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We propose and analyze a theoretical model of ultrafast light-induced magnetization dynamics in systems of
localized spins that are coupled to carriers’ spins by sp-d exchange interaction. A prominent example of a class
of materials falling into this category are ferromagnetic �III, Mn�V semiconductors, in which ultrafast demag-
netization has been recently observed. In the proposed model, light excitation heats up the population of
carriers, taking it out of equilibrium with the localized spins. This triggers the process of energy and angular
momentum exchange between the two spin systems, which lasts for the duration of the energy relaxation of the
carriers. We derive the master equation for the density matrix of a localized spin interacting with the hot
carriers and couple it with a phenomenological treatment of the carrier dynamics. We develop a general theory
within the sp-d model and we apply it to the ferromagnetic semiconductors, taking into account the valence
band structure of these materials. We show that the fast spin relaxation of the carriers can sustain the flow of
polarization between the localized and itinerant spins leading to significant demagnetization of the localized
spin system, observed in �III, Mn�V materials.
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I. INTRODUCTION

During the last decade, ultrafast light-induced magnetiza-
tion dynamics has been a subject of many experimental
studies, which have yielded results of interest from both the
insight into the basic physical processes occurring in ferro-
magnets at short time scales and from the possible practical
implications for ultrafast writing of magnetic memories. The
seminal discovery1 of subpicosecond demagnetization in Ni
has challenged the previously held belief that the fastest time
scale of magnetization dynamics is the spin-lattice relaxation
time, which is of the order of at least tens of picoseconds.2,3

Since then, such an ultrafast magnetization quenching pro-
cess in transition metals has been confirmed by various time-
resolved magneto-optical techniques4–7 as well as other ex-
perimental methods such as magnetic second harmonic
generation,8 spin-resolved photoemission,9 and THz light
emission.10 Recently, an analogous phenomenon of light-
induced demagnetization, including a complete destruction
of ferromagnetic order in less than a picosecond, has been
observed in �III, Mn�V ferromagnetic semiconductors.11,12

Apart from magnetization quenching, which is caused by
absorption of light, there has recently been significant
progress in nonthermal �coherent� light manipulation of mag-
netic order.13 Coherent manipulation on the subpicosecond
time scale has been shown in antiferromagnetic14,15 and fer-
rimagnetic materials.16 Theories of coherent manipulation of
magnetization by strong off-resonant light have been put
forth for �III, Mn�V ferromagnetic semiconductors17 and for
closely related undoped paramagnetic �II, Mn�VI materials.18

In this paper, we are interested in ultrafast demagnetization,
which is an incoherent process involving strong excitation.
The laser pulse heats up the carrier population, and we ana-
lyze the magnetization dynamics induced by such a hot gas
of electrons or holes.

Ultrafast demagnetization experiments in transition met-
als were initially interpreted using a phenomenological three-
temperature model.1,19 In this approach, the system is di-

vided into three reservoirs: carriers, lattice, and spins.
Excitation by light injects energy into the carrier system.
Each reservoir is described by its temperature, and phenom-
enological equations are written down for heat flow between
each pair of reservoirs. Physical underpinnings and time
scales of two of the couplings, carrier-lattice �electron-
phonon� and spin-lattice interactions, are known �for the lat-
ter see Ref. 3�. A new ingredient, a direct carrier-spin cou-
pling, has to be postulated in order to explain the ultrafast
demagnetization. In addition to the lack of detailed micro-
scopic understanding of such carrier-spin coupling, there are
two major deficiencies of the three-temperature model. The
first is that treating carriers and spins as separate entities
might not be a good starting point for the transition-metal
itinerant ferromagnets. If such an approach is possible, the
nature of an effective separation into subsystems should be
elucidated. The second shortcoming is the fact that only the
energy transfer between reservoirs is considered. As the key
phenomenon to be explained is the change of magnetization,
a correct physical description should involve the mechanism
by which the angular momentum �spin and orbital� is ex-
changed between the subsystems.20,21 Recently, Koopmans et
al.22 proposed a simplified model of a transition-metal ferro-
magnet in which spinless electrons induce spin flips in a
magnetic subsystem separate from the electronic system. An-
other proposed theory of demagnetization,23 in which the
cooperative effect of a coherent laser field and the spin-orbit
coupling is calculated, seems to be more suitable for the case
of coherent manipulation of antiferromagnets.24,13

A model of ferromagnetism ideally suited for investiga-
tion of magnetization quenching induced by excitation of
carriers is the sp-d model. In this approach, most of the
macroscopic magnetization comes from the localized d-shell
spins �or f shells, in the case of the rare earth elements�,
which are coupled by an exchange interaction to itinerant s
or p carriers. This model was introduced independently by
Zener25 and by Vonsovskii26 in order to describe the transi-
tion metals but was abandoned when the above-mentioned
lack of sharp separation into s carriers and d spins was un-
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derstood. Later, the s-d�f� model was successfully applied to
magnetic semiconductors such as the chalcogenides of
europium.27 Recently, it has been again used in itinerant fer-
romagnets in order to analyze the situations in which an
interplay between the transport and magnetic properties is
critical. Examples include spin-transfer torque28,29 and an en-
hancement of Gilbert damping in a magnet due to pumping
of spin currents into adjacent nonmagnetic material.30,31 Fi-
nally, and most importantly for us, the p-d model is used to
describe the basic physics of ferromagnetism in �III, Mn�V
semiconductors32,33 such as Ga1−xMnxAs or In1−xMnxAs.

Ferromagnetic �III, Mn�V semiconductors are created by
doping a small ��5% � molar fraction of Mn into a III-V
semiconductor such as GaAs or InAs. The Mn ions, which
substitute the cations, are acceptors and their d shells can be
treated as well-localized 5/2 spins.34 Hybridization between
Mn d orbitals and anion p states leads to a kinetic p-d ex-
change interaction,35 which couples localized d spins to spins
of p holes in the valence band. These holes are a source of
indirect Mn-Mn spin coupling. At large hole densities �typi-
cally p�1020 cm−3�, a mean-field theory of Zener25,32,36 has
been successful in describing many features of ferromag-
netism in these materials. It correctly predicts the critical
temperature Tc, increasing trend in Tc with the density of
carriers, and magnetic anisotropies.33

The strong correlation between the presence of the delo-
calized �or at least weakly localized� holes and ferromagnetic
ordering of Mn spins has been firmly established experimen-
tally. The optical induction of ferromagnetic transition
�through cw photoinjection of holes� has been shown,37 and
the critical temperature and the coercive field have been al-
tered by changing the density of holes in InMnAs by apply-
ing a gate voltage.38,39 Most relevant for this paper is the
observation of the subpicosecond light-induced demagnetiza-
tion in InMnAs �Ref. 11� and GaMnAs.12 A complete
quenching of ferromagnetic order was achieved in InMnAs
for pump fluences above 10 mJ/cm2. This should be con-
trasted with the behavior in Ni, where the demagnetization
saturates at higher fluences while not reaching the complete
demagnetization.40 Since the carrier concentration is much
lower in ferromagnetic semiconductors as compared to met-
als, their magnetization is more amenable to manipulation by
external stimuli.

These experiments led us to a preliminary investigation of
the spin dynamics induced by strong incoherent excitation
within the framework of the sp-d model11 and to a proposal
of the “inverse Overhauser effect” as the physical basis of
the observed phenomenon. In this scenario, the rate of spin-
flip scattering between the localized spins and the mobile
carriers is enhanced by the nonequilibrium distribution of
excited carriers. This triggers the transfer of angular momen-
tum from the localized spin system to the carriers, leading to
demagnetization of the localized spins. For this process to be
sustained, the angular momentum transferred into the carri-
ers’ system has to be efficiently dissipated into the lattice by
spin-orbit interaction assisted scattering, and we have
stressed that the expected short spin relaxation time of holes
in ferromagnetic semiconductor is essential for the explana-
tion of measured changes in magnetization.

In this paper, we present a detailed theory of ultrafast
demagnetization within the sp-d model. We concentrate on

ferromagnetic semiconductors, specifically, we discuss pho-
toexcitation processes specific to these materials, and we per-
form calculations using an effective Hamiltonian33 model of
the spin-split valence band. We assume that the indirect
�carrier-mediated� exchange interaction between localized
spins dominates over short-range antiferromagnetic d-d su-
perexchange �it has been argued36 that in the presence of
holes, the superexchange is suppressed�. We also neglect the
Mn interstitials41 which can form antiferromagnetically
coupled pairs with nearby substitutional Mn spins,42 as we
are only interested in Mn spins which participate in ferro-
magnetic order. Furthermore, we work in the regime of
strong carrier excitation, in which the carrier-mediated
Mn-Mn correlations beyond the mean-field level are aver-
aged out. The localized spins flip independently in the com-
mon mean field due to the average carrier spin. We derive the
rate equations for their dynamics due to spin-flip scattering
with the carrier spins. The transition rates depend on the
instantaneous state of the carrier system at a given time. This
derivation generalizes to the nonstationary case, the theory
from Ref. 43, where the heating of Mn spins by electrons
excited by cw light was considered in a �II, Mn�VI based
quantum well. Apart from the localized spin dynamics, we
consider the energy and spin relaxations of carriers by means
of phenomenological equations. The energy relaxation time
of the carriers sets an upper bound for the time scale of the
ultrafast demagnetization process. If the spin relaxation rate
of carriers is smaller than the rate at which the angular mo-
mentum is injected into the carrier system by sp-d scattering,
the demagnetization becomes suppressed. Below, we show
that this “spin bottleneck” effect does not affect qualitatively
the results in p-type �III, Mn�V semiconductors.

The general results of this paper are directly applicable
to any system described by the analogous s�p�-d�f� model.
However, when the non-carrier-mediated d-d exchange
coupling is strong �e.g., in the europium chalcogenides27�,
the starting point of the calculation should not be the inter-
action of a single spin with the carriers �which is our ap-
proach here� but the enhancement of the carrier-magnon
scattering. A similar treatment should be applied to a recent
measurement44 of the ultrafast magnetization dynamics in
GaMnAs excited with the pump fluence three orders of mag-
nitude smaller than that in Ref. 11. In this case, our assump-
tion of complete obliteration of the carrier-mediated ex-
change coupling by excitation of carriers might not hold, and
spin-wave modes of coupled Mn spins should be the starting
point of the calculation.

The paper is organized as follows. In Sec. II A, we intro-
duce the sp-d model. Section II B contains a discussion of
the photoexcitation process, which is followed in Sec. II C
by the description of the model of the carrier bath heated up
by absorption of light. Section II D contains the formalism
and the derivations of equations governing the dynamics of
localized spins interacting with hot itinerant spins. In Sec.
III, we calculate the process of ultrafast demagnetization us-
ing a simplified band structure �a single spin-split band�, in-
troduce the equations governing the carrier dynamics, and
discuss how the energy and spin relaxations of carriers influ-
ences the demagnetization process. Complications intro-
duced by the valence band structure of a ferromagnetic semi-
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conductor are discussed in Sec. IV, where we use a six-band
Luttinger Hamiltonian to calculate the hole-Mn spin-flip
transition rate. Finally, we discuss the connection to the ex-
periments in Sec. V.

II. GENERAL THEORY

A. sp-d model

We use a Hamiltonian consisting of the single-particle

carrier part ĤC, localized spin part ĤS, and the sp-d coupling

ĤCS,

Ĥ = ĤC + ĤS + ĤCS. �1�

We do not explicitly consider the carrier-carrier interaction,
carrier-phonon interaction, and the lattice dynamics. How-
ever, these interactions are included phenomenologically in
our treatment of the carrier bath �Sec. II C�. The carrier part
of the Hamiltonian is given by

ĤC = �
nk

�nkank
† ank�, �2�

where n is the band index, k is the wave vector, and �nk is
the energy. In the case of �III,Mn�V semiconductors, the va-
lence band structure near the � point can be obtained from a
k ·p model, such as 6�6 Luttinger Hamiltonian commonly
used in these systems.36 Although the ferromagnetic semi-
conductors are known to be heavily disordered, we have ne-
glected the disorder potential in Eq. �2�. If the disorder can
be treated perturbatively, then its influence on the treatment
below is not expected to be strong. As we are working in the
regime of very strong excitation of carriers, more subtle fea-
tures of bands will be averaged out. On the other hand, if the
effects of disorder are nonperturbative �e.g., the holes are in
an impurity band rather than in the host valence band, as it
was recently suggested in Ref. 45�, a new energy dispersion
�e.g., a single weakly dispersive band� should be introduced
in Eq. �2�.

The localized spin Hamiltonian ĤS includes Zeeman cou-
pling to the external magnetic field. In the ferromagnetic
phase, the splitting of the localized spin S due to exchange
interaction with carriers exceeds the typical Zeeman split-
ting, and the only role of Zeeman term is to choose the
direction of the magnetization. We disregard possible S-S
exchange coupling by mechanisms other35 than indirect
carrier-mediated exchange.

Finally, the exchange coupling is given by

ĤCS = −
�

V
�

l
�

nk,n�k�

Ŝl · �nk�ŝ�n�k��ei�k�−k�Rlank
† an�k�, �3�

where Ŝl is the spin operator of localized spin at Rl, ŝ is the
carrier-spin operator, and � is the exchange constant. In the
literature on diluted magnetic semiconductors, the � param-
eter is called � and � for the conduction and valence band
electrons, respectively.46 The typical values in �III,Mn�V ma-
terials are ��10 and ��−50 meV nm3. The exchange en-
ergy J per unit cell is J=N0�, where N0 is the density of the

cations. Accordingly, N0��0.2 eV and N0��−1 eV.
For a single band, the sum over n states is simplified to

ĤCS
1 = −

�

V
�

l
�
k,k�

Ŝl · ŝkk�e
i�k�−k�Rl, �4�

where the scalar product of spin operators can be expressed
using spin ladder operators as

Ŝl · ŝkk� =
1

2
�Ŝl

+ŝkk�
− + Ŝl

−ŝkk�
+ � + Ŝl

zŝkk�
z , �5�

and the explicit form of carrier-spin operators is

ŝkk�
z =

1

2
�ak+

† ak�+ − ak−
† ak�−� , �6�

ŝkk�
+ = ak+

† ak�−, ŝkk�
− = ak−

† ak�+. �7�

The magnetization �average localized spin� is in the z di-
rection, and we treat the sp-d Hamiltonian in a mean-field
approximation. The mean field felt by the carriers is obtained
by performing the simplest virtual crystal disorder averaging
of localized spins positions,

ĤC
mf = − ni� �Sz� �

n,n�,k

�nk�ŝz�n�k�ank
† an�k, �8�

where ni is the density of localized spins and �Sz� is the
average localized spin. The energy of the carrier-spin split-
ting is defined as

� = − ni� �Sz� . �9�

The typical value of � in GaMnAs and InMnAs with the
highest critical temperatures is about 0.1 eV. By averaging
Eq. �3� with respect to the carriers, we arrive at

ĤS
mf = 	�

l

Ŝl
z, �10�

where the energy splitting of different m levels of a localized
spin is

	 = − nc� �sz� , �11�

with nc the carrier density and �sz� the average carrier spin.
The typical magnitude of 	 in �III,Mn�V materials is of the
order of 1 meV. In the mean-field theory of
ferromagnetism,32,36,47 only the two averaged fields �Sz� and
�sz� are taken into account, and the free energy of their inter-
action is minimized.

B. Light excitation of the carrier system in (III,Mn)V

To construct a model of the excited carrier bath, it is help-
ful to first analyze qualitatively the process of carrier photo-
excitation in ferromagnetic semiconductors. The cw �magne-
to�optical spectra of GaMnAs are qualitatively different from
the ones in pure GaAs, as they show very strong effects of
disorder.48–51 In GaMnAs, there is no gap in the absorption,
which is at least of the order of 104 cm−1 for all energies.50

The origin of strong absorption inside the host gap is a mat-
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ter of controversy �see Fig. 1�. It has been proposed that the
additional optical transitions are between the valence band
and the dispersionless levels �located about 0.7Eg above the
valence band� originating from As antisites or Mn
interstitials.52 Transitions terminating inside the Mn derived
impurity band �0.1 eV above the valence band edge have
also been suggested.45,50,53

In addition, the role of the intervalence band transitions is
increased in the disordered material, in which the k-selection
rule is relaxed. As a result, the absorption of light with en-
ergy smaller than the band gap of the host material leads to a
strong excitation in the valence band, which occurs due to
intervalence transitions and possible transitions from below
the Fermi energy into the localized states within the gap. The
initial distribution of photoholes is expected to be very
broad, determined only by energy conservation �not by k
selection�. We use the broadness of the distribution of the
carriers after the excitation and their total number as free
parameters of the theory. Some flexibility in the used values
of total hole density immediately after the excitation p is also
justified by the fact that the initial densities p0 are usually
known with only an order of magnitude accuracy. We use an
energy width of hole distribution after excitation of the order
of 0.1 eV, a value comparable to the exchange splitting of
the valence band. In Sec. V, we use the experimental data to
argue that the above energy scale is sensible.

The optical experiments in InMnAs are limited to samples
with very small Mn concentrations54 or energies above the
fundamental band gap.55 The role of various defects has not
been investigated in InMnAs as closely as in GaMnAs, but
the observed12 ultrafast electron trapping time suggests that
InMnAs does have a large concentration of midgap defects
characteristic of low-temperature grown III-V semiconduc-
tors. We can also use the results of this paper to argue for the
presence of strong transitions involving the valence band

states and states not in the conduction band, on the ground
that the number of states available in the conduction band is
far too small to explain the demagnetization results.

This picture of photoexcitation is confirmed by the ul-
trafast demagnetization measurements12 in GaMnAs excited
by 0.6 eV pump, far below the 1.5 eV band gap of GaAs.
The results are similar to the ones observed11 in InMnAs
�band gap of 0.4 eV� excited by the same pump beam, show-
ing that excitation into the conduction band plays a minor
role in the demagnetization process.

C. Model of the carrier bath

According to the discussion in the previous section, im-
mediately after the photoexcitation the distribution of carri-
ers is very broad. We will approximate it by a thermal dis-
tribution described by the electronic �carrier� temperature Te.
Using the experimental data from Ref. 11, we estimate the
initial Te to be of the order of 1000 K �for details see Sec.
V�.

The interaction between the carriers and the localized
spins produces a mean-field term 	Eq. �8�
 and a secondary
term corresponding to simultaneous flips of the itinerant and
localized spins. The latter causes exchange of angular mo-
mentum between the excited carriers and the localized spin
system. Due to the spherical symmetry of the sp-d Hamil-
tonian, the sp-d interaction alone conserves the total spin,
and it can only move the spin polarization from one system
to another. The mechanism of this transfer of spin is de-
scribed in detail in the next section. Now, we concentrate on
the features of the carrier bath which are specific to the case
at hand: the possibility of dynamic spin polarization and the
energy relaxation of carriers.

The spin transferred into the carrier system is not con-
served due to the spin-orbit interaction. In its presence, the
scattering within the electronic system is accompanied by
spin relaxation56 �ultimately into the lattice�. However, the
spin relaxation occurs on a finite time scale 
sr. If the rate at
which the carriers relax their spins is smaller than the rate at
which angular momentum is injected into the carrier popula-
tion, there is a dynamic spin polarization of the carriers. In
this case, the average carrier spin deviates from the mean-
field value determined by � splitting of the bands. In the case
when the carriers occupy a single spin-split band, there is a
simple way of introducing the dynamic polarization into our
formalism �the case of multiple bands strongly coupled by
spin-orbit interaction is considered in Sec. IV�. We assume
that populations for both spin directions are described by
Fermi-Dirac distributions with the common temperature Te
but different quasichemical potentials �s �spin s= ↑ ,↓�. This
is equivalent to saying that we coarse grain the dynamics on
a time scale larger than the time in which the energy is re-
distributed within the carrier system �by carrier-carrier scat-
tering�, and we explicitly consider only the slower processes:
spin relaxation of carriers and energy transfer into the lattice.
It is similar to the situation encountered in semiconductor
lasers, where the processes of thermalization of electrons and
holes separately occur faster than the recombination, and the
resulting globally out-of-equilibrium situation can be de-
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FIG. 1. �Color online� The band structure of GaMnAs �solid
lines� calculated using the eight-band k ·p model with mean-field
sp-d exchange interaction ����=0.15 eV�. The dotted lines denote
the possible positions of midgap energy levels of different origins.
In the model without an impurity band, the Fermi energy is typi-
cally around −0.1 eV for hole density p�1020 cm−3.
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scribed by using the quasiequilibrium form of the carrier
distribution, with different quasichemical potentials for elec-
trons and holes.

As we discuss in detail in the following sections, dynamic
polarization of carriers affects the spin-flip scattering rate.
This is a back-action effect of the S system on the carrier
system: demagnetization of localized spins causes the dy-
namic polarization of carriers, which in turn influences the
rate of transfer of angular momentum between the systems.
Additionally, as the average S spin changes in time, so does
the � splitting of the carrier bands.

Apart from the dynamic polarization effects, we also have
to take into account that the carriers are not in thermal equi-
librium with the lattice, and in the first picoseconds after the
photoexcitation they are described by a different temperature
than the lattice. We model the carrier-phonon interaction
�leading to the cooling of carriers� and carrier-carrier scatter-
ing �maintaining the thermal distribution� phenomenologi-
cally. In metals, the electron-phonon energy relaxation time
is a couple hundreds of femtoseconds.57,58 In semiconduc-
tors, the regime of such strong excitation as used in Ref. 11
to demagnetize InMnAs has not been investigated in detail.
Theoretical calculations of energy relaxation of holes deep in
the valence band indicate that emission of optical phonons is
very efficient for these states.59 Calculated emission of seven
phonons during a picosecond should correspond to signifi-
cant cooling of the carriers. Naïve extrapolation of energy-
loss curves60 to hole temperatures of �1000 K also gives a
subpicosecond energy relaxation time. In the following, we
will use an energy relaxation time 
E of the order of picosec-
onds and assume Te�t�=Te�0�exp�−t /
E�. More generally, the
carrier and lattice temperatures could be solved for using a
two-temperature model.61 However, in the case of �III,Mn�V
semiconductors, the rise in lattice temperature due to heat
transfer from the carriers described by such Te is quite small,
so that the final common temperature of carriers and the
lattice is less than 100 K. As we discuss in detail further on,
such a temperature corresponds to very slow demagnetiza-
tion dynamics, and for the purpose of calculating the ul-
trafast process, we can then assume that the carrier tempera-
ture simply decays toward zero.

In the following, all the averages with respect to carrier
degrees of freedom will be taken using a density matrix of
noninteracting electrons �̂C, which is not necessarily of the
equilibrium form but remains diagonal in the basis of carrier
Hamiltonian’s eigenstates ���= �nk� �with the mean-field spin
splitting taken into account�. These averages are denoted as
�¯�C�TrC��̂C¯ 
, and they are given by

�a�
†a��C = 	�� f�, �12�

�a�
†a�a�

† a	�C = 	��	�	 f� f� + 	�		�� f��1 − f�� , �13�

where f� is the average occupation of � state. In a single-
band model, the �¯	 indices refer to �sk� states with spin
s= ↑ ,↓. fsk is a Fermi-Dirac function at temperature Te with
spin-dependent chemical potential �s.

D. Rate equations for the localized spin

The framework of the sp-d model allows for clear sepa-
ration of carrier �C� and localized spin �S� systems. The
mean-field parts of their mutual interaction are given by Eqs.
�8� and �10�. The spin splitting � of the carriers’ band is
proportional to the instantaneous �Sz�, and the splitting of
localized spins, 	, changes with the average carrier spin �sz�.
We assume that any correlation between localized spins be-
yond the mean-field Zener approach is obliterated by the
strong scattering of excited carriers. Each localized spin feels
the dynamics of the other spins only through their average
value, which influences the state of the carrier system �its
spin splitting ��. Essentially, we consider an ensemble of
paramagnetic S spins interacting with a bath, the properties
of which depend on the average S. The ferromagnetism en-
ters only as an initial condition: the S system is polarized at
t=0. Below, we derive the equations for the dynamics of the
average S spin due to the interaction with the carrier bath, the
state of which depends on the average S.

The Hamiltonian of the localized S spins and the carrier
system is written as

ĤS−C = Ĥ0 + V̂ = ĤC + ĤC
mf + �

l

�	Ŝl
z + V̂l� , �14�

where ĤC is the carrier band Hamiltonian 	Eq. �2�
, ĤC
mf is

the mean-field spin splitting from Eq. �8�, 	 is the mean-field
localized spin splitting defined in Eq. �11�, and the spin-flip

term of lth localized spin V̂l comes from part of the sp-d

interaction which is off-diagonal in Ŝz basis. We write it in
the following way:

V̂l = Ŝl
+F̂− + Ŝl

−F̂+, �15�

where F̂± are proportional to the ladder operators of carrier
spin. In the general case of multiple bands 	as in Eq. �3�
, we
have

F̂± = −
�

2V
�

nk,n�k�

�nk�ŝ±�n�k��ank
† an�k�, �16�

whereas for a single band, we have

F̂± = −
�

2V
�
k,k�

ak±
† ak�
. �17�

Now, we follow a standard way of deriving the master
equation for the density matrix of the localized spin system
interacting with a carrier bath �see, e.g., Ref. 62�. The total
density matrix of the system is assumed to factorize into the
carrier and the localized spin density operators,

�̂�t� � �̂C�t��̂S�t� , �18�

and the Liouville equation for time dependence of �̂�t� is
turned into an equation for �̂S�t� by tracing out the carrier
degrees of freedom. However, unlike in standard treatment,62

the state of the carrier bath changes in time, as discussed in
the previous section.

The usual derivation of the master equation implies coarse
graining of the system dynamics on time scale �t longer than
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the correlation time of the bath, 
c. This is the condition on
which the Markov approximation rests. For the gas of carri-
ers described by the effective temperature kBTe�0.1 eV, we
can expect this time to be of the order of a few femtosec-
onds. Let us define a time scale 
� in which changes in the
carriers’ density matrix �̂C�t� occur. The contributions to the
evolution of �̂C�t� are as follows. The carrier temperature
changes appreciably during energy relaxation time 
E
�1 ps. The spin splitting of the band ��t� is proportional to
the average localized spin �S�t��, which we expect to de-
crease during a characteristic demagnetization time 
M. The
buildup of the dynamic spin polarization of the carriers is
determined by two processes: transfer of spin from the S
system occurring during the aforementioned time 
M and the
spin relaxation of carriers characterized by time 
sr �for very
short 
sr, there is no dynamical polarization�. Now, we will
assume that all these result in the time 
� much larger than
the bath correlation time 
c, so that we can choose our
coarse-graining step �t fulfilling the condition


c � �t � 
�. �19�

In such a case, at each coarse-grained time step tn, we can
derive a master equation with carriers described by �̂C�tn�
treated as approximately constant during �t. In this way, we
can use the Markov approximation locally in time, having
separated the “macroscopic” back action of the localized spin
system on the bath, which occurs on a longer time scale. The
master equation for the localized spin density matrix �̂S is
then derived exactly as in the usual case �see Ref. 62�, only
with the transition rates depending on time tn. We write the
equations in the continuum limit, keeping in mind that they
cannot be used for times shorter than �t, thus obtaining the
following rate equations for the diagonal elements of the
localized spin density matrix �m

S ��m,m
S :

d

dt
�m

S = − �Wm−1,m + Wm+1,m��m
S + Wm,m+1�m+1

S + Wm,m−1�m−1
S ,

�20�

where Wn,m is the transition rate from m to n energy level of
the localized spin induced by sp-d interaction with the car-
riers. The time dependence of the transition rates is sup-
pressed for clarity. Then, the average localized spin evolves
according to

d

dt
�Sz�t�� = �

m

m
d

dt
�m

S . �21�

The general formula for Wm,m±1 is

Wm,m±1�t� =
1

�2Sm,m±1

 �

−�

�

dt�e±i	t�/�C
±�t;t�� , �22�

in which the matrix element �squared� for the flip of the
localized spin is given by

Sm,m±1

 = S�S + 1� − m�m ± 1� , �23�

where S is the magnitude of the localized spin. The correla-
tion function of the carriers Cij�t ; t��, with i , j=±, is given by
�reverting to the coarse-grained notation with tn replacing t�

Cij�tn;t�� = TrC��̂C�tn�F̃n
i �tn + t��F̃n

j �tn�
 , �24�

where TrC�¯
 is the trace with respect to the carrier states

and F̃n
i �t� are operators defined in Eqs. �16� and �17� written

in the “local” interaction picture at coarse-grained time tn,

F̃n
i �t�� = exp� i

�
Ĥ0�tn�t��F̂i�t��exp�−

i

�
Ĥ0�tn�t�� , �25�

where F̂i�t� is the operator in the Schrödringer picture and

Ĥ0�tn�, defined in Eq. �14�, depends on time through the
mean-field spin splittings 	 and �. These correlation func-
tions Cij�tn ; t�� decay for t� larger than the correlation time

c, which has to be much shorter than the time on which
�̂C�t� changes. For this reason, the integration domain in Eq.
�22� is effectively t�� �−
c ,
c�. In this range of t�, the above

definitions of Cij and F̂n
i �t� make sense.

In the general case of the multiple bands, the transition
rates are given by

Wm,m±1 =
�2

4

2�

�
Sm,m±1


 �
nn�
� d3k

�2��3 � d3k�

�2��3

���n�k��ŝ±�nk��2fnk�1 − fn�k��	��̃nk − �̃n�k� ± 	� ,

�26�

where n and n� are labeling the subbands, fnk is the occupa-
tion of the �nk� state, and �̃nk are the band energies with the
mean-field exchange interaction with localized spins taken
into account. The distribution functions, energies �̃nk, and 	
depend implicitly on time, as we discussed before.

For a single spin-split band, we replace n and n� by two
spin indices and recover the formula given in Ref. 11. An
analogous expression has been used in Ref. 43, where heat-
ing of the Mn spins by photoelectrons was considered in a
paramagnetic �II,Mn�VI quantum well. Actually, in the case
of carriers being a true reservoir of energy and polarization,
Eqs. �20� and �26� were derived originally by Korringa63 in
order to describe the relaxation of nuclear spins coupled to
carriers’ spins by hyperfine interaction.

The rate equation 	Eq. �20�
 has to be augmented by equa-
tions governing the dynamics of the carrier distribution func-
tion fnk. A discussion of these additional equations follows in
the next section.

III. DEMAGNETIZATION DUE TO CARRIERS
IN A SINGLE SPIN-SPLIT BAND

Let us concentrate now on a model of a single spin-split
band of s symmetry. From it, we deduce the general features
of the behavior of the system in a simple way. The treatment
of the dynamical polarization of carriers is especially trans-
parent in this case. We make use of the distribution functions
fs for spin s= ↑ ,↓ characterized by two different chemical
potentials �s and a common temperature Te �see Sec. II C�.

We define reduced transition rates W+− and W−+ given by
Wm,m−1 and Wm,m+1, respectively, with the localized spin ma-
trix elements Sm,m
1

± removed 	see Eq. �26�
. In a single band
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with spin splitting �, the transition rate W+− can be rewritten
using the spin-resolved densities of states Ds�E�,

W+− =
�2

4

2�

�
� dEf↑�E�	1 − f↓�E − 	�
D↑�E�D↓�E − 	� ,

�27�

and W−+ is obtained by exchanging the spins and changing
the sign of 	. Manipulating the explicit forms of occupation
functions, we obtain a generalization of the detailed balance
condition to the case of different chemical potentials for two
spin directions,

W−+

W+−
= e�e�	−���, �28�

where �e=1/kBTe and ��=�↑−�↓ is the spin splitting of the
carriers’ chemical potential. For �↑=�↓, we recover the
usual detailed balance condition.

When S=1/2, Eq. �21� can be transformed into the Bloch-
like equation for the dynamics of average localized spin
�Sz�t��,

d

dt
�Sz�t�� = −

�Sz�t�� − S0�t�
T1�t�

, �29�

where S0�t� is the instantaneous equilibrium value of the
spin, given by the transitions rates at time t,

S0 =
1

2

W+− − W−+

W+− + W−+
= −

1

2
tanh	�e�	 − ���
 , �30�

and the relaxation time is given by

T1�t� = �W+− + W−+�−1. �31�

Note that in applications to �III,Mn�V semiconductors, we
are going to be interested in the regime of �e	�1 and in the
localized spin S=5/2. If the dynamic spin splitting also ful-
fills �e���1, we can approximate Eq. �21� for any magni-
tude of spin S by the following expression:

d

dt
�Sz�t�� � − 2W+−�t��Sz�t�� . �32�

For the conditions considered below, this equation gives a
very good description of the initial stage of the localized spin
dynamics, in which the carrier temperature is very high.
When the temperature drops so that the above inequalities
are violated, one has to solve the full equations 	Eqs. �20�
and �21�
 for S�1/2 and the Bloch equation 	Eq. �29�
 for
S=1/2.

We now introduce the phenomenological equations de-
scribing the dynamics of the carrier bath. The time depen-
dence of Te comes from the cooling of carriers by phonon
emission, and we model it by a simple decay �see Sec. II C�,

Te�t� = Te�0�e−t/
E, �33�

where 
E is the energy relaxation time of highly excited car-
riers. The changes of chemical potentials are governed by a
second phenomenological equation for the dynamics of the
average carrier spin �s�t��,

d

dt
�s�t�� = −

ni

nc

d

dt
�S�t�� −

�s�t�� − s0��,Te�

sr

. �34�

The first term on the right describes the transfer of angular
momentum by spin flips �with nc /ni being the ratio of the
carrier density to the localized spin density�, and the second
term describes the relaxation �on time scale 
sr� of the aver-
age carrier spin toward the instantaneous equilibrium value
s0 determined by the spin splitting � and the carrier tempera-
ture Te. The above set of single-band equations was used in
Refs. 11 and 12 to qualitatively model the demagnetization
in �III,Mn�V semiconductors.11,12

A. Inverse Overhauser effect

The demagnetization process described by the above
equations occurs in the following way. We model the absorp-
tion of an �100 fs light pulse as an instantaneous increase of
concentration and temperature of carriers. The heating of the
carriers by a pulse of light modifies the spin-flip transition
rates W+− and W−+. The broader the carrier distributions are
�the higher the Te is�, the larger these rates are. When the
dynamic spin splitting �� is zero, the detailed balance of
transition rates tells us that the localized spin is going to
evolve toward a new value corresponding to a high tempera-
ture Te. This final value of �Sz� and the rate at which it is
approached change with the decrease of the carrier tempera-
ture. In addition, the possible buildup of polarization of the
carriers changes the spin-flip transition rates in such a way
that the spin transfer is blocked, and without spin relaxation
in the carrier system a “polarization bottleneck” occurs. This
is analogous to the “magnetic resonance bottleneck” known
in electron spin resonance of localized moments in metals.64

In the latter, the resonance spectrum of the localized spins is
changed when the spin relaxation of carriers is long enough
for the two spin systems to become “locked” together in
precession. Here, in the extreme case of very slow spin re-
laxation, the initial demagnetization can result in a flip of all
the carriers of one spin direction, leaving the carrier system
in a “dynamic half-metallic state.” After such a saturation of
demagnetization process, the rate of spin flip is determined
by the �low� rate of the carrier-spin relaxation.

The basic principle of demagnetization is analogous to the
well-known Overhauser effect,65 in which the itinerant spins
are optically pumped, and this injected polarization is trans-
ferred by s-d-type interaction to the localized spins. Al-
though the original Overhauser effect involves pumping of
angular momentum into one of the spin populations, the es-
sence of the effect is taking one spin population out of equi-
librium with another and thus inducing the transfer of angu-
lar momentum between them. One generalization of the
Overhauser effect was proposed and realized experimentally
by Feher.66,67 The idea was to heat up the electrons by pass-
ing a current through the sample in order to induce spin flips
between the electron spins and nuclear spins. Depending on
the parameters of both spin systems, increase of either
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nuclear spin polarization66 or electron polarization68 is pre-
dicted. The inverse Overhauser effect presented here is re-
lated to the latter: by heating up the carriers, we induce the
transfer of angular momentum from localized spins to elec-
tron �hole� spins.

B. Carriers as a reservoir of angular momentum: ��=0

We first analyze the case in which the carrier-spin relax-
ation is so fast that the carriers are a good sink of polariza-
tion, so that ��=0 at each moment of time. The occupation
factors fs are the same for both spins and are characterized
by the time varying temperature Te and chemical potential �.

When the temperature is not too high, i.e., kBTe is smaller
than the energy scale on which the densities of states change
appreciably �but still much larger than localized spin splitting
	�, the transition rate 	Eq. �27�
 can be approximated by

W+−�t� �
�2

4

2�

�
kBTe�t�D+���D−��� . �35�

It shows that the rate of demagnetization scales with Te and
that large densities of states for both spins around the Fermi
level are needed. Together with the �2 scaling, this shows
that in �III,Mn�V ferromagnetic semiconductors the holes
�having larger mass and exchange constant� are much more
effective in the demagnetization process than the electrons.

Figures 2 and 3 illustrate the dependence of W+− from Eq.
�27� on temperature Te, spin splitting �, and carrier concen-
tration. We use the density of states of a parabolic band, with
effective mass meff=1, which roughly corresponds to the
density-of-states mass in the valence band of GaMnAs. W+−
goes to zero for low carrier temperature, when phase-space
blocking limits the number of states which can scatter. It also
decreases for increasing spin splitting �, when the number of
minority spins available for spin flip goes down. This effect

is stronger for smaller carrier concentrations and lower tem-
peratures. For Te close to 1000 K, the corresponding charac-
teristic time T1 is of the order of a picosecond. Whether a full
demagnetization occurs depends on the rate of the energy
relaxation of carriers. If the carrier temperature does not drop
significantly within the time T1�0� �calculated at the initial
carrier temperature Te�, then a significant demagnetization
occurs on this time scale. On the other hand, if the Te
changes strongly on the scale of T1�0�, then we have to solve
our equations with W+−�t� updated according to carrier tem-
perature changes from Eq. �33�. We are interested in the
dynamics occurring during the first picosecond. When T1�t�
becomes much larger than 1 ps, then for our purposes the
demagnetization process is effectively stopped. Such an ef-
fect of cooling of carriers on demagnetization is illustrated in
Fig. 4. For all energy relaxation times 
E, the initial slope of
�Sz�t�� is the same, given approximately by Eq. �35� evalu-
ated for Te�0�, but the time at which the demagnetization
ceases and the saturation value depend on 
E. This shows
that the time scale on which the ultrafast demagnetization
occurs can be given by 
E, which is not related to magnetic
properties of the material. From this point of view, it is not
the fact that the magnetization drop occurs in less than a
picosecond which is interesting. Instead, it is the magnitude
of the demagnetization which demands explanation.

C. Effects of the dynamic spin polarization of carriers: ��Å0

The efficiency of the inverse Overhauser effect is limited
by the finite spin relaxation time of the carriers. Each spin
flip which leads to the demagnetization, if not followed by
carrier-spin relaxations, diminishes the phase space available
for the next transition of this kind. The result is the decrease
of the net number of spin flips during the time 
E, which
translates into smaller total demagnetization.

Let us concentrate on the case in which W+− is the tran-
sition which leads to the demagnetization of the localized
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of carrier temperature and band splitting �. The concentration of
carriers is 1020 cm−3.
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spins. The corresponding electron spin flip is from spin ↑ to
↓, so that the demagnetization of S spins leads to ���0. In
the limit of negligible 	 and �� smaller than kBTe, we can
approximate Eq. �35� by

W+−�t� �
�2

4

2�

�
kBTe�t�D+��↓�D−��↓��1 +

��

2kBTe
+ ¯ � .

�36�

From this, we see that W+− decreases in the presence of
dynamic spin polarization. When ���� becomes comparable
to kBTe, W+− goes to zero.

A rough estimate of what 
sr is short enough to be con-
sidered instantaneous can be given, assuming a constant den-
sity of states D for both spins. The localized spin splitting is
then �	�= ����D /2 and the second term in Eq. �34�, corre-
sponding to spin relaxation, can be written as D�� /2nc
sr.
We want it to dominate over the first term �spin transfer from
localized S� for �� small enough, that the transition rate W+−
is still unaffected by such dynamic spin splitting, i.e., for
���kBTe. The resulting inequality is

DkBTe

4Sni
� W+−��� � 0,Te�
sr, �37�

which means that the ratio of the density of carriers available
for the spin flip to the localized spin density is larger than the
product of spin-flip rate and carrier-spin relaxation time. Us-
ing Eq. �35�, we can transform this inequality into a very
simple but physically less intuitive form:


sr �
�

4�	
. �38�

In �III,Mn�V semiconductors for typical value of localized
spin splitting 	 is of the order of 1 meV, the spin relaxation

time has then to be smaller than 100 fs for the spin bottle-
neck to become unimportant.

The spin bottleneck effect is illustrated in Fig. 5, where
calculated �Sz�t�� are plotted for different values of carrier-
spin relaxation time 
sr. The bottleneck effect is stronger in
Fig. 5�a�, where the effective mass meff=1 and carrier con-
centration nc=1020 cm−3. In Fig. 5�b�, where meff=0.5, the
difference between results for 
sr=10 fs and 
sr=0 is smaller.
When the effective mass meff is smaller, while keeping nc
and � the same, the average carrier-spin is decreased, as the
Fermi energy becomes larger compared with �. Then, 	 is
smaller, making the inequality 	Eq. �38�
 easier to fulfill.

IV. DEMAGNETIZATION DUE TO HOLES IN THE
VALENCE BAND OF (III,Mn)V SEMICONDUCTOR

For the case of �III,Mn�V semiconductors, the carriers
relevant for ultrafast demagnetization are the holes. If they
reside in an impurity band, the single-band theory described
above could be applied, but currently there is no simple
quantitative model for this case. Below, we perform calcula-
tions for the case of holes residing inside the valence band of
a bulk semiconductor. We use an “effective Hamiltonian”
model33,36 in which a mean-field p-d term from Eq. �8� is
added to the six-band Luttinger Hamiltonian. In this way, we
can analyze quantitatively the influence of the strong spin-
orbit interaction on the spin-flip transition rate.

A typical plot of energy dispersions in �III,Mn�V calcu-
lated by the k ·p method with exchange splitting �
=0.15 eV is shown in Fig. 1. The corresponding spin-
resolved densities of states are shown in Fig. 6. In order to
calculate the W+− transition rate, we cannot use Eq. �27�,
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which requires only the densities of states. In the p symmetry
band, the matrix elements of carrier ladder operators ŝ± are
nontrivial due to spin-orbit coupling and cannot be ne-
glected. The full equation 	Eq. �26�
 has to be used.

Strong spin-orbit interaction suppresses the spin-flip tran-
sition rate, compared to the value predicted by Eq. �27�. If
we disregard for a moment the orbital parts of the �nk� eigen-
states, the squared matrix element ��n�k��ŝ−�nk��2 is maximal
when the spin part of the �nk� state is �↑�, and the spin part of
�n�k�� is �↓�. If both states contained equal mixtures of spins
up and down, the squared matrix element would be 1/4.
When the orbital parts of the states are taken into account,
the spin-orbit interaction diminishes the matrix elements be-
tween the states with different spin characters, because it
aligns orthogonal orbital wave functions �of different orbital
angular momenta l� with opposite spins s. In the limit of
infinite spin-orbit interaction, a spin flip between pure
spin-up and spin-down states is impossible because the or-
bital parts of �nk� states are exactly orthogonal. This limit is
realized in the case of the four-band Luttinger Hamiltonian
for the holes. We have evaluated analytically the spin-flip
transition rate in a spherical 4�4 Luttinger model at zero
spin splitting and obtained that the result of the exact equa-
tion 	Eq. �26�
 is smaller by a factor of 5 /18 than the value
obtained from densities of states in Eq. �27�. This sets a limit
on how much the spin-orbit interaction can suppress the tran-
sition rates for small � in a full six-band model.

For the actual calculation of the time dependence of mag-
netization, we have evaluated the transition rates from Eq.
�26� using the band structure obtained from the 6�6 Lut-
tinger Hamiltonian. In all the following calculations, we
have put 	=0, which is justified by the smallness of 	 in
ferromagnetic semiconductors and the fact that we are pri-
marily interested in the regime of high Te, where 	 can be
completely disregarded. In Fig. 7, we plot W+− for GaMnAs
and InMnAs for various carrier temperatures, exchange split-

tings, and hole densities. The transition rates are larger for
GaMnAs, which can be traced mostly to larger density of
states in the valence band compared to InMnAs.

The presence of strong spin-orbit interaction makes in-
cluding the dynamic spin polarization of carriers much
harder than in a single-band case. Due to a large spin-orbit
splitting �SO�0.3–0.4 eV, the �nk� states have mixed spin
character even in the presence of exchange splitting �
�0.1 eV, and a simple introduction of different distribution
functions fs for two spin directions is not possible. Perform-
ing an ensemble Monte Carlo calculation of dynamics of
strongly excited holes69 with spin degree of freedom taken
into account is a vast undertaking beyond the purpose of this
investigation. We resort to an approximate method of includ-
ing the effects of nonzero ��.

Above, we have calculated the exact transition rates for
��=0. We have also calculated the corresponding W+− as-
suming constant matrix elements and only taking spin-
resolved densities of states calculated from the Luttinger
Hamiltonian 	Eq. �27�
. The inclusion of matrix elements
leads to the decrease of W+− by a factor of 0.25–0.3 in the
most relevant range of high Te and ��0.1 eV �not shown�.
We assume that this ratio of exact and density-of-states-
derived W+− also holds in the case of a finite �� �but small
compared to EF and kBTe�. We have calculated the demagne-
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tization with finite spin relaxation time of the holes using the
properly down-scaled transition rates from Eq. �27� with fi-
nite ��. The results are shown in Fig. 8. The effect of spin
bottleneck on demagnetization is clearly very weak for 
sr
�10 fs. For 
sr=100 fs, the total demagnetization is dimin-
ished by �50%. These results agree with estimates from the
inequality 	Eq. �38�
, which is fulfilled for 	�1 meV and

sr=10 fs.

In the presence of the strong spin-orbit interaction, the
hole spin relaxation is expected to be very fast, occurring on
the momentum scattering time scale.70 For example, in pure
GaAs, the spin relaxation of holes was measured to be about
100 fs.71 The calculated72 momentum scattering of holes in
GaMnAs at low temperature is about 10 fs, and it is expected
to be shorter when the holes are highly excited. There is one
caveat in the case of exchange spin-split bands in �III,Mn�V.
The lifting of the heavy-light hole degeneracy by confine-
ment in quantum wells makes the spin relaxation time
longer,73,74 with measured values of 4 ps for holes close to �
point in modulation-doped GaAs quantum wells.75 An analo-
gous effect is expected in exchange-split bands for holes
with small wave vectors. However, for the carrier densities
and temperatures under consideration we are mostly inter-
ested in spin relaxation of holes with quite large wave vec-
tors ��k��1–3 nm−1�. For such large �k�, the effect of lifted
degeneracy on spin relaxation becomes much weaker.74 For
example, at a wave vector of this magnitude in the direction
perpendicular to the magnetization, the band-mixing terms in

the Luttinger Hamiltonian overcome the p-d interaction, and
the spin splitting becomes negligible. Taking all this into
account, it is reasonable to assume that in an excited and
disordered sample the hole spin relaxation time should be
shorter than in pure GaAs.

In the experiments on �III,Mn�V, spin lifetimes of elec-
trons between 1 ps in highly excited InMnAs �Ref. 76� and
30 ps in much more weakly excited GaMnAs �Ref. 77� were
seen. To the best of our knowledge, no signal attributable to
hole spin relaxation has ever been seen on a time scale of the
temporal resolution of the experiments. If 
sr�10 fs, the
measurements would be particularly challenging due to time-
resolution constraints on the laser pulse time. Also, at such
time scale the carrier dynamics is in the non-Markovian
regime,78 and 
sr is a typical time scale of the spin-dependent
correlated relaxation dynamics.

In Fig. 8, we can see that for 
sr�100 the spin bottleneck
effect is qualitatively unimportant, and it becomes negligible
for 
sr=10 fs. Without the bottleneck, we obtain a typical
magnitude of demagnetization in �III,Mn�V within a picosec-
ond to be of the order of 10%. For the same carrier density,
initial Te=1000 K and 
E=0.5 ps, the drop in magnetization
is more pronounced in GaMnAs �20% demagnetization� than
in InMnAs �10%�. A discussion of the connection between
these calculations and experiments follows below.

V. COMPARISON WITH EXPERIMENTAL RESULTS

We can estimate the initial temperature of carriers in ex-
periments on InMnAs from Ref. 11 in the following way.
There are two time scales in the demagnetization: an ultrafast
one ��1 ps� and a subsequent much slower ��100 ps� de-
magnetization, due to spin-lattice relaxation. For example,
for pump fluence of 3 mJ/cm2, an ultrafast quenching of
�50% of magnetization was followed by a complete demag-
netization 100 ps later. On the latter time scale, we can safely
use a thermal description of the spin system. The full demag-
netization means that the localized spin temperature Ts had
risen above the Curie temperature, which was 50 K in the
sample used. This tells us that 100 ps after the excitation, the
lattice temperature Tl was at least 50 K. The energy �per
atom�, which had to be transferred into the lattice to heat it
up from initial temperature Ti �before the excitation� up to
the final Tl, is given by

�El = �
Ti

Tl

cL�T�dT , �39�

where cl is the specific heat of the lattice �per atom�, which
in the temperature range of interest is given by the Debye
formula,

cl�T� =
12�4

5
kB� T

�D
�3

, �40�

where �D=280 K is the Debye temperature of InAs.
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FIG. 8. �Color online� Demagnetization of the Mn spin in �a�
GaMnAs and �b� InMnAs. The solid lines are calculated using the
exact transition rates at ��=0 �dynamical spin polarization of car-
riers is neglected�. The dashed lines come from the approximate
calculation including the finite hole spin relaxation time 
sr �see text
for details�. The initial temperature of holes if Te=1000, the hole
density is p=3�1020 cm−3, the exchange integral �
=−50 meV nm3, and the molar fraction of Mn is x=0.054 �initial
spin splitting �=−0.15 eV�. The energy relaxation time 
E is
0.5 ps.
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The energy transferred into the lattice needs now to be
related to the energy deposited initially by the light pulse into
the valence band. In the process of absorption, the energy of
the pump photon ���=0.6 eV� is splitted into a kinetic en-
ergy of a created hole and an energy of an excited state
within a gap �we disregard the photoelectrons because the
low density of states in the conduction band makes this ex-
citation channel insufficient to explain the experiments�. The
Fermi level before the excitation is situated between 0.1 and
0.3 eV below the top of the valence band for hole densities
of 1020 and 3�1020 cm−3, respectively. Thus, the energies of
the newly created holes are a sizable fraction of the photon
energy. As a rather safe estimate, we will take the fraction of
the pump pulse energy imparted to the holes as R=1/4.

Now, we can derive an estimate of the carrier temperature
Te�0� just after the absorption of the pump pulse. We assume
that after 100 ps, all the absorbed energy has been trans-
ferred to the lattice. The observed spin temperature Ts is
larger than 50 K and gives a lower bound for the final lattice
temperature Tl. We calculate the energy given to the lattice
using Eqs. �39� and �40�, with initial Ti=10 K and final Tl
=50 K. A fraction R of this energy was an excess kinetic
energy of holes in the valence band after the excitation. Us-
ing the density of states of InMnAs with �=0.15 eV calcu-
lated before, we obtain the temperature of carriers which
gives such excess energy. In this way, we obtain an estimate
of the initial Te, which we find to be between 1500 and
1000 K for hole densities changing between 1020 and 3
�1020 cm3. The analogous calculation in GaMnAs gives Te
smaller by a factor of 2 �due to the larger density of states�.
These results justify our use of typical initial Te=1000 K
throughout this paper.

Let us now address the corresponding demagnetization in
InMnAs for pump fluence of 3 mJ/cm2. The hole concentra-
tion before the excitation is about 3�1020 cm−3, estimated
from critical temperature of 50 K and magnetization
measurements.11 After the excitation, the total number of
holes is larger but, because the initial p is not certain, we will
simply use a value of total p=3�1020 cm−3. The measured
sample was a 25 nm thick layer of InMnAs grown on GaSb.
For such thickness, the confinement leads to the formation of
hole subbands, with typical energy spacing between them of
the order of 10 meV. This confinement energy is much less
than the disorder broadening and the thermal spread of pho-
toexcited carriers �both �0.1 eV�, so that our calculation of
spin-flip transition rates using the bulk band structure should
be a good approximation. In the previous section, we have
seen that for such p=3�1020 cm−3, the subpicosecond drop
in magnetization is about 10%. Experimentally, a 50% drop
in Kerr signal was observed within �200 fs after the pump
pulse. The steplike character of the magnetization drop is not
reproduced by our theory, which predicts a smoother demag-
netization. However, the carrier-induced artifacts �termed
“dichroic bleaching” in Ref. 5� obscuring the magnetization
dependence of the magneto-optical signal are possible at
very short time scale. The magnitude of the total demagne-
tization is in qualitative agreement with our calculations.

For pump fluence of 10 mJ/cm2, for which a complete
quenching of ferromagnetic order is observed, the role of
multiphoton absorption processes becomes pronounced, and

photocarriers are created in a very large region of the Bril-
louin zone �as in experiments from Ref. 79, where a pump
with ��=3.1 eV was used in GaMnAs�. Our k ·p model
with “rigid” spin splitting �i.e., k-independent exchange con-
stant� is not applicable far away from the � point. Also, for
very high excitation the assumption of quasithermal distribu-
tion of holes can fail.

In GaMnAs, the experiments show a similar behavior12

after 1 ps, with 30% magnetization drop for fluence of
�8 mJ/cm2. This value is very close to the predictions of
our theory for p=3�1020 cm−3. For the same fluence,
InMnAs was already nearly completely demagnetized. Al-
though our theory predicts larger demagnetization in GaM-
nAs than in InMnAs, in order to make meaningful compari-
sons one has to achieve comparable excitation parameters
�total p and Te after the pulse�. Also, the efficiency of exci-
tation of holes can be different in the two materials.

VI. SUMMARY

We have presented an investigation of the ultrafast de-
magnetization induced by an incoherent light excitation in a
system described by the sp-d model. The physical picture of
demagnetization is very transparent, with sp-d interaction
providing a mechanism of spin transfer from the localized
spins into the system of excited carriers. This process is
closely related to effects known from systems of electronic
and nuclear spins coupled by hyperfine contact interaction,
and thus we have termed it the inverse Overhauser effect.
The demagnetization basically comes from very fast T1 re-
laxation of the localized spins due to the sp-d interaction
with the hot carriers’ spins. In a simple one-band model, the
rate of spin-flip scattering of itinerant and localized spins is
proportional to the square of the sp-d exchange constant, the
product of electronic densities of states at Fermi energy for
two spin directions, and the temperature of the carriers. Due
to the carrier temperature dependence, the rapid demagneti-
zation can occur only for a time of the order of energy re-
laxation time 
E. Thus, the subpicosecond time scale of the
demagnetization process simply comes from the characteris-
tic time of carrier-phonon interaction. The total magnitude of
demagnetization during the 
E time depends only on the
spin-flip scattering efficiency if the carrier system is a good
spin sink, i.e., the carrier-spin relaxation time 
sr is shorter
than the time scale on which the dynamic spin polarization
of carriers builds up. A long 
sr leads to a spin bottleneck that
suppresses the demagnetization. This general theory can be
used as an admittedly rough model for demagnetization pro-
cess in transition metals �treated within the s-d model�, as it
captures all the crucial aspects of the problem.20

A large part of the discussion was aimed at the specific
cases of �III,Mn�V semiconductors. There, a nontrivial band
structure with spin-orbit interaction has to be taken into ac-
count. We have performed the calculations of spin-flip tran-
sition rate using an effective k ·p Hamiltonian approach. An
approximate calculation of the effects of dynamical spin po-
larization of holes has been used to argue that the holes can
be treated as a perfect sink for the angular momentum trans-
ferred from the localized spins. A qualitative agreement with
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demagnetization experiments in these materials was ob-
tained: the theory shows that the magnetization can drop by
�10% within the energy relaxation time of the holes. More
theoretical and experimental work on electronic and optical
properties of �III,Mn�V’s will be necessary in order to better
reconcile experiments and theory.
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