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A direct-space electronic structure method for electronic structure calculations of periodic systems, based on
highly localized �noncanonical� molecular orbitals �MOs� and the quantum cluster embedding, is suggested.
The method utilizes a modified Adams-Gilbert approach that allows one to find self-consistently �for the given
geometry� the system energy and the corresponding localized MOs which give the correct total electron
density. The approach suggested here can also be considered as an exact derivation of embedded quantum
cluster models. We illustrate this method on a Hartree-Fock calculation of a model periodic He system and the
MgO crystal, and the results are compared with a conventional approach based on canonical Bloch-like orbitals
as implemented in the CRYSTAL code. Our method, which scales linearly with the system size, can also be used
to solve the Kohn-Sham equations of density-functional theory.
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I. INTRODUCTION

A quantum cluster embedding is a powerful computa-
tional tool in electronic structure theory of extended systems,
such as points defects in the bulk of crystalline1,2 or
amorphous3 systems, adsorption species on crystal surfaces
and surface defects,4–6 or large biological molecules.7–10 The
embedding methods originate from a model in which a single
local perturbation in the direct space of the entire system �the
quantum cluster� is considered in great detail using high-
quality quantum-mechanical �QM� methods �the QM re-
gion�, whereas a more approximate method �usually based
on molecular mechanics �MM� force fields� is used to ac-
count for the rest of the system surrounding the cluster �the
MM region�.

The main problem in all embedding schemes is related to
the correct representation of the cluster boundary. In most
methods, especially when applied to ionic systems, the quan-
tum cluster is surrounded by point charges of the MM re-
gion. In covalent systems, the bonds coming out of the clus-
ter are usually terminated by pseudoatoms �see, e.g., Ref. 5�,
so-called link atoms8,10,11 or pseudopotentials.12,13 In another
family of methods, the environment region surrounding the
cluster is better represented by going beyond the simple me-
chanical models.8,14,15

The most natural partitioning of the entire system into the
quantum cluster and the environment �and thus the resulting
embedding scheme1,16,17� can be made using many-electron
group function theory �see, e.g., Refs. 18 and 19� when the
wave function of the whole system is represented as an an-
tisymmetrized product of strongly orthogonal functions asso-
ciated with the cluster and electronic groups of the environ-
ment surrounding it. Depending on the specific type of
chemical bonding in the system, the groups outside the clus-
ter could be atoms �ions�, bonds, or molecules.16,17,20,21 Note
that this family of methods rely on wave functions of every
group to be “strongly” orthogonal18,19 to each other which
results in their less localized character to accommodate this
specific requirement, and thus leads to less computationally
efficient schemes.

If one lifts the artificial orthogonality condition, the group
functions start to overlap, which makes the calculation of
necessary matrix elements highly nontrivial.22–24 Although in
this case a general formulation of the embedding method is
still possible,24 it is very complicated and has not yet been
implemented in practice.

In this paper, we suggest a self-consistent method for non-
orthogonal one-electron groups �which is equivalent to the
one-electron or Hartree-Fock approximation� as the first logi-
cal step in this direction. We concentrate here on three-
dimensional periodic systems as the localized MOs of the
perfect bulk crystal are required anyway to represent the en-
vironment region in the embedding scheme based on group
functions. We have shown previously20,21,25 that by lifting the
orthogonality condition, highly localized molecular orbitals
�LMOs� may be obtained that can span the whole occupied
Fock space, and thus are capable of representing correctly
the system total electron density.25

Our method, which is similar in spirit to some existing
one-electron methods,26–28 is based on the partitioning of the
entire periodic system into overlapping electronic groups
�EGs� corresponding to atoms, ions, bonds, or molecules
comprising the entire system. The LMOs are obtained self-
consistently by solving Adams-Gilbert equations29–32 sepa-
rately for each group within the primitive unit cell. The
LMOs obtained in this way should represent the true elec-
tronic density of the entire system via a combination of el-
ementary densities associated with each group and are in
practice constructed to have transparent chemical meaning,
e.g., to represent ions in the case of ionic systems and cova-
lent bonds in covalently bound systems. Note that our
method scales linearly with the system size by construction,
i.e., it is O�N�.

The plan of the paper is as follows. In Sec. II, the main
ideas of our method are developed and explained together
with the ab initio implementation of the method within the
MOLCAS package.33 In Sec. III, we first present a toy-model
system which was designed to check the main computational
features of our method and the code. Then, our results for a
realistic ionic MgO crystal are discussed. Finally, brief con-
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clusions about further possible developments of the method
toward more complicated systems are given in Sec. IV.

II. METHOD

A. Adams-Gilbert method

We shall start by briefly reminding the reader of the main
ideas of the Adams-Gilbert �AG� method.29–32 Consider an
arbitrary �not necessarily periodic� closed-shell system the
energy E=E��� of which is a functional of the nondiagonal
density �or density matrix�, see, e.g., Refs. 25, 32, and 34:

��r,r�� = 2�
ij

occ

�i�r��S−1�ij� j
*�r�� . �1�

Here, �i�r� are the �spinless� system MOs which are in gen-
eral not orthogonal to each other, with the nonsingular over-
lap matrix S= �Sij�, where Sij = ��i �� j	 is the corresponding
overlap integral. The summation in Eq. �1� is performed only
over MOs of the occupied subset and the factor of 2 accounts
for the spin.

Varying the total energy E��� with respect to the MOs

�i�r��, one obtains the following general equations for
them:

�F̂ − �̂F̂�̂��i�r� = 0, �2�

where �̂ is the density operator defined via

�̂�i�r� =� ��r,r���i�r��dr�.

Note that we have not imposed any conditions on the MOs
�including normalization�. In the case of the Hartree-Fock

�HF� method, F̂ is the HF operator, while it is the Kohn-
Sham �KS� operator in density-functional theory.

Orbitals �i�r� are in general noncanonical and the matrix
S is not the unity matrix. They should be distinguished from
the canonical orbitals, 
�i

c�r��, which are eigenvectors of the

operator F̂, i.e.,

F̂�i
c�r� = �i�i

c�r� . �3�

However, since the orbitals �i�r� are some linear combina-
tions of the canonical ones, both sets are equivalent as they
span the same occupied Fock space. In particular, both sets
give the same electron density �Eq. �1��, although the density
looks much simpler if written via canonical orbitals since in
this case, the overlap matrix Sc=1.

Formally, Eq. �2� can be considered as an eigenproblem
for the noncanonical orbitals �i�r�. These equations are to be

solved self-consistently as the operator F̂ depends on the
density �Eq. �1�� and thus on all of the orbitals. The fact that
noncanonical MOs are the eigenvectors of the operator with
zero eigenvalues means that any linear nonsingular transfor-
mation of the orbitals 
�i�r�� is also a solution. This means
that some additional conditions can be imposed on the orbit-
als to choose the best linear combinations. In particular, one

can choose the transformed orbitals to be orthogonal and
normalized, in which case the canonical orbitals result.

B. Self-consistent procedure for calculating localized MOs

We shall use the mentioned additional freedom in order to
achieve high localization of the orbitals 
�i�r��. To this end,
we shall employ the notion of localized regions introduced
earlier.20,21 Briefly, the whole system is broken down into
regions each containing one or more atoms that are next to
each other. The regions can be chosen arbitrarily; however,
in this work, the choice of the localization regions will be
based on the type of the chemical bonding in the system,
e.g., on atoms in the cases of atomic or ionic systems, on two
adjacent atoms in the case of the covalent bonding, etc. A
more complicated choice may be necessary in the cases of
intermediate bonding. In the case of a periodic system to be
considered presently, several different nonequivalent regions
may be necessary to represent a crystal unit cell; the chosen
“irreducible” regions can then be periodically translated to
reproduce the whole infinite crystal. Note that there could be
several localized orbitals associated with every such region
forming an EG.20,21 Thus, each region has an EG associated
with it, and each EG may contain several doubly occupied
localized orbitals. For instance, in the case of the Si crystal,
one needs four localized regions associated with four bonds;
each bond is represented by an EG containing a single dou-
bly occupied localized orbital,20 eight valence electrons in
total in the primitive cell. In the case of the MgO crystal, the
unit cell is represented by a single region containing nearest
O and Mg atoms with an EG containing eight electrons dis-
tributed over four doubly occupied orbitals.

Consider a primitive unit cell containing several regions
�or EGs� A, B, etc. To find the MOs localized in each of the
regions, we define localizing functionals �A�
�i , i�A��,
�B�
�i , i�B��, etc., for each of them.20,21 Various examples
of the localization functionals were given in Refs. 20 and 21
�see also references therein�. In most cases, the localization
functionals contain special support functions ���A geo-
metrically located in the corresponding regions and work in
such a way as to ensure maximum overlap of the MOs �i
with the support functions thus achieving their necessary lo-
calization.

If �	�r� are atomic orbitals �AOs� centered on atoms of
the system, then their linear combinations

�i
�A� = �

	

ci	�	 �4�

will minimize �maximize� the functional �A if the orbitals

�i
�A� are eigenvectors of the problem �̂A�i

�A�=�i�i
�A�. The lo-

calization operator �̂A is defined via the functional deriva-

tive, i.e., �̂A�i
�A��r�=


�A


�i
�A��r�

. Then, the eigenvalues �i will

give the indication of the orbital localization �e.g., if the
functional �A is minimized, then the lowest eigenfunctions
correspond to the maximum localization of the functions
�i

�A��. Since the orbitals �i
�A� are eigenvectors of the same

operator �̂A, they form an orthonormal set. For definiteness,
we shall assume in the following that the maximum localiza-
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tion is achieved in the minimum of the functional �A.
In order for the localized orbitals �Eq. �4�� to belong to the

Fock space, they should at the same time satisfy the AG
equations �Eq. �2��. This can be achieved by solving the com-
bined problem:31,32

�F̂ + �̂��̂A − F̂��̂��i
�A��r� = �i

�A��i
�A��r� . �5�

The orbitals satisfying these equations belong to the occu-
pied Fock space and, at the same time, minimize the local-
ization functional �A. This means that they are localized in
region A, as indicated by the superscript to the orbitals.

It is important to realize that the orbitals 
�i
�A�� obtained as

described above span the entire, occupied Fock space, are
orthonormal and thus can be obtained from the canonical set
via some unitary transformation. In practice, only several
first �with the smallest eigenvalues �i

�A�� of these orbitals will
be strongly localized in A. If the localizing functional �A is
chosen well using chemical intuition, then the right number
of localized functions strongly localized in A can always be
chosen.20,21 We keep these functions and discard the rest.

In order to find orbitals localized in region B, we solve the
combined AG problem like in Eq. �5�, in which the localiza-

tion operator �̂A is replaced with �̂B. In this way, another
completely equivalent set of orthonormal orbitals, 
�i

�B��, is
obtained, from which we again keep only the necessary num-
ber of the first eigenfunctions which are mostly localized in
region B. The rest of the functions is discarded. This proce-
dure is repeated for each region within the primitive unit cell.
This way, a finite set of MOs, 
�i

�A��r� , i�A�, 
�i
�B��r� , i

�B�, etc., localized in regions A, B, etc., of the primitive cell
are obtained. This concept of representing the Fock space via
localized functions is analogous to choosing the Wannier
functions instead of the Bloch ones;34 the difference with our
case is that the Wannier functions are orthogonal while the
localized MOs here are not if they belong to different groups
�regions�.

Of course, the localized MOs discussed so far will not
span the whole occupied Fock space as they belong to the
central unit cell only. The whole set of the localized func-
tions that do span the entire occupied part of the Fock space
is obtained by accepting the images of these functions in
every unit cell of the periodic system, i.e., by adding trans-
lated functions 
�i

�A��r−L� , i�A�, 
�i
�B��r−L� , i�B�, etc.,

where L is a translation vector. Therefore, due to transla-
tional symmetry of the periodic system, the complete �occu-
pied� Fock space can be constructed using a finite number of
localized functions from the central unit cell. All other func-
tions can be obtained by applying lattice translations.

This brings us to another important point of our method
which is self-consistency. The procedure described above

would be impractical computationally, if the Fock operator F̂
depended on orbitals in a rather complicated way because in
this case, we would have to make a full self-consistent-field
�SCF� calculation for every combined AG problem using in
each case all orbitals. Fortunately, both in the HF and the KS

cases, F̂ depends on the orbitals only via the electron density
�Eq. �1�� which allows running a single SCF problem for all

localized orbitals inside the central cell at the same time.
Indeed, the �nondiagonal� electron density can be written en-
tirely via the localized functions of the central cell as fol-
lows:

��r,r�� = 2�
LAi

�
L�A�i�

�i
�A��r − L�GAi,A�i�

L−L� �i�
�A���r� − L�� ,

�6�

where the first sum runs over all cells L, regions A�L inside
them and the localized MOs i�A associated with each re-

gion �similarly for the second sum�. The quantity GAi,A�i�
L−L�

= �S−1�Ai,A�i�
L−L� is the element of the inverse of the overlap ma-

trix

SAi,A�i�
LL� = ��i

�A��r − L���i�
�A���r − L��	  SAi,A�i�

L−L�

that depends only on the difference of the lattice vectors L
−L� due to periodic symmetry. The inverse of the overlap
matrix can be calculated exactly by going into the reciprocal
space25 as follows:

GAi,A�i�
L−L� =

1

N
�
k

�S−1�k��Ai,A�i�e
−ik�L−L��, �7�

where S−1�k� is the inverse of the overlap matrix S�k�
= �SAi,A�i��k�� at the point k of the Brillouin zone, and

SAi,A�i��k� = �
L

SAi,A�i�
−L eikL �8�

can be calculated as a simple lattice sum of overlap integrals
between the orbitals in the central and surrounding cells.
This summation can be quite limited if the orbitals are well
localized in their regions due to exponential decay of the
overlap integrals with distance. Note that the size of the
square matrix S�k� is equal to the total number of localized
orbitals within the unit cell.

Finally, the per-cell total energy of the periodic system
within the HF approximation can be written in the following
way:

E = �
Ai

�
L�A�i�

GAi,A�i�
−L� �h̃Ai,A�i�

0L� + FAi,A�i�
0L� � +

1

2�
n

ZnVn
Mad,

�9�

where h̃Ai,A�i�
0L� is the matrix element of the one-electron part

of the Hamiltonian in which atomic pseudopotentials have
been stripped off their long-range parts �indicated by tilde�.
The latter are included separately in the last �Madelung� term
together with the nuclei-nuclei interaction. This rearrange-
ment of terms has been done to avoid divergence of the

Coulomb interaction. Finally, FAi,A�i�
0L� is the matrix element of

the Fock operator for the entire system which depends on the
total electron density matrix ��r ,r��.
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The summation in the last term in Eq. �9� is run over all
nuclei n �atomic cores� of charge Zn in the central unit cell
and Vn

Mad=VMad�Rn� is the exact Madelung potential from
the whole system calculated at the position Rn of the nucleus
n as follows:

VMad�Rn� = �
L�n�

�
Zn�

�Rn − L� − Rn��
−� ��r��dr�

�Rn − r��
, �10�

where the first sum accounts for the electrostatic potential
due to all nuclei of the system with the prime indicating that
the self-interaction is to be avoided �n��n when L�=0�, and
the second term provides a similar contribution from the
electronic charge; ��r�=��r ,r� is the diagonal element of the
density matrix ��r ,r��. Note that the latter term in Eq. �10� is
represented entirely via LMOs because of Eq. �6�.

Note that a similar expression can be obtained in the KS
case as well. In either case, it is important to see that the total
energy �per cell� can also be expressed entirely via the
LMOs.

Thus, for our method to work, we do not actually need the
discarded parts of the orbitals from each combined AG prob-
lem; only those orbitals which are actually kept in each case
are directly utilized.

C. Practical implementation

From the technical point of view, AG equations �Eq. �5��
are quite complicated. When written in the matrix form with
respect to the AOs, see Eq. �4�, they contain products of

various matrix elements of F̂ and �̂ summed over the lattice.
These summations, however, can be terminated very quickly
due to the localization character of the LMOs and, conse-
quently, fast decay of the matrix elements.

Although our method can be used in both the HF and KS
methods, in this paper, we shall describe its implementation

in the HF case only. Then, the Fock operator F̂ contains the
Coulomb and exchange parts. The exchange part is short
ranged and requires lattice summations to be performed only
within a limited region around the central cell. The situation
with the Coulomb part is more complex as it contains matrix
elements of the long-ranged Madelung potential VMad�r�, Eq.
�10�.

In order to deal with this term, we notice that the electron
density of Eq. �6� can also be written as a lattice sum:

��r,r�� = �
L

�̄�r − L,r� − L� , �11�

�̄�r,r�� = 2�
Ai

�
�L�A�i��

�i
�A��r�GAi,A�i�

−L� �i�
�A���r� − L�� . �12�

Because of the localized character of the LMOs, the lattice
summation L� in the expression for �̄�r ,r�� may actually be
limited to the cells nearest to the central cell associated with
the zero lattice vector �indicated by round brackets under the
sum�, and hence �̄�r ,r�� will be localized well around this
cell. Consequently, �̄�r−L ,r�−L� is well localized around
the unit cell L. Therefore, �̄�r ,r�� can be interpreted as the

zero unit-cell density matrix, and �̄�r−L ,r�−L� as the L
unit-cell density matrices. Then, the electronic contribution
to the Madelung potential �the second term in Eq. �10�� can
be represented as a lattice sum of contributions associated
with different unit cells of the crystal. Since when calculating

the matrix elements FAi,A�i�
0L� = ��i

�A��r��F̂��
i�
�A���r−L��	 of the

Fock operator between LMOs of the zero and L� cells, one is
interested in the Madelung potential within a small region
surrounding the central �zero� cell only, the contribution
from the remote cells can be represented by point charges.
This is combined with the corresponding contribution of the
nuclei of the remote cells �arising from the first term in Eq.
�10�� to produce a point-charge Madelung potential associ-
ated with the remote region of the crystal, as explained in
more detail below. The point charges can be calculated from
the LMOs since they are sufficient to represent the density
adequately. In this study, we obtained charges from the Mul-
liken analysis during the SCF procedure.

Therefore, in the actual implementation of the method, we
consider a quantum cluster containing a finite number of
complete primitive cells with the central cell in the middle of
it, see Fig. 1. The cluster is used to account for the detailed
distribution of the electron density. The cluster is surrounded
by a finite number of point charges that reproduce correctly
the Madelung field inside the cluster due to the outside re-
gion. In the present implementation of the method, the in-

verse of the overlap matrix, GAi,A�i�
−L� , is calculated not via the

k-point method �which is exact� as outlined in the previous
section, but rather approximately as the inverse of the finite
overlap matrix calculated on the LMOs within the quantum
cluster region. This approximation may affect the conver-
gence of calculated LMOs and the total energies with the
size of the quantum clusters.

Our implementation is similar in spirit to commonly used
cluster models. However, there are major differences: �i� the

FIG. 1. �Color online� Schematic representation of the periodic
system from the “point of view” of the central cell �indicated�. It is
assumed in this schematics that the unit cell contains two electronic
groups A and B. The quantum cluster containing a finite number of
primitive unit cells �indicated� is surrounded by point charges.
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total electron density we use in the Fock and density opera-
tors, F̂ and �̂, corresponds to the whole infinite system, not to
the cluster; �ii� a more complicated AG operator F̂+ �̂��̂A

− F̂A��̂ is used instead of the Fock operator F̂ that is em-
ployed in any of the common cluster methods; �iii� as a
result, the MOs found in our method correspond to nonca-
nonical solutions for the whole infinite system; �iv� finally,
the orbitals overlap with each other, while in the commonly
used cluster methods, the orbitals are canonical and form an
orthonormal set.

Thus, the whole procedure can be summarized in the fol-
lowing scheme:

�1� Choose several localized regions �groups� A, B, etc.,
that adequately represent the unit cell of the periodic system;
an even number of electrons, 2nA, 2nB, etc., should be asso-
ciated with each EG on the basis of chemical intuition.

�2� Choose localizing operators �̂A, �̂B, etc., for each
region that allow for the efficient localization of the MOs; in
practice, this also means that one has to choose the support
AO �or AOs� within each region with which the maximum
“overlap” �in the sense of the particular localizing operator�
of the LMOs is sought during the localization.

�3� As the initial guess, select some localized functions for
each region: nA functions �i

�A� belonging to region A �where
i=1, . . . ,nA�, nB functions �i

�B� belonging to region B �with
i=1, . . . ,nB�, etc.

�4� Choose the point charges associated with each unit
cell �e.g., Mulliken charges of the HF problem for the central
cell�; the LMOs and the point charges obtained in this way
serve as the initial approximation to the whole problem.

�5� Once the LMOs in the central cell are known, they can
be used as “bricks” to build up the whole system; hence, the
total electron density can be constructed according to Eqs.
�6�–�8�.

�6� A quantum cluster containing an integer number of
complete unit cells is considered which is surrounded by the
point charges.

�7� Start the AG iterations keeping the same charges;
these electronic iterations consist of the following steps:

�a� Using the LMOs and the point charges, calculate the
necessary matrix elements of the Fock and density operators

F̂ and �̂; these include matrix elements between LMOs
within the central cell, as well as the ones between the cen-
tral cell and the surrounding cells of the quantum cluster.

�b� Solve the combined eigenproblem for region A; pick
up the first nA solutions and ignore the rest.

�c� Repeat the last step for all regions �EGs� comprising
the unit cell, one after another.

�d� Check consistency �e.g., compare the current total en-
ergy and the Mulliken charges with those calculated on the
previous iteration�.

�e� If necessary, repeat the cycle by going back to step 7a;
otherwise, go out of the AG loop to step 8 with converged
LMOs for each region.

�8� Recalculate the Mulliken charges and construct a new
set of point charges around the quantum cluster.

�9� Go back to step 7; stop if the convergence with respect
to the charges �i.e., within the “charge iterations”� is reached;

note that the outer iteration procedure with respect to the
point charges of steps 7–9 is to be distinguished from the
electronic AG iterations performed during step 7.

Thus, the procedure is iterative and consists of the outer
loop �steps 7–9� with respect to the point charges and the
inner loop �steps 7a–7e� with respect to the LMOs; it is per-
formed until convergence is achieved. For systems with neu-
tral atoms, the outer loop may be omitted.

The total energy �per cell� of Eq. �9� can be modified to
account for the partition of the system into the cluster and the
outside regions. Indeed, firstly, the L� lattice summation in
the first term of the energy �Eq. �9�� can be limited to the
cluster cells only similarly to the density in Eq. �12�. Sec-

ondly, the matrix element h̃Ai,A�i�
0L� contains the sum over

short-range parts of the pseudopotentials of all atoms in the
system. Due to the localized character of the LMOs and the
pseudopotentials, this sum can be limited to atoms within the
cluster only. Next, we add to the one-electron matrix ele-

ments h̃Ai,A�i�
0L� in the energy the long-range parts of the

pseudopotentials for all cluster atoms; at the same time, the
Coulomb potential Vout�r� of all point charges representing
the outside region is also added. This results in modification

of the one-electron matrix elements h̃Ai,A�i�
0L� →HAi,A�i�

0L� . To
compensate for the added terms, we subtract them from the
energy which results in two additional terms in it: �i� Eadd

�1�

due to point charges inside the cluster �atomic cores� and �ii�
Eadd

�2� due to the point charges outside the cluster �atomic
charges�. Using the exact representation of the unit-cell elec-
tron density of Eq. �12�, these extra terms can actually be
written via point charges, and this is consistent with the clus-
ter approximation we adopted here. We shall demonstrate
this point by considering the second extra term, arising due
to the field Vout�r�:

Eout
�2� = �

Ai
�

�L�A�i��

GAi,A�i�
−L� ��i

�A��r��Vout�r���i�
�A���r − L��	

=
1

2
� Vout�r��̄�r�dr ,

where �̄�r� �̄�r ,r� and we have made use of Eq. �12� for
the cell density matrix. This energy contribution can then be
written explicitly via the summation over all cells �and
charges inside them� which are located in the outside region
�indicated by the square brackets under the sum�:

Eout
�2� �

1

2
� ��

�Ln�

qn

�r − L − Rn���̄�r�dr

=
1

2�
n

qn��
�L��

� �̄�r − L��
�r − Rn�

dr� .

The last expression can be interpreted as the energy of point
charges qn in the central cell placed in the Coulomb potential
due to the electron distribution in the outside region. Thus,
the potential due to the outside electron charge should be
replaced �consistently with our cluster model� with “elec-
tronic” point charges Pn on atoms in every cell �for each
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atom n, we have the total charge as qn=Zn− Pn�, which re-
sults in the following point-charge representation of this con-
tribution to the energy:

Eout
�2� =

1

2�
n

qn �
�L�n��

Pn�

�Rn − L� − Rn��

=
1

2�
n�

Pn��
�Ln�

qn

�Rn + L − Rn��

=
1

2�
n

PnVout�Rn� .

The other contribution, Eout
�1�, can be worked out along similar

lines. Finally, we get the following expression for the energy
per unit cell:

E = �
Ai

�
�L�A�i��

GAi,A�i�
−L� �HAi,A�i�

0L� + FAi,A�i�
0L� � + Enn

QC

+
1

2�
n

�Zn + Pn�Vout�Rn� , �13�

where Enn
QC is the interaction energy between nuclei within

the cluster �per cell�. The first and the second terms in the
energy, if multiplied by the number of cells in the cluster,
coincide with the total energy of the cluster placed in an
external field of point charges, the quantity that is calculated
routinely by any quantum chemistry code. The last term in
the energy is a necessary correction which takes account of
the long-range Coulomb interactions across the infinite peri-
odic system.

Using the MOLCAS package33 as the development plat-
form, we have written a general-purpose ab initio computer
code that realizes the scheme drawn above. The code uses
localized basis set, periodic boundary conditions, and the
pseudopotential method to take account of the core electrons.
Several localization methods20 have been implemented. At
present, the code works only within the HF method treating
exchange explicitly. However, the corresponding implemen-
tation for the KS scheme is straightforward. The code utilizes
the translational symmetry across the quantum cluster.

Two particular localization methods have been used in our
calculations, which will be described in the next section: �i�
the Magnasco-Perico method that maximizes Mulliken’s35

net atomic population produced by the LMOs in the selected
region20,36,37 and �ii� the Adams method,20,30 in which the

localization operator �̂A coincides with the Fock operator of
region A. In practice, both methods give very similar LMOs
and the same total electron density, so that we shall not show
any detailed comparison of them.

III. RESULTS

A. He “crystal:” A toy model

In order to check the main computational aspects of our
method and efficiency of the code, we have first considered
an artificial “toy” model which contains He atoms in a
simple cubic lattice �i.e., a single atom in the cell� with lat-

tice constants of 1.0, 1.5, and 2.0 Å. We have used a standard
3-21G basis set from Ref. 38 which consists of two s AOs
�with the effective radius of 1.3 Å� on every atom.

Each He atom is considered as a group with one doubly
occupied LMO whose localization is controlled by the sec-
ond s AO centered on the atom; hence, the AO serves as the
support function for the localization functional. For the lat-
tice constants of 1.0 and 1.5 Å, we expect a considerable
overlap between neighboring AOs, so that one would expect
that the central cell LMO should have noticeable contribu-
tions on neighboring atoms. The simplicity of the system
allows us to perform calculations on large clusters compris-
ing hundreds of primitive cells �=He atoms�, so that conver-
gence of the calculations with respect to the actual spread of
the LMO can be tested. Due to the neutral nature of this
system, in these calculations, we did not add point charges to
represent the rest of the system outside the quantum cluster.
The second s orbital of the central He atom was taken as the
initial approximation for the LMO in the SCF procedure.

We find that either of the localization operators gives
practically identical results for the LMO orbital in each case.
To check the convergence of our calculations with respect to
the direct space available to the LMO �the cluster size�, we
performed calculations on several quantum clusters N�M
�L containing N, M, and L unit cells in the three perpen-
dicular directions. In particular, these included quantum clus-
ters 3�3�3 �27 atoms�, 5�5�5 �125 atoms�, and 7�7
�7 �343 atoms�.

The energy �per cell� for different clusters and all three
values of the lattice parameter a are shown in Fig. 2. One can
see that in the cases of a=1.5 and 2.0 Å, a very good con-
vergence with the cluster size is observed �−75.9 and
77.0 eV, respectively�. Moreover, the calculated per-cell to-
tal energies agree extremely well with the energies of −76.0
and −77.0 eV for these systems obtained using the periodic
CRYSTAL �Ref. 39� calculations which employed exactly the
same basis set. The CRYSTAL code employs periodic bound-
ary conditions and Bloch-like combinations of AOs �i.e., the
canonical set of MOs�, and thus can be used as an indepen-
dent reference to validate our method.

FIG. 2. Total energy �per cell� of the model simple cubic lattice
He crystal with the He-He nearest neighbor distance a=1.0, 1.5,
and 2.0 Å �squares, circles, and triangles, respectively�, calculated
as a function of the number of atoms in the quantum clusters used,
the sizes of which start from a single atom and go up to 343 atoms.
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One can also see from Fig. 2 that calculations with our
AG method for the lattice parameter of a=1.0 Å display a
much slower convergence. In this case, He atoms are posi-
tioned much closer to each other �this situation corresponds
to the crystal under compression�. Our CRYSTAL calculations
become unstable indicating a much more diffusive character
of the crystalline orbitals. In this case calculations using our
method also demonstrate much slower convergence with the
cluster size.

Total electron densities along the �100� direction around
the central atom for the largest quantum cluster and the three
values of the lattice parameter considered here are shown in
Fig. 3. One can see a strong peak on the crystal atoms with
some noticeable density also between atoms in the cases of
a=1.0 and 1.5 Å.

In addition, following the main ideas of our previous
work,20,21 we also considered a fairly large isolated cluster
�5�5�5, containing 125 atoms� and calculated its total
electron density using the standard HF method based on Eq.
�3�. The electron density in the central region of the isolated
cluster can be directly compared to the total density of the
infinite periodic system obtained using the AG method, as
described above. The comparison �not shown� demonstrates
an excellent agreement already for the AG density obtained
using the 5�5�5 cluster.

As we know, the total density is composed of the LMOs.
Generally, we observe that the LMO decays very fast with
the distance from the central atom, demonstrating excellent
localization �not shown�: it has a strong peak on the atom it
is centered on, but there are also some appreciable contribu-
tions on the neighboring atoms of the first and the second
sphere. As the size of the cluster is increased, the LMO be-
comes slightly more diffuse. Nevertheless, we find that in all
cases the orbital remains very well localized around the cen-
tral atom. Moreover, the orbital obtained using the smallest
cluster can in fact serve as a very good approximation to the
more correct orbital obtained employing the largest cluster.

The number of the AG iterations needed to reach SCF
convergence is a good criterion for assessing the efficiency
of our method. Just a single iteration is required in the case

of the smallest cluster consisting of only a single He atom.
However, the number of iterations was found to increase for
bigger clusters although we did observe some stabilization of
the required number of AG iterations after some specific
cluster sizes �depending on the value of a� were reached.
This is an encouraging result: the electronic convergence of
the AG problem, which is much more complicated than the
corresponding canonical problem, is not greatly influenced
by the size of the quantum clusters used. The convergence
has also been found to improve as the value of a is increased.

B. MgO crystal

MgO is an ionic crystal with the face-centered-cubic lat-
tice and distance between Mg and O atoms of 2.122 Å.40

Since the valence electron density is mostly localized around
O atoms, we consider a pair of nearest Mg and O atoms
�comprising a single unit cell� as a group.20 AOs centered on
the O atom within the group are used as the support func-
tions in the localization operators to control localization of
the LMOs. We used the pseudopotentials and a �slightly re-
duced� basis set proposed in Ref. 41: for O atoms, the basis
set consists of two s and two sets of p orbitals �with the
effective radius of about 3 Å�, while for Mg atoms, only two
s AOs are included. Altogether, there are ten AOs in every
unit cell, containing eight valence electrons. It is expected
that these valence electrons are localized on the O atom, thus
forming four doubly occupied LMOs in every unit cell, all
localized on oxygens.

In comparison with the previous toy model, in this case, it
is necessary to take account of the point charges outside the
quantum cluster to represent the rest of the system when
calculating the Coulomb part of the Fock operator. In the
present calculations, we used nearly 27 000 point charges
which surrounded the quantum cluster. The set of charges
was constructed out of complete cubes of eight charges to
make sure that the total dipole moment is zero3 �see also Fig.
1�.

Seven quantum clusters N�M �L, containing N, M, and
L unit cells along the three basic lattice vectors a1, a2, and a3
of the face-centered-cubic lattice, were considered: 1�1
�1 �2 atoms�, 1�1�3 �6 atoms�, 1�3�3 �18 atoms�, 3
�3�3 �54 atoms�, 3�3�5 �90 atoms�, 3�5�5 �150 at-
oms�, and, finally, the biggest cluster, 5�5�5, containing
250 atoms.

The partial density,

�A�r� = 2�
j=1

4

�� j
A�r��2, �14�

associated with the four LMOs corresponding to the central
cell, is shown in Fig. 4 for the three �out of four� biggest
clusters. Similarly to the previous result for the He crystal,
the density is mostly localized on the central O atom; how-
ever, it also has small bumps at the positions of the nearest O
atoms. Although for all three clusters the partial densities are
qualitatively similar, there are some small differences in de-
tails. Remarkably, the contribution of the second sphere O
orbitals to the LMOs is very small, as expected for this
highly ionic system.

FIG. 3. Calculated total electron density along the �100� direc-
tion for the model simple cubic lattice He crystal with the He-He
nearest neighbor distance a=1.0, 1.5, and 2.0 Å.
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Our calculations clearly demonstrate the importance of
recalculating the point charges around the cluster region dur-
ing the SCF procedure of the AG problem. During the very
first iteration, the ±2e point charges were used. Then, during
the course of the SCF procedure, the charges very quickly
converge to their final values, which appear to depend on the
cluster dimension and size. The calculated atomic charges for
clusters of different sizes are shown in Fig. 5. One can see
that the atomic charge has converged for the four biggest
clusters considered here �3�3�3, 3�3�5, 5�5�3, and
5�5�5� and reached the value of ±1.85e. The importance
of having quantum clusters with the central cell surrounded
by at least one sphere of other cells in all three directions is
clearly recognized from these results. Note that the atomic
charge cannot be defined uniquely. However, the obtained

charge falls within the values obtained by other methods
�see, e.g., Ref. 42�.

On the same graph, one can also see the HF energy per
unit cell calculated for all clusters using Eq. �13�. The energy
starts to converge from the fourth biggest cluster, i.e., simi-
larly to the atomic charges, when the central cell is sur-
rounded by at least one sphere of adjacent cells. We also see
that the energy is more sensitive to the cluster shapes than
the charges, which results in a slightly nonmonotonous be-
havior of the energy. This may also be related to the way the
energy is calculated: as a bigger cluster is considered, point
charges surrounding the smaller cluster are replaced by the
actual electron density. A more rigorous procedure is needed
here, which would allow for a more gradual change of the
electron density representation across the cluster boundary,
however, this is not yet implemented in the present method.

A real test to our AG method would be to compare the
energy and the atomic charges with those obtained by the
CRYSTAL code,39 keeping all numerical parameters the same
�i.e., the lattice constant, basis set, and pseudopotentials�.
Our CRYSTAL calculations gave the total energy �per cell� of
−453.66 eV and the Mulliken charges of ±1.72e, which are
very close to those obtained using our largest cluster
�−452.1 eV and ±1.85e, see Fig. 5�. The discrepancy can be
explained by an approximate character of our computational
scheme in which the part of the crystal outside the quantum
clusters is replaced by point charges and the way the overlap
matrix is calculated. This is to be compared with a very
careful account of the Coulomb and exchange lattice sums
and the k-point summation, respectively, as implemented in
the CRYSTAL code.39 This means that in order to have the
exact agreement with the CRYSTAL calculations, we should
consider even bigger quantum clusters �e.g., 7�7�7�. Un-
fortunately, this option is computationally very expensive at
the moment. Nevertheless, the agreement with the calcula-
tions based on the periodic boundary conditions and Bloch-
like canonical orbitals, a very different computational
scheme as compared to that suggested in this paper, is ex-
tremely encouraging and suggests that our method is correct.

IV. CONCLUSIONS

In this paper, we suggest an ab initio self-consistent
method that can be used to obtain electronic structure of
periodic systems within either Hartree-Fock or Kohn-Sham
methodologies using essentially a cluster approach. The
method is based on calculating localized nonorthogonal mo-
lecular orbitals within each unit cell that are used to con-
struct the exact electron density of the whole system. Our
method is advantageous over other embedding approaches
mentioned in the Introduction as it provides an exact route of
deriving the boundary conditions for the quantum cluster
model. Since the current implementation is based on the
Hartree-Fock model, it also opens a way to go beyond the
HF approximation and, e.g., consider excited states using
well-known methods developed in quantum chemistry.18

The proposed method is similar in spirit to techniques43,44

designed to find the Wannier functions. However, there are
important differences: �i� the localized orbitals in our method

FIG. 4. The partial electron densities of Eq. �14�, corresponding
to the four LMOs of the central cell of the MgO crystal, shown
along the �110� direction for the three quantum clusters 3�3�3,
5�5�3, and 5�5�5. Inset: details of the densities around the O
atom in the second sphere.

FIG. 5. Energy �per cell� of the periodic MgO crystal �left ver-
tical axis� and the absolute value of the Mulliken charges on Mg
and O atoms �right axis� for different quantum clusters used in our
AG calculations �indicated�. The size of the system starts from a
single cell �2 atoms� and goes up to 250 atoms �the 5�5�5
cluster�.
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are not orthogonal to each other and �ii� they are found dur-
ing a self-consistency procedure �the Wannier functions are
normally obtained by a unitary transformation from the
Bloch orbitals of the canonical problem�.

The main difficulty of our method is related to strong
nonlinearity of the AG equations �Eq. �5�� with respect to the
AO coefficients in the LMO expansion �Eq. �4��. As a result,
it is a nontrivial computational task to obtain a self-
consistent solution of the AG problem, so that care should be
taken in choosing the initial approximation for the LMOs
and the point charges. Two examples considered �the He and
the MgO crystals� show that the method works if a favorable
initial approximation and sufficiently large quantum regions
are chosen.

However, still more effort is needed to make the method
efficient. The present implementation based on the HF ap-
proach requires calculation of all one- and two-electron inte-
grals, and thus it is computationally very expensive to in-
crease the size of the quantum regions. Implementation
within the KS method should computationally be more ad-
vantageous. A possible direction to improve the numerical

scheme is related to incorporating the charge convergency
into the AG cycle by updating the point charges “on the fly”
during the electronic iterations. One can also incorporate
symmetry in the direct space to reduce the computational
work: some of the LMOs may be related to each other by
symmetry, so that only some “irreducible” ones need to be
calculated. Finally, implementation of the direct energy mini-
mization with subsequent localization of LMOs at every step
may help to improve the efficiency of the SCF cycle in our
method.
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