Electronic structure of quasi-one-dimensional conductors Nb_3X_4 (X=S,Se,Te) studied by angle-resolved photoemission spectroscopy

T. Dobashi, T. Sato,* S. Souma,* and T. Takahashi* Department of Physics, Tohoku University, Sendai 980-8578, Japan

H. Kaneko and Y. Ishihara

Department of Physics, Faculty of Science, Kanazawa University, Kanazawa 920-1192, Japan

H. Okamoto

School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa 920-0942, Japan (Received 21 December 2004; revised manuscript received 20 April 2007; published 30 July 2007)

High-resolution angle-resolved photoemission spectroscopy (ARPES) has been performed on quasi-onedimensional (1D) compounds Nb₃X₄ (X=S, Se, Te). We have experimentally determined the band structure of these compounds and compared with several different band calculations. We found a fairly straight 1D Fermi surface in Nb₃Te₄ (charge density wave transition temperature T_{CDW} =110 K, superconducting transition temperature T_c =1.9 K), while the Fermi surface of Nb₃Se₄ (T_c =2.4 K) and Nb₃S4 (T_c =3.8 K) shows a remarkable wiggling, indicative of the more two-dimensional-like (three-dimensional-like) character. We also found a sharp quasiparticle peak near the Fermi level (E_F) at low temperatures for Nb₃S4 and Nb₃Se4, while the spectral weight near E_F of Nb₃Te₄ is considerably suppressed. These experimental results indicate that the anisotropy of the electronic structure remarkably changes with varying the chalcogen atom in the compounds.

DOI: 10.1103/PhysRevB.76.045121

PACS number(s): 71.18.+y, 71.30.+h, 71.45.Lr, 79.60.-i

I. INTRODUCTION

Low-dimensional compounds such as layered materials and quasi-one-dimensional (quasi-1D) compounds have generated considerable interest since they show a variety of interesting physical properties such as charge density wave (CDW), metal-insulator transition, and superconductivity.¹ In weakly correlated three-dimensional (3D) metals, the Fermiliquid theory, which describes the interaction of electrons near the Fermi energy, holds quite well, while in onedimensional (1D) or quasi-1D metals, it appears to break down due to the strong electron correlation, and the low energy excitation is well characterized by the so-called Tomonaga-Luttinger liquid. In such a low-dimensional system, the Fermi surface suffers a strong electronic instability toward the metal-insulator transition and the system often undergoes a CDW transition. On the other hand, several layered two-dimensional (2D) compounds such as transitionmetal dichalcogenides and cuprates show superconductivity with relatively high transition temperature (T_c) . These facts suggest that the dimensionality or anisotropy of a system is a key point in understanding the nature of exotic physical properties in low-dimensional compounds.

One of the suitable candidates to study the systematics and/or variation of the electronic structure as a function of dimensionality (anisotropy) is quasi-1D conductor Nb₃X₄ (X=S,Se,Te). Nb₃X₄ shows the superconducting transition at T_c =3.8, 2.4, and 1.9 K for sulfide, selenide, and telluride, respectively.^{2,3} The T_c is systematically decreased when the size of the chalcogen atom is increased. In addition, Nb₃Te₄ shows a first-order CDW transition at T_{CDW} =110 K,⁴⁻⁶ as confirmed by the satellite reflection in the electron and x-ray diffractions,^{6,7} accompanied by transport and magnetic anomalies at 45 K.^{3,4,6,8-10} Nb₃X₄ (X=S,Se,Te) belongs to the hexagonal crystal system with the space group of $P6_3/m$.^{11,12} As shown in Fig. 1(a), niobium atoms are arranged in a linear zigzag chain with the metallic bonding along the c axis, while the interchain interaction is substantially reduced by intervening chalcogen atoms. For instance, in Nb₃Te₄, the intrachain distance (d_{\parallel} =2.973 Å) is comparable to the nearest neighbor atomic distance in Nb metal (2.859 Å), while the interchain distance $(d_{\perp} = 3.854 \text{ Å})$ is much longer,^{11,12} suggesting the strong 1D nature of the compound. In fact, several physical properties such as the electrical resistivity,^{4–6,13–15} the specific heat,^{3,10,16,17} and the magnetic susceptibility^{6,8,14,15,18} show a strong anisotropy. By replacing the chalcogen atom from Te to S, the ratio of the inter- and the intrachain distance $(d_{\perp}/d_{\parallel})$ is systematically reduced from 1.30 to 1.17, showing that the anisotropy becomes gradually weak from Nb_3Te_4 to Nb_3S_4 .

To understand the mechanism of CDW and superconducting transitions in Nb_3X_4 , Oshiyama has performed the firstprinciples self-consistent nonrelativistic band calculation on Nb₃ X_4 (X=S,Se,Te)^{19,20} and reported that there exist three conduction bands which cross the Fermi level (E_F) owing to the presence of three Nb chains in the unit cell. These three Fermi surfaces consist of warped or undulating planelike sheets, consistent with the strong anisotropy observed in the transport and magnetic measurements.^{6,8,14,15,18} Temperature dependence of the resistivity, as well as the angular dependence of the upper critical field, has been explained well using this band calculation. Recently, angle-resolved photoemission spectroscopy (ARPES) has been performed on Nb₃Te₄ by Fujisawa *et al.*²¹ and the overall electronic band structure has been elucidated. However, since there are no ARPES reports so far on Nb₃S₄ and Nb₃Se₄, the systematic variation of the electronic structure as a function of chalcogen atom has not been elucidated yet.

FIG. 1. (a) Projected view of Nb₃ X_4 crystal along the *c* axis, together with the view of zigzag Nb chain along the *c* axis (right) (Ref. 13). The unit cell contains six Nb atoms and eight chalcogens. Each Nb chain is linked to adjacent chains via chalcogen atoms to form hexagonal channels parallel to the *c* axis. (b) Half the Brillouin zone of Nb₃ X_4 (X=S,Se,Te). Cleavage plane (ΓAML plane) is indicated by the shaded area. (c) Schematic view of the sample orientation for the ARPES measurements along the ΓA and ΓM cuts.

In this paper, we report a systematic high-resolution ARPES study on Nb₃ X_4 (X=S,Se,Te). We found a strong anisotropy in the band dispersion near E_F , as well as in the Fermi surface for all compounds. We also found a dimensional crossover of the Fermi surface as a function of X, which suggests that the interchain interaction is important in understanding the mechanism of the superconductivity and CDW in Nb₃ X_4 .

II. EXPERIMENTS

Single crystals of Nb₃ X_4 were grown by the iodine-vapor transport method. Details of the sample preparation have been described elsewhere.^{5,12,22,23} The physical properties such as T_c and/or T_{CDW} of crystals used in the present ARPES measurement were confirmed to be identical to those in the previous reports.^{5,22,23} ARPES measurements were performed using Gammadata-Scienta SES-200 and SES-2002 spectrometers with a high-flux discharge lamp and a toroidal grating monochromator at Tohoku University. We used the He I α ($h\nu$ =21.218 eV) resonance line to excite photoelectrons. The energy and angular (momentum) resolutions were set at 10–20 meV and 0.2° (0.007 Å⁻¹), respectively. The sample orientation was determined by the Laue diffraction measurement. Crystals were cleaved *in situ* in an ultra-

FIG. 2. ARPES spectra near E_F of (a) Nb₃S₄, (b) Nb₃Se₄, and (c) Nb₃Te₄ measured at 30 K with the He I α line along the ΓA direction. Spectra at the Γ and A points are indicated by thick lines.

high vacuum of 2×10^{-11} Torr to obtain a clean surface for the measurement. The natural cleavage plane of the sample is the ΓAML plane in the k space, as indicated by the shaded area in Fig. 1(b). The typical size of the crystals is 5×0.2 $\times 0.2$ mm³, and the cleaved surfaces show a single shiny mirrorlike surface with a sharp reflection spot of laser. ARPES spectra were measured by rotating the sample while keeping the analyzer fixed, so that the polarization vector of incident light with respect to the sample varies during the measurement. Figure 1(c) shows the actual sample orientation for the ARPES measurements along the ΓA and ΓM directions. As for the measurement along the ΓA cut, we obtained ARPES spectra along the cut perpendicular to the chains (ΓM direction) by the simultaneous collection of photoelectrons with the finite angular range ($\sim 13^{\circ}$). By changing the tilting angle θ which corresponds to the angle between the sample normal and the sample-to-analyzer direction, we measured the ARPES spectra in a 2D Brillouin zone including the ΓA cut. As for the measurement along the ΓM cut, we rotated the sample azimuth by 90°. All spectra in Figs. 2-7 were measured at 30 K while those in Fig. 9(a)were at 10 K. The Fermi level of the sample was referred to that of a gold film evaporated onto the sample substrate.

FIG. 3. Band structures along the ΓA direction determined by ARPES for (a) Nb₃S₄, (b) Nb₃Se₄, and (c) Nb₃Te₄. Bright areas correspond to the bands.

FIG. 4. Comparison of the band structure along the $\Gamma A(KH)$ direction between the ARPES experiment and the band calculations. [(a)–(c)] Experimental band structure of Nb₃S₄ compared with the first-principles self-consistent nonrelativistic band calculation using the linear combination of atomic orbital (LCAO) method (Ref. 20), the self-consistent band calculation using the linear muffin tin orbital (LMTO) method (Ref. 26) and the tight-binding (TB) calculation (Ref. 24), respectively. (d) and (e) are for Nb₃Te₄ with the LCAO and the LMTO calculations (Refs. 20 and 25).

III. RESULTS AND DISCUSSION

A. Band structure parallel to chain direction

Figure 2 shows ARPES spectra near E_F of Nb₃X₄ (X=S,Se,Te) measured at 30 K along the ΓA direction in

the Brillouin zone, which corresponds to the chain direction in the crystal, as shown in Fig. 1. In Nb₃S₄ [Fig. 2(a)], we observe several peaks which disperse toward the higher binding energy on approaching the A point from the Γ point. These bands all have the bottom of dispersion at the A point. We also find an electronlike band with the bottom of dispersion at 0.3 eV around the Γ point. All these bands are attributed to the Nb 4d bands according to the band calculations.^{20,24-26} Although the gross feature of band dispersion looks similar among the three compounds, several quantitative differences are clearly noticed. For example, the number of distinguishable peaks at the A point is four to five in Nb₃Se₄ and Nb₃Te₄, while that of Nb₃S₄ is two to three. The width of the peak in the spectra is apparently broad in Nb_3S_4 in contrast to the relatively sharp feature in Nb_3Se_4 and Nb₃Te₄. Further, several additional small peaks are clearly observed near E_F around the Γ point in Nb₃Se₄.

To see more clearly the dispersive feature of bands in the ARPES spectra, we have mapped out the band structure and show the result in Fig. 3. The experimental band structure has been obtained by plotting the spectral intensity by gradual shading as a function of the wave vector and the binding energy. Bright areas correspond to the experimental bands. As seen in Fig. 3, we observe several dispersive bands in all the compounds. As described above, bands which have the bottom of dispersion at the A point are ascribed to the Nb 4d band. The width of band dispersion, namely, the energy separation between the top and the bottom of the band, becomes gradually smaller on going from Nb₃S₄ to Nb₃Te₄ (1.1, 0.9, and 0.8 eV for Nb_3S_4 , Nb_3Se_4 , and Nb_3Te_4 , respectively). This systematic change in the band width is explained well in terms of the decrease in the overlap of the wave function of the Nb 4d orbital in the zigzag chain in the crystal, since the distance between Nb atoms in the chain (d_{\parallel}) systematically increases from the sulfide to the telluride (d_{\parallel}) =2.881, 2.885, and 2.973 Å for X=S, Se, and Te, respectively^{11,12}). As seen in Figs. 2(c) and 3(c), there is a holelike steep band with the top of dispersion at 1.6 eV at the Γ point in Nb₃Te₄, which is assigned to the Te 5*p* band from the band calculations.^{20,24,25}

We show in Fig. 4 the comparison of the experimental band structures along the ΓA direction with three different band calculations available at present. Figures 4(a)-4(c)show comparison of the band structure of Nb₃S₄ with the first-principles self-consistent nonrelativistic band calculation using the linear combination of atomic orbital (LCAO) method,²⁰ the self-consistent band calculation using the linear muffin tin orbital (LMTO) method,^{25,26} and the tightbinding calculation,²⁴ respectively. Figures 4(d) and 4(e)compare the band structure of Nb₃Te₄ with the LCAO and the LMTO calculations.^{20,25} We find in Fig. 4 that the three band calculations look very similar to each other and show good qualitative agreement with the experimental result. However, there are several quantitative disagreements even among the calculations themselves, as well as with the experiment. For example, in Nb₃S₄, the observed energy position of the bottom of the Nb 4d bands at the A(H) point (1.6 eV) is reproduced well by the LCAO calculation [Fig. 4(a), while the LMTO and the tight-binding calculations [Figs. 4(b) and 4(c)] predict it at 1.7-1.8 eV. The character-

FIG. 5. [(a)–(c)] ARPES spectra and [(d)–(f)] the experimental band structure in the close vicinity of E_F along the ΓA direction measured with the He I α line for Nb₃S₄, Nb₃Se₄, and Nb₃Te₄, respectively.

istic W-shaped band dispersion near E_F around the $\Gamma(K)$ point observed in the experiment is also seen in the LCAO and the LMTO calculations [Figs. 4(a) and 4(b)] but not in the tight-binding calculation [Fig. 4(c)]. The substantially strong intensity within 0.1 eV from E_F at the $\Gamma(K)$ point suggestive of a small electron pocket centered at the $\Gamma(K)$ point is reproduced only by the LMTO calculation [Fig. 4(b)]. The LCAO and the LMTO calculations reproduce well the narrowing of the Nb 4*d* bands, as well as the small elec-

FIG. 6. ARPES spectra near E_F of (a) Nb₃S₄, (b) Nb₃Se₄, and (c) Nb₃Te₄ measured at 30 K with the He I α line along the ΓM direction.

FIG. 7. ARPES spectra in the close vicinity of E_F at 30 K of (a) Nb₃S₄, (b) Nb₃Se₄, and (c) Nb₃Te₄, measured along the ΓM direction with higher energy resolution (12 meV) and smaller energy interval (4 meV).

tronlike dispersive band near E_F in Nb₃Te₄ [Figs. 4(d) and 4(e)]. These comparisons indicate that the band calculation serves as a good starting point to describe the gross band structure of Nb₃X₄, although there are several non-negligible quantitative disagreements between the experiment and the calculation.

To clarify the band structure in the close vicinity of E_F , we show in Fig. 5 ARPES spectra measured in the energy region within 0.6 eV from E_F together with the intensity plot as a function of the wave vector and the binding energy. We find in Fig. 5 that several bands cross E_F in all the compounds. In Nb₃S₄ [Fig. 5(d)], we observe a relatively strong intensity very close to E_F at the $\Gamma(K)$ point, which suggests a small electron pocket at the $\Gamma(K)$ point. Another band, which shows the characteristic W-shaped dispersion around the $\Gamma(K)$ point, crosses E_F midway between the $\Gamma(K)$ and A(H)points, producing a large electron pocket centered at the $\Gamma(K)$ point. In Nb₃Se₄, we clearly find a small electron pocket centered at the $\Gamma(K)$ point, which looks slightly larger than in Nb₃S₄, since the Fermi vector (k_F) appears slightly away from the $\Gamma(K)$ point compared to that of Nb₃S₄. In Nb₃Te₄, the bottom of the electron band at the $\Gamma(K)$ point is located at about 0.3 eV and the band is very steep around the k_F point. The relatively high density of states (DOS) at E_F observed for all emission angles in Nb₃Te₄ may be due to "ill-defined" conservation of k_{\parallel} caused by the indirect transition during the photoexcitation process. Imperfection of crystal surface might account for the high DOS at E_F . However, this may not be the case because the cleaved surface shows a shinny mirrorlike plane with a sharp single reflection spot of laser and the observed band dispersions show that the periodicity matches well with the bulk Brillouin zone, indicating the high quality of the cleaved surface. These experimental results in Fig. 5 suggest the substantial difference in the topology of the Fermi surface among the three different Nb_3X_4 compounds. This point will be discussed later in detail.

B. Band structure perpendicular to chain direction

Figure 6 shows ARPES spectra near E_F of Nb₃X₄ (X=S, Se, Te) measured at 30 K along the ΓM direction, which

corresponds to the direction perpendicular to the chain, as shown in Fig. 1. In sharp contrast to the ΓA direction (Fig. 2), peaks in the ARPES spectra are less dispersive or almost dispersionless, reflecting the substantial 1D nature of the electronic structure of Nb_3X_4 , as evident from the strong anisotropy in the electrical conductivity.^{4–6,14,15} In Nb₃Te₄ [Fig. 6(c), most of the peaks are dispersionless while the intensity shows a slight variation as a function of wave vector. We do not find E_F crossing of band in Nb₃Te₄, indicative of the strong 1D nature of the Fermi surface. In contrast, there are several bands with a small but finite energy dispersion near E_F in Nb₃S₄ and Nb₃Se₄ [Figs. 6(a) and 6(b)]. Particularly in Nb₃S₄, a sharp peak just below E_F at the Γ point appears to lose its spectral weight on approaching the M point, suggesting that this band actually crosses E_F midway between the Γ and M points.

In order to see these dispersive features in more detail, we measured the ARPES spectra very close to E_F with a higher energy resolution and a smaller energy interval and show the result in Fig. 7. As clearly seen in Fig. 7(a), a sharp peak located at 50 meV at the Γ point in Nb₃S₄ disperses toward E_F on approaching the M point and suddenly loses its intensity near the M point, indicating that the small electronlike Fermi surface centered at the $\Gamma(K)$ point is closed in the ΓM direction in Nb₃S₄. Such band crossing is not seen in Nb₃Se₄ although a band close to E_F shows a large energy dispersion of about 150 meV. In contrast to the highly dispersive nature of bands near E_F in Nb₃S₄ and Nb₃Se₄, all bands near E_F in Nb_3Te_4 are almost dispersionless, as seen in Fig. 7(c), exhibiting the strong 1D character of the electronic structure near E_F . This systematic change in the band dispersion perpendicular to the chain clearly demonstrates that the anisotropy and/or dimensionality of the electronic structure is certainly different among the three compounds. It is noted here that we observe a finite spectral intensity at E_F in Nb₃Te₄. This may originate from the angle-integrated-type background caused by indirect transitions, as described above. To elucidate the origin of this high spectral DOS at E_F in more detail, it is desirable to measure the photon-energy dependence in the normal emission with synchrotron radiation.

C. Fermi-surface topology

Figure 8 shows the ARPES-intensity plot at E_F of Nb₃X₄ (X=S, Se, Te) as a function of the two-dimensional wave vector. To map out the Fermi surface, we obtained ~ 700 ARPES spectra at one-quarter of the first Brillouin zone with approximately 20 \times 35 momentum mesh (k_x and k_y) and interpolated them. Next, we have symmetrized the original image by taking account of the tetragonal symmetry of the crystal. The intensity is obtained by integrating the spectral weight within 20 meV with respect to E_F . Also presented in Fig. 8 are the momentum distribution curves (MDCs) at E_F along the ΓA cut, together with the result of fitting. To estimate the position of the Fermi surface, we fit MDC at E_F by Lorentzians and determined the location of the peak maximum in the k space which is defined as the k_F point. Next, we smoothly traced the set of k_F points and obtained experimental Fermi surfaces (gray curves in Fig. 8). As seen in Fig.

FIG. 8. ARPES spectral intensity plots as a function of 2D wave vectors of (a) Nb₃S₄, (b) Nb₃Se₄, and (c) Nb₃Te₄. The gray lines trace the local maxima of intensity, corresponding to the experimentally determined Fermi surface. The momentum distribution curve at E_F along the ΓA cut (thick solid curves) and the result of Lorentzian fitting (thin solid curves) are also shown for each compound.

8(c), the Fermi surface of Nb₃Te₄ is open and almost flat along the ΓM direction, fulfilling a good nesting condition. In fact, a clear CDW transition in Nb₃Te₄ has been reported by the electron diffraction experiment.⁷ Since both Γ and M points are in the occupied side, as found in the band dispersion in the ΓM direction [Fig. 7], the Fermi surface of Nb_3Te_4 [Fig. 8(c)] is found to be electronlike, consistent with the observed negative thermopower.^{4,9} In Nb₃Se₄, we observe two distinct Fermi surfaces, both of which show a finite wiggling along the ΓA direction, indicative of a slight reduction of the one dimensionality in Nb₃Se₄. In Nb₃S₄, the separation of the inner and outer Fermi surfaces becomes more apparent, and more importantly, the inner Fermi surface is *closed* in the ΓM direction, forming an ellipsoidal shape. Furthermore, the outer Fermi surface undulates more drastically than that in Nb₃Se₄. These experimental results indicate that the replacement of chalcogen atom in Nb_3X_4 significantly affects the dimensionality of the electronic structure, leading to the different topology of the Fermi surface. This systematic change of the Fermi-surface topology with X is explained in terms of the difference in the strength of the interchain interaction. The shortest Nb-Nb distance between neighboring chains in the crystal (d_{\perp}) is 3.369, 3.567, and 3.854 Å for X=S, Se, and Te, respectively,^{11,12} indicating that the interchain interaction becomes monotonically stronger from Nb₃Te₄ to Nb₃S₄, as expected from the present ARPES result (Fig. 8). It is noted that the ratio of the effective electron mass perpendicular and parallel to the caxis $(m_{\perp}/m_{\parallel})$ at low temperatures estimated from the angular dependence of the critical field is approximately 110 in Nb_3Te_4 (Ref. 4) and 20 in Nb_3S_4 ,¹⁷ indicating the stronger anisotropy in Nb₃Te₄, consistent with the present ARPES experiment. Since there are three Nb-Nb chains (six Nb atoms) in a unit cell in the crystal, it is expected that three bands cross E_F if the bands do not degenerate. In the present ARPES experiment, we observe two different Fermi surfaces in Nb₃S₄ and Nb₃Se₄, which suggests that the inner or the outer Fermi surface may nearly degenerate. Since the separation in the momentum space between the inner and outer

Fermi surfaces would be a measure of the interaction between the neighboring chains in the crystal, the systematic decrease in the separation between the inner and outer Fermi surfaces from Nb₃S₄ to Nb₃Te₄ as seen in Fig. 8 (the separation along the ΓA cut is 0.21, 0.11, and 0.03 Å⁻¹ for Nb₃S₄, Nb₃Se₄, and Nb₃Te₄, respectively) is understood in terms of the gradual reduction of the interchain interaction from Nb₃S₄ to Nb₃Te₄. We infer that there are at least two different Fermi surfaces also in Nb₃Te₄ in analogy to Nb₃S₄ and Nb₃Se₄, although the observed Fermi surface looks to be composed of a straight single line, as seen in Fig. 8(c). We have fitted the MDC at E_F parallel to the ΓA direction and found that the MDC of Nb₃Te₄ cannot be fitted satisfactorily with a single Lorentzian but fairly well with two Lorentzians. This suggests that there are also two different Fermi surfaces in Nb₃Te₄ which are very close to each other in the momentum space. The nesting vector in Nb₃Te₄ observed by the electron diffraction⁷ is $[(1/3)a^* + (1/3)b^*] + (3/7)c^*$. The z component $[(3/7)c^*]$ is closer to the momentum separation of the outer Fermi surface $(0.40 \pm 0.05c^*)$ than to that $(0.33 \pm 0.05c^*)$ of the inner Fermi surface.

D. Spectral line shape

To study the spectral line shape in the vicinity of E_F and its relation to the physical properties, we have performed ARPES measurement at very low temperature (10 K) with higher energy resolution (10 meV) and smaller angular interval (0.15°) . The result is shown in Fig. 9. The spectra have been measured at the E_F -crossing point (k_F) along the ΓA direction of the inner Fermi surface for each compound. We clearly find a striking difference of the spectral line shapes between Nb₃Te₄ and the other two compounds. Nb₃S₄ and Nb_3Se_4 show a sharp quasiparticle peak at E_F while it is substantially suppressed in Nb3Te4. To elucidate the CDWgap induced spectral change in Nb₃Te₄, we plot in Fig. 9(c)the temperature dependence of the ARPES spectra measured at the k_F point of the outer Fermi surface along the ΓA direction. The inset shows the ARPES spectra symmetrized with respect to E_F to remove the effect of the Fermi-Dirac distribution function. As seen from the figure, we find small but finite suppression of the spectral weight (pseudogap) within ~ 20 meV with respect to E_F . This pseudogap may be related to the CDW-gap opening since it is not clearly seen above T_c (150 K). The appearance of a clear Fermi edge at 20 K also suggests that the CDW gap is not a full gap but a partial gap, and 2D or 3D character may remain in Nb₃Te₄ due to the finite interchain interaction.²¹ In fact, the partially nested nature of the Fermi surface is suggested by the electrical resistivity measurements,^{6,15} which show the persistence of the metallic behavior even below T_{CDW} .

Now, we discuss the origin of the absence of a sharp quasipasticle peak and the suppression of spectral weight in Nb₃Te₄, as seen in Fig. 9(a). The first possibility is the Tomonaga-Luttinger-like quasi-1D character of the electronic structure.^{27,28} However, the residual Fermi edge, suggestive of the deviation from the ideal 1D character, is inconsistent with this interpretation. The second possibility is the effect of CDW.^{4–10} However, the absence of a sharp peak

FIG. 9. (a) ARPES spectra measured at 10 K at the E_F -crossing (k_F) point along the ΓA direction for each Nb₃ X_4 (X=S,Se,Te). (b) Schematic diagram of each Fermi surface and k_F point along the ΓA direction. (c) Temperature dependence of the ARPES spectra on Nb₃Te₄ measured at the k_F point of the outer Fermi surface along the ΓA direction. (d) ARPES spectral intensity plot of Nb₃Te₄ as a function of wave vector and binding energy, measured at 30 K along the ΓA direction near the k_F points. The black area corresponds to the higher intensity. Lines of constant intensity are indicated by solid curves. (e) MDC at E_F (circles) for Nb₃Te₄ as a function of wave vector relative to the k_F point of the inner Fermi surface, together with the result of fitting (solid line) by two Lorentzians (dashed lines). The length of the arrows denotes the full width at half maximum of the peak.

even above T_{CDW} (150 K), as seen in Fig. 9(c), is hardly explained by the CDW-gap opening. CDW fluctuation which causes the pseudogaplike feature above T_{CDW} , as seen in the ARPES spectra of other quasi-1D compounds,²⁹ is also insufficient to explain our result since the energy scale of the spectral-weight suppression is about 100 meV [Fig. 9(a)] while the size of the CDW gap is much smaller $(\sim 20 \text{ meV})$. The third possibility is the cross-section and matrix-element effects which reduce the weight of the quasiparticle peak only in Nb₃Te₄. By taking account of the facts that electronic states at E_F are of mainly the Nb 4d character and the gross band structure is similar among the three compounds, it would be unlikely to ascribe the absence of the peak to the cross-section and matrix-element effects. The fourth possibility is the presence of highly renormalized quasiparticles due to the strong interaction. 30,31 The interaction reduces the weight of the coherent quasiparticle peak in the vicinity of E_F and also increases the weight of the incoherent part located at higher binding energies, producing an almost featureless broad spectral line shape. One candidate to account for the origin of interaction is a strong electron correlation. However, as seen from Figs. 4(d) and 4(e), the overall experimental band structure of Nb₃Te₄ shows reasonable agreement with the band calculations, especially in the bandwidth, indicating the little importance of the electron correlation. Alternatively, the electrons coupled to the lattice, namely, polaronic quasiparticles, more naturally explain the absence of a well-defined peak, as in the case of other quasi-1D systems.³⁰⁻³² As seen in Fig. 9(d), ARPES intensity near E_F along the ΓA direction does not increase with approaching E_F , unlike the simple expectation from the behavior of the coherent quasiparticle band where the peak becomes sharper and more intense with approaching E_F . This behavior is rather similar to the previous ARPES reports on quasi-1D compounds such as 1T-TaSe₂,³⁰ K_{0.3}MoO₃,³¹ and $(TaSe_4)_2I_{,32}^{,32}$ where formation of small polarons was suggested from the broad and incoherent nature of the ARPES spectra in the vicinity of E_F . As shown in Fig. 9(e), we have fitted MDC at E_F and obtained the momentum widths of peaks (Δk) to be 0.075 and 0.055 Å⁻¹, for inner and outer Fermi surfaces, respectively, which correspond to the coherence length of 13–18 Å when the experimental momentum resolution is taken into account. This value is considerably shorter than that of ordinal metals (100-1000 Å) but is rather similar to the value of quasi-1D compounds K_{0.3}MoO₃ and $(TaSe_4)_2 I$ (~10 Å),^{31,32} implying the presence of strong scattering in Nb₃Te₄, possibly due to interaction of electrons with the lattice (formation of small polarons). The broad spectral feature in Nb₃Te₄ may be due to the reduction (increase) of the weight of the coherent (incoherent) part caused by the multiple polaron and/or phonon excitations. While it is difficult to fit energy distribution curves by the model spectral function^{31,32} because the spectrum at k_F point is fairly broad and the peak position is ill defined, the appearance of a Fermi edge suggests the finite contribution from the coherent part which may be created by the relatively weaker electron-phonon coupling in Nb₃Te₄ than that in other strong-coupling quasi-1D compounds.^{30–32}

IV. CONCLUSION

We have performed high-resolution ARPES on Nb_3X_4 (X=S, Se, Te) to study the electronic band structure and the Fermi surface. We determined the band structure parallel and perpendicular to the Nb zigzag chain in the crystal and compared the result with three different band calculations. We found that the band calculation serves as a good starting point to describe the gross band structure of Nb_3X_4 , although there are several quantitative disagreements between the experiment and the calculation. We observed a fairly straight 1D Fermi surface in Nb₃Te₄, while the Fermi surfaces of Nb₃Se₄ and Nb₃S₄ show a remarkable wiggling along the direction parallel to the chain. This systematic change of the Fermi-surface topology with X is explained in terms of the difference in the strength of the interchain interactions. We observed a sharp quasiparticle peak in Nb₃S₄ and Nb₃Se₄, while the spectral intensity near E_F in Nb₃Te₄ is remarkably suppressed, possibly due to the formation of polaronic quasiparticles.

ACKNOWLEDGMENTS

We thank H. Komatsu, H. Komoda, and K. Sugawara for their help in the experiment. This work is supported by JST-CREST and MEXT of Japan.

- *Also at CREST, Japan Science and Technology (JST), Kawaguchi 332-0012, Japan.
- ¹A. M. Gabovich, A. I. Voitonko, J. F. Annett, and M. Ausloos, Supercond. Sci. Technol. 14, R1 (2001).
- ²E. Amberger, K. Polborn, P. Grimm, M. Dietrich, and B. Obst, Solid State Commun. **26**, 943 (1978).
- ³H. Okamoto, H. Taniguti, and Y. Ishihara, Phys. Rev. B **53**, 384 (1996).
- ⁴Y. Ishihara and I. Nakada, Jpn. J. Appl. Phys., Part 1 23, 851 (1984).
- ⁵Y. Ishihara and I. Nakada, Solid State Commun. **45**, 129 (1983).
- ⁶T. Sekine, Y. Kiuchi, E. Matsuura, K. Uchinokura, and R. Yoshizaki, Phys. Rev. B **36**, 3153 (1987).

- ⁷K. Suzuki, M. Ichihara, I. Nakada, and Y. Ishihara, Solid State Commun. **52**, 743 (1984).
- ⁸Y. Jiang, D. Ao-chuan, Z. Min, and L. Zhi-guo, Mod. Phys. Lett. B **9**, 1693 (1995).
- ⁹Y. Ishihara, I. Nakada, K. Suzuki, and M. Ichihara, Solid State Commun. **50**, 657 (1984).
- ¹⁰H. Nagashima, H. Okamoto, Y. Okada, and Y. Ishihara, J. Phys. Soc. Jpn. **64**, 3804 (1995).
- ¹¹K. Selte and A. Kjekshus, Acta Crystallogr. 17, 1568 (1964).
- ¹²A. F. J. Ruysink, F. Kadijk, A. J. Wagner, and F. Jellinek, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. **B24**, 1614 (1968).
- ¹³T. Konno, Y. Sonobe, G. Muramoto, M. Itou, I. Mamada, H.

Okamoto, H. Kaneko, and Y. Ishihara, J. Phys. Chem. Solids 64, 749 (2003).

- ¹⁴Y. Ishihara and I. Nakada, Solid State Commun. 44, 1439 (1982).
- ¹⁵Y. Ishihara and I. Nakada, Solid State Commun. 42, 579 (1982).
- ¹⁶H. Okamoto and Y. Ishihara, Phys. Rev. B 48, 3927 (1993).
- ¹⁷W. Biberacher and H. Schwenk, Solid State Commun. **33**, 385 (1980).
- ¹⁸T. Ishida, K. Kanoda, H. Mazaki, and I. Nakada, Phys. Rev. B 29, 1183 (1984).
- ¹⁹A. Oshiyama, Solid State Commun. **43**, 607 (1982).
- ²⁰A. Oshiyama, J. Phys. Soc. Jpn. **52**, 587 (1983).
- ²¹H. Fujisawa, H. Kumigashira, T. Takahashi, H. Kaneko, Y. Ishihara, and H. Okamoto, J. Electron Spectrosc. Relat. Phenom. **114**, 647 (2001).
- ²²I. Nakada and Y. Ishihara, Jpn. J. Appl. Phys., Part 1 23, 677 (1984).
- ²³I. Nakada and Y. Ishihara, Jpn. J. Appl. Phys., Part 1 24, 31 (1985).
- ²⁴E. Canadell and M.-H. Whangbo, Inorg. Chem. **25**, 1488 (1986).
- ²⁵W. Bensch, M. Schnieder, M. Muhler, W. Biberacher, M. Knecht,

A. Vernes, and H. Ebert, J. Alloys Compd. 224, 59 (1996).

- ²⁶W. Bensch and H. Ebert, Solid State Commun. **89**, 235 (1994).
- ²⁷T. Mizokawa, K. Nakada, C. Kim, Z.-X. Shen, T. Yoshida, A. Fujimori, S. Horii, Yuh Yamada, H. Ikuta, and U. Mizutani, Phys. Rev. B **65**, 193101 (2002).
- ²⁸ H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, T. Narimura, M. Higashiguchi, K. Shimada, H. Namatame, and M. Taniguchi, Nature (London) **426**, 540 (2003).
- ²⁹T. Yokoya, T. Kiss, A. Chainani, S. Shin, and K. Yamaya, Phys. Rev. B **71**, 140504(R) (2005).
- ³⁰L. Perfetti, A. Georges, S. Florens, S. Biermann, S. Mitrovic, H. Berger, Y. Tomm, H. Höchst, and M. Grioni, Phys. Rev. Lett. **90**, 166401 (2003).
- ³¹L. Perfetti, S. Mitrovic, G. Margaritondo, M. Grioni, L. Forro, L. Degiorgi, and H. Höchst, Phys. Rev. B 66, 075107 (2002).
- ³²L. Perfetti, H. Berger, A. Reginelli, L. Degiorgi, H. Höchst, J. Voit, G. Margaritondo, and M. Grioni, Phys. Rev. Lett. 87, 216404 (2001).