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We calculate the conductance G of a bipolar junction in a graphene nanoribbon, in the high-magnetic-field
regime where the Hall conductance in the p-doped and n-doped regions is 2e2 /h. In the absence of intervalley
scattering, the result G= �e2 /h��1−cos �� depends only on the angle � between the valley isospins �=Bloch
vectors representing the spinor of the valley polarization� at the two opposite edges. This plateau in the
conductance versus Fermi energy is insensitive to electrostatic disorder, while it is destabilized by the disper-
sionless edge state which may exist at a zigzag boundary. A strain-induced vector potential shifts the conduc-
tance plateau up or down by rotating the valley isospin.
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I. INTRODUCTION

Recent experiments1–3 have succeeded in fabricating junc-
tions between p-doped and n-doped graphenes and have be-
gun to investigate the remarkable properties predicted
theoretically.4–7 The conductance G of a p-n junction mea-
sures the coupling of electronlike states from the conduction
band to holelike states from the valence band, which in
graphene is unusually strong because of the phenomenon of
Klein tunneling.4,5

In the zero-magnetic-field regime of Huard et al.,1 this
coupling depends on the length scales characteristic of the
p-n interface. In the high-magnetic-field regime of Williams
et al.,2 the p-n junction has a quantized conductance, which
has been explained by Abanin and Levitov7 as the series
conductance Gseries=GpGn / �Gp+Gn� of the quantum Hall
conductances Gp and Gn in the p-doped and n-doped regions
�each an odd multiple of the conductance quantum G0
=2e2 /h�. �The p-n-p junction experiments of Özyilmaz et
al.3 are also explained in terms of a series conductance.�

These results apply if the system is sufficiently large that
mesoscopic fluctuations in the conductance can be ignored,
either as a consequence of self-averaging by time dependent
electric fields or as a consequence of suppression of phase
coherence by inelastic scattering.7 In a sufficiently small sys-
tem, mesoscopic conductance fluctuations as a function of
Fermi energy are expected to appear. In particular, in the
quantum Hall effect regime, the conductance of a p-n junc-
tion is expected to fluctuate around the series conductance
Gseries in a small conductor �nanoribbon� at low temperatures.

In this paper, we show that a plateau in the conductance
versus Fermi energy survives in the case of fully phase co-
herent conduction without intervalley scattering. When both
p-doped and n-doped regions are on the lowest Hall plateau
�Gp=Gn=G0�, we find a plateau at

G =
1

2
G0�1 − cos �� , �1�

with � the angle between the valley isospins at the two
edges of the nanoribbon. A random electrostatic potential is
not effective at producing mesoscopic conductance fluctua-
tions, provided that it varies slowly on the scale of the lattice

constant—so that it does not induce intervalley scattering.
The dispersionless edge state that may exist at a zigzag edge
�and connects the two valleys at opposite edges� is an intrin-
sic source of intervalley scattering when the edge crosses the
p-n interface. The angle � that determines the conductance
plateau can be varied by straining the carbon lattice, either
systematically to shift the plateau up or down, or randomly
to produce a bimodal statistical distribution of the conduc-
tance in an armchair nanoribbon.

Our analysis was inspired by an analogy between edge
channel transport of Dirac fermions along a p-n interface7

and along a normal-superconducting �NS� interface.8 The
analogy, explained in Fig. 1, is instructive, but it is only a
partial analogy as we will see. We present analytical results,
obtained from the Dirac equation, as well as numerical re-
sults, obtained from a tight-binding model on a honeycomb
lattice. We start with the former.

p

FIG. 1. Schematic top view of a graphene nanoribbon contain-
ing an interface between n-doped and p-doped regions �left panel�
and between normal �N� and superconducting �S� regions �right
panel�. Electronlike and holelike edge states in the lowest Landau
level are indicated by solid and dashed lines, respectively, with
arrows pointing in the direction of propagation. The electronlike
and holelike valley-polarized edge states hybridize along the p-n or
NS interface to form a valley-degenerate electron-hole state. The
two-terminal conductance G=G0Teh is determined by the probabil-
ity Teh that an electronlike state is converted into a holelike state at
the opposite edge �with G0=2e2 /h in the p-n junction and G0

=4e2 /h in the NS junction�. In the absence of intervalley scattering,
Teh= 1

2 �1−cos ��, with � the angle between the valley isospins of
the electronlike state at the two edges �Ref. 8�.
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II. ANALYTICAL THEORY

The Dirac equation for massless two-dimensional fermi-
ons reads

�0 � �v�p + eA� · � + U�� = E� , �2�

where E is the energy, v the Fermi velocity, p= �� / i�
��� /�x ,� /�y� the canonical momentum operator in the x-y
plane of the graphene layer, U�x� the electrostatic potential
step at the p-n interface �shown in Fig. 2�, and A the vector
potential corresponding to a perpendicular magnetic field B.
The Pauli matrices �i and �i act on the sublattice and valley
degree of freedom, respectively �with �0 and �0 representing
the 2�2 unit matrix�.

The Dirac equation �Eq. �2�� is written in the valley-
isotropic representation, in which the boundary condition for
the wave function � at the edges of the nanoribbon �taken at
y=0,W� has the form8

� = �� · �� � �sin ��x + cos ��z�� , �3�

parametrized by an angle � and by the three-dimensional unit
vector � on the Bloch sphere. The vector � is called the
valley isospin because it represents the two-component
spinor of the valley degree of freedom.9

An armchair edge has � · ẑ=0, �=	 /2 �mod 	�, while a
zigzag edge has �� · ẑ�=1, �=0 �mod 	�. Confinement by an
infinite mass has �� · ẑ�=1, �=	 /2 �mod 	�. Intermediate val-
ues of � · ẑ and � are produced, for example, by a staggered
edge potential �having a different value on the two
sublattices�.10,11 If the edge is inhomogeneous, it is the value
of � and � in the vicinity of the p-n interface �within a
magnetic length lm=�� /eB from x=0� that matters for the
conductance.

The boundary condition �3� breaks the valley degeneracy
of quantum Hall edge states,12–14 with different dispersion
relations E±�q� for the two eigenstates �±�� of � ·�. �We use
the Landau gauge, in which A is parallel to the boundary and
vanishes at the boundary. In this gauge, the canonical mo-
mentum �q parallel to the boundary is a good quantum num-
ber.� In the n region �where U=0�, the dispersion relation is
determined by the following equations:8

fE+�q� = tan��/2�, fE−�q� = − cotan��/2� , �4a�

fE�q� �
H
2/2�qlm�


H
2/2−1�qlm�
, 
 � Elm/�v , �4b�

with H��x� the Hermite function. The dispersion relation in
the p region is obtained by E±�q�→E±�q�+U�.

The dispersion relation near the Dirac point �E=0� is plot-
ted in Fig. 3 for three values of �. �It does not depend on �.�
For any ��0 �mod 	�, there is a nonzero interval EF of
Fermi energies in which just two edge channels of opposite
valley isospin cross the Fermi level �dotted line�, one elec-
tronlike edge channel from the n region �blue solid curve�
and one holelike edge channel from the p region �red dashed
curve�. The case �=0 is special because of the dispersionless
edge state which extends along a zigzag boundary.15 As
�→0, the interval EF shrinks to zero, and at �=0 �mod 	�,
the electronlike and holelike edge channels in the lowest
Landau level have identical valley isospins. It is here that the
analogy with the problem of the NS junction8 stops, because
in that problem, the electron and hole edge channels at the
Fermi level have opposite valley isospins irrespective of �.

The two valley-polarized edge channels from the n and p
regions are coupled by the potential step at the p-n interface.
Edge states along a potential step which is smooth on the
scale of the lattice constant a are valley degenerate16,17 be-
cause an electrostatic potential in the Dirac equation does not
couple the valleys. The dispersion relation, for the case of an
abrupt potential step �a�L� lm�, is plotted in Fig. 4. �It is
qualitatively similar for L� lm.� The Fermi level now inter-
sects with a twofold valley-degenerate edge channel of
mixed electron-hole character.

The two-terminal conductance of the p-n junction is given
by7 G=G0Teh, in terms of the probability Teh that an electron
incident in an electronlike edge channel along the left edge is
transmitted to a holelike edge channel along the right edge.
We now show that this probability takes on a universal form,
dependent only on the valley isospins at the edge, in the
absence of intervalley scattering. The argument is analogous

p

FIG. 2. Potential step at the p-n interface �with the shaded area
indicating the energy range in the valence band�. The electrostatic
potential U�x� increases from 0 to U� over a distance L around x
=0. The Fermi level at EF� �0,U�� lies in the conduction band for
negative x �n-doped region� and in the valence band for positive
x �p-doped region�. FIG. 3. �Color online� Dispersion relation E±�q� according to

Eq. �4� of edge states near the Dirac point in the n region �solid
curves� and in the p region �dashed curves�. The color of the curves
indicates the valley polarization �blue/black, +�; red/dark gray, −��.
The three panels correspond to three different boundary conditions
and illustrate the transition from an armchair edge �leftmost panel�
to a zigzag edge �rightmost panel�.
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to that in the NS junction8 and requires that the electronlike
and holelike edge channels at the same edge have opposite
valley isospins �±�L for the left edge and ±�R for the right
edge�.18

Since the unidirectional motion of the edge states prevents
reflections, the total transmission matrix ttotal= tRtpntL from
one edge to the other edge is the product of three 2�2
unitary matrices: the transmission matrix tL from the left
edge to the p-n interface, the transmission matrix tpn along
the interface, and the transmission matrix tR from the p-n
interface to the right edge. In the absence of intervalley scat-
tering, tpn=ei�pn�0 is proportional to the unit matrix, while

tX = ei�X� + �X�	+ �X� + ei�X� �− �X�	− �X� �5�

�with X=L ,R� is diagonal in the basis �±�X� of eigenstates of
�X ·�. The phase shifts �pn, �X, and �X� need not be deter-
mined. Evaluation of the transmission probability

Teh = �	+ �L�ttotal�− �R��2 �6�

leads to the conductance �1� with cos �=�L ·�R.

III. NUMERICAL THEORY

To test the robustness of the conductance plateau to a
random electrostatic potential, we have performed numerical
simulations. A random potential landscape is introduced in
the same way as in Ref. 19 by randomly placing impurities at
Nimp sites Ri on a honeycomb lattice. Each impurity has a
Gaussian potential profile Ui exp�−�r−Ri�2 /2�2� of range �
and random height Ui� �−� ,��. We take � equal to the mean
separation d of the impurities and large compared to the
lattice constant a. The strength of the resulting potential fluc-
tuations �U�r� is quantified by the dimensionless correlator

K0 =
A

��v�2

1

Ntot
2 


i,j=1

Ntot

	�U�ri��U�r j�� , �7�

where the sum runs over all Ntot lattice sites ri in a nanorib-
bon of area A. Results are shown in Figs. 5 and 6 for arm-
chair and zigzag nanoribbons, respectively. The angle � be-
tween the valley isospins at two opposite armchair edges

depends on the number N of hexagons across the ribbon:
�=	 if N is a multiple of 3; ���=	 /3 if it is not.20 Figure 5
indeed shows that the conductance as a function of U�−EF
switches from a plateau at the �-independent Hall conduc-
tance G0 in the unipolar regime �U��EF� to a �-dependent
value given by Eq. �1� in the bipolar regime �U��EF�. The
plateau persists in the presence of a smooth random potential
�compare solid and dashed curves in Fig. 5�. By reducing the
potential range, we found that the plateaus did not disappear
until ��3a �not shown�.

As expected in view of the intervalley scattering produced
by the dispersionless edge state in a zigzag nanoribbon, no
such robust conductance plateau exists in this case �Fig. 6�.
In the presence of disorder, the conductance oscillates around
its ensemble average G0 /2 in a sample specific manner. The
numerics for any given realization of the disorder potential
satisfies approximately the sum rule G�N�+G�N+1��G0,
for which we have not yet found an analytical derivation.

IV. CONCLUSION

The valley-isospin dependence of the quantum Hall effect
in a p-n junction makes it possible to use strain as a means
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FIG. 4. Dispersion relation at the p-n interface, calculated nu-
merically from the Dirac equation for a step function potential pro-
file. Each Landau level has a twofold valley degeneracy.
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FIG. 5. �Color online� Conductance of an armchair nanoribbon
containing the potential step U�x�= 1

2 �tanh�2x /L�+1�U�, calculated
numerically from the tight-binding model in a perpendicular mag-
netic field �lm=5a�. The step height U� is varied from below EF

�unipolar regime� to above EF �bipolar regime�, at fixed EF

=�v / lm and L=50a. The solid curves are for without disorder,
while the dashed curves are for a random electrostatic potential
landscape �K0=1 and �=10a�. The number N of hexagons across
the ribbon are 97 �red/dark gray curves�, 98 �blue/black�, and 99
�green/light gray�. The dashed horizontal line marks the plateau at
G= 1

4 �2e2 /h.
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FIG. 6. �Color online� Same as Fig. 5, for the case of a zigzag
nanoribbon �N=114 for the green/light gray curves and 115 for the
red/dark gray curves�.
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of varying the height of the conductance plateaus. Strain in-
troduces a vector potential term ev�z � ��A ·��� in the Dirac
equation �Eq. �2��, corresponding to a fictitious magnetic
field of opposite sign in the two valleys.21–24 This term ro-
tates the Bloch vector of the valley isospin around the z axis,
which in the case of an armchair nanoribbon corresponds to
a rotation of the valley isospin in the x-y plane. Strain may
appear locally at an armchair edge by passivation of the car-
bon bonds.10 �The resulting change �� of the hopping energy
� changes � by an amount25 ��=2�3�� /�.� Random strain
along the p-n interface, resulting from mesoscopic corruga-
tion of the carbon monolayer,24 corresponds to a random
value of the angle � in the conductance formula �1�. A uni-
form distribution of � implies a bimodal statistical distribu-
tion of the conductance,

P�G� =
1

	
�

0

	

d��G −
1

2
G0�1 − cos ���

= �	2G�G0 − G��−1/2, 0 � G � G0, �8�

distinct from the uniform distribution expected for random
edge channel mixing.7

In summary, we have presented analytical and numerical
evidences for the existence of a valley-isospin-dependent
conductance plateau in a p-n junction in the quantum Hall
effect regime. In recent experiments,2,3 the conductance was
simply the series conductance of the p-doped and n-doped
regions, presumably because of local equilibration. We have
shown that the mesoscopic fluctuations, expected to appear
in the phase coherent regime,7 are suppressed in the absence
of intervalley scattering. The conductance plateau is then not
given by the series conductance but by Eq. �1�. The same
formula applies to the conductance of a normal-
superconducting junction in graphene,8 revealing an intrigu-
ing analogy between Klein tunneling in p-n junctions and
Andreev reflection at NS interfaces.26,27
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