the present paper and Ref. 16. Further, the VRH model
suggested by Arkhipov et al.7,16 is applicable for systems
with sufficiently large energetic disorder and inevitably
linked to the concept of the effective transport energy. The
EMA formalism does use the effective energy concept for
sufficiently large energetic disorder, however, it can be em-
ployed also for moderately disordered materials without in-
voking the transport energy level consideration.

Finally, we should mention that in certain organic disor-
dered materials, a rather small difference in the FET and ToF
mobilities has been observed, for instance, in different poly-
fluorene copolymers.18 Although other factors cannot be ex-
cluded, for instance, an organic film anisotropy which might
result in some difference between lateral and transverse
mobilities,36 the considerable polaron binding energy of
charge carriers in polyfluorene-type of polymers or copoly-
mers offers an explanation for this observation. Indeed, the
determined polaron activation energy in these polymers from
analysis of the charge transport data24 is quite considerable
and is in the range from 0.107 to 0.190 eV, while � ranges
within 0.051–0.075 eV depending on copolymer structure
and the film morphology. The ratio Ea /� was typically from
2 to 3 and implies that the effect of carrier density should
indeed be relatively weak, as suggested by the present EMA
theory. Nonetheless, the effect of the polaron binding energy
on the carrier density dependence of the mobility clearly re-
quires further experimental verification.

FIG. 7. The fitting of experimental data of the FET mobility
measured in two different conjugated polymers P3HT and
OC1C10-PPV �symbols� by Eqs. �25�, �42�, and �45� of the present
EMA theory �solid curves�.
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