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We have developed a rigorous mode matching approach for the analysis of surface wave scattering at
nonuniform semi-infinite dielectric-metal interfaces. An analytical derivation of the coupling coefficients be-
tween surface waves allows an efficient scattering matrix formulation to describe general structures with
multiple interfaces. Using this, we resolve issues of accuracy and convergence of related approaches in the
literature. Studies of the reflection, transmission, and radiation of surface plasmons incident on both dielectric
and metallic surface discontinuities show a correspondence with an effective Fresnel description. We also
model a surface plasmon distributed Bragg reflector �DBR� capable of reflecting between 80% and 90% of
incident surface plasmon power. Radiation mode scattering ultimately limits the DBR’s reflection performance
rather than the intrinsic absorption of the metal. Thus, alternative plasmonic geometries that suppress radiation
modes, such as gap and channel structures, could be superior for the design of strongly reflective DBRs for
integration in high-Q-factor nanoscale cavities. We anticipate that this method will be a valuable tool for the
efficient and intuitive design of plasmonic devices based on structural nonuniformities.
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I. INTRODUCTION

Surface plasmon polaritons1,2 have recently re-emerged as
unique and promising excitations for efficiently concentrat-
ing and delivering electromagnetic energy to the nanoscale:
“plasmonics” now offers unique opportunities for subwave-
length optical waveguides,3–5 new sensors and detection
techniques based on surface-enhanced Raman scattering,6,7

and subvacuum wavelength superlens imaging8 amongst oth-
ers. Most recently, Miyazaki and Kurokawa9 experimentally
demonstrated a nanoscale metallic gap-plasmon based cavity
whose fundamental resonant length was a tenth of the
vacuum wavelength. Such observations have reinvigorated
new research into nanoscale light emitting devices such as
surface plasmon amplification by stimulated emission of
radiation10 and nanolasers.

Many authors have already experimentally and numeri-
cally examined components necessary to construct nanoscale
cavities. For example, Krenn et al. introduced a series of two
dimensional components based on periodic arrays of gold
nanoparticles for achieving extremely efficient Bragg reflec-
tion of surface plasmons.11 Introducing surface discontinui-
ties in this way naturally points to the potential of building
surface wave cavities. An excellent review by Zayats et al.
discusses such aspects of surface wave optics.12 A similar
principle lies behind the aproach of Miyazaki and
Kurokawa:9 here, the discontinuities at the terminated ends
of a gap-plasmon waveguide provide the necessary modal
reflection. Most recently, three numerical studies considered
nanoscale thin-film13,14 and channel plasmon waveguide15

cavities employing some form of surface discontinuity to
achieve cavity feedback. However, these past works are pre-
dominantly experimental or brute force studies that some-
what disguise important insight into these phenomena.

Plasmonics research today employs a wide variety of nu-
merical techniques for the analysis of highly confined elec-
tromagnetic fields. The most popular tools are the finite-

difference time-domain �FDTD� and finite-element �FEM�
methods. Unfortunately, commercial implementations tend to
be inflexible and do not clearly reveal the numerical methods
employed, and homemade versions require prodigious pro-
graming time and effort for any sophisticated analysis of
complex structures. All FDTD and FEM algorithms require
vast computational resources to solve even small three-
dimensional problems. Moreover, these methods do not lend
themselves well to intuitive analysis or clear interpretation of
the resultant field profiles they generate. Analytical and semi-
analytical methods are still applicable in many plasmonic
systems; in these cases, the greater insight and computation
efficiency afforded can be crucial for the development of
novel devices. The most prevalent in current plasmonics lit-
erature are the Green’s functions approach16–18 and discrete
dipole approximation approach.19,20 While providing all the
benefits of their analytical nature, these methods are ex-
tremely complicated to implement in general cases and are
usually applied to the problem of scattering from single or
periodic surface defects.

The present paper uses a rapidly converging and accurate
semianalytical mode matching21 method for solving systems
of plasmons interacting with multiple abrupt structural metal
and/or dielectric half space transitions. The method is ame-
nable to general problems involving both the generation and
scattering of surface plasmon waves by employing a scatter-
ing matrix formalism. Our mode matching approach demon-
strates excellent convergence even for highly confined sur-
face plasmon modes with significant penetration into the
metal and directly provides modal coupling coefficients �i.e.,
reflection, transmission, and radiation scattering�. The key
aspect of accuracy and correct convergence is addressed
through comparisons with commercial software and past
work in the literature. Strengths of surface wave reflection,
transmission, and radiation scattering at single and multiple
abrupt discontinuities of dielectric �Sec. IV A� and metallic
�Sec. IV B� permittivities are determined and analyzed. A
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surface plasmon distributed Bragg reflector �DBR� capable
of reflecting between 80% and 90% of incident surface plas-
mon power is presented �Sec. IV C� and analyzed.

Schevenchko �see Ref. 22 and references therein� origi-
nally laid out analytical methodology for describing open
waveguide systems, proving the mathematical completeness
of the eigenmode expansion and describing approximate ana-
lytical solutions to problems involving continuous surface
variations at radio frequencies �rf�. Later, Mahmoud and
Beal23 combined these analytical techniques with the nu-
merical mode matching approach of Clarricoats and Slinn.21

The motivation for their work concerned the detection of
abrupt discontinuities on dielectric loaded rf transmission
lines, where an analytical solution was not tangible due to
the highly coupled nature of the eigenmodes. Unfortunately,
their result employed a very low number of radiation modes
�the continuous portion of the eigen-mode expansion�: with
two or three Laguerre polynomials describing the radiation
fields, the convergence of their approach is surprising in light
of the numerical analysis in this paper. Stegeman et al.24,25

also solved similar problems but did not follow the mode
matching approach, instead considering boundary matching
of the transverse fields at discrete points along a discontinu-
ity. Their approach suffered two numerical issues: firstly, suf-
ficient accuracy required a large number of boundary match-
ing points, which consequently limited the number of
eigenmodes that they could consider to 4; secondly, in order
to obtain convergence, the authors had to introduce an arti-
ficial grounding plate reducing the problem to essentially a
closed waveguide system, which limits the description of
scattering loss. The authors also commented on the poor con-
vergence properties of treating the open waveguide system in
a similar fashion to Mahmoud and Beal, which, in light of
the present study, certainly merits closer attention. Voronko
et al.26 also considered a related problem of surface discon-
tinuities of metal and/or dielectric half spaces with an ap-
proach similar to the mode matching method. However, the
authors made two simplifications: firstly, they neglected
inter-radiation mode scattering, which is not a valid approxi-
mation for large variations in permittivity at the discontinu-
ity, and secondly, they solved the integral equations for the
single interface directly, which limits further adaptation for
the description of multiple discontinuities. Finally, as a gen-
eral observation of the early work on this problem, detailed
studies of specific results are missing from the literature and
what studies do exist are for the rf band.

II. MODE MATCHING SURFACE WAVES

The mode matching method21 operates on the premise
that a complete set of orthogonal eigenmodes on either side
of a discontinuity under study is describable analytically or
numerically. The completeness of the set ensures a consistent
map between the eigenmode expansions on either side of the
discontinuity. Section II A derives the set of eigenmodes of
the open metal-dielectric waveguide system for use in the
mode matching implementation. �The eigenmodes of this ge-
ometry are relatively straightforward to define; however,
their normalization and proof of completeness are not. The

reader should consult the book of Schevchenko22 for more
information on these issues.� Following this, definition of a
scalar product of the orthonormal basis functions provides
the mode normalization constants, proof of mutual mode or-
thogonality, and the coupling coefficients between the eigen-
modes of different regions �Sec. II B�. Sections II C and II D
treat the implementation of the mode matching method, de-
riving the coupled mode equations and numerical approach
to solve the problem using scattering matrices.

A. Eigenmode fields

Consider the geometry in Fig. 1�a� consisting of two ma-
terial half spaces, one of which is metallic, supporting sur-
face wave eigenmodes that propagate in the x-y plane. The
geometry is invariant in the ŷ direction. Throughout this pa-
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FIG. 1. �a� Schematic of the metal-dielectric open waveguide
system. �b� Schematic of the surface discontinuity problem high-
lighting the required modal amplitudes for both guided surface and
radiating volume waves. �c� Convention of coupled plane wave
orientations for forward and backward propagations in both the ẑ
and x̂ directions.
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per, the term surface wave applies to any of the set of bound
and radiation eigenmodes of the inhomogeneous metal-
dielectric open waveguide geometry shown in Fig. 1�a�. Note
that for brevity, bound surface waves and radiation surface
waves are also referred to as surface plasmons and radiation
modes, respectively. Physically, each surface wave is con-
structed from up to four interfering plane waves �a+, a−, b+,
and b− in Fig. 1�a��. Later, the paper considers the scattering
of these groups of plane waves at discontinuities of the form
shown in Fig. 1�b�, evaluating parameters such as the reflec-
tion, transmission, and scattering. In such problems, it is nec-
essary to consider both forward �+x̂� and backward �−x̂�
propagating surface waves. Since surface waves are groups
of up to four plane waves each, there are a possible 16 inter-
acting plane waves for a single surface discontinuity. To help
distinguish plane waves and surface waves, Greek letters and
Roman letters are used for the amplitudes, respectively. In
addition, Fig. 1�c� helps us to simplify the analysis by pro-
viding the relative signs of the plane waves that constitute
the forward and backward propagating surface waves.

The derivation in this section identifies the relative ampli-
tudes of the plane waves that constitute each surface wave
for the transverse magnetic �TM� polarization. It is important
to note here that in cases where the incident field is not
invariant in the ŷ direction �i.e., for surface waves impinging
on a surface discontinuity at an angle�, interpolarization cou-
pling is important and TE radiation modes are necessary in
the subsequent analysis.25

Following Schevchenko’s prescription for this problem,22

the set of surface waves consists of a single bound surface
mode and a continuous set of radiation modes that form a
complete orthogonal set. The derivation assumes an exp�
−i�t� time variation of the field. Solving the wave equation
independently in both the metallic and dielectric regions
yields a continuous set of forward and backward propagating
plane waves in the ±ẑ direction. For TM plane waves, the

unit magnetic field vector Ĥ±�k� is

Ĥ±�k� = ± �−
ky

V
,
kx

V
,0� . �1�

Here, the choice of sign is related to the direction of wave
propagation in the ẑ direction, and V=�kx

2+ky
2. Note that in-

variance of the structure in the x̂ and ŷ directions in the
current calculation implies conservation of both kx and ky,
which is equivalent to Snell’s law. The total magnetic field
H�r ;k�, taking into account both forward and backward
propagating amplitudes, is

H�r;k� = ��+�k�exp�ikzdz�Ĥ+�k�

+ �−�k�exp�− ikzdz�Ĥ−�k��f�x,y�, z � 0,

H�r;k� = ��+�k�exp�ikzmz�Ĥ+�k�

+ �−�k�exp�− ikzmz�Ĥ−�k��f�x,y�, z � 0, �2�

where the subscript labels m and d indicate parameters of
the metal �z�0� and dielectric �z�0� regions, respectively,
and f�x ,y�=exp�ikxx+ikyy� describes the harmonic variation

in the plane. Using the Ampere-Maxwell law,
���z�k0 /z0�E�r ;k�=k�H�r ;k�, the vector electric field
E�r ;k� is

E�r;k� =
z0

��d

��+�k�exp�ikzd · r�Ê+�z;k�

+ �−�k�exp�− ikzdz�Ê−�z;k��f�x,y�, z � 0,

E�r;k� =
z0

��m

��+�k�exp�ikzm · r�Ê+�z;k�

+ �−�k�exp�− ikzmz�Ê−�z;k��f�x,y�, z � 0,

�3�

where the unit electric field vector is

Ê±�z;k� =
1

���z�k0
� kxkz�z�

V
,
kykz�z�

V
, � V� . �4�

Here, z0 is the impedance of free space and k0 is the
free-space wave number. Since the metallic region is
strongly absorbing, the analysis ignores fields propagating
from −	 within the metal such that �+�k�=0. Continuity of
Hy�r ;z=0;k� and Ex�r ;z=0;k� therefore implies that

�−�k� = �−�k� − �+�k� ,

�−�k�
kzm

�m
= ��+�k� + �−�k��

kzd

�d
. �5�

In this case, the full field functions are

H�r;k� = − N�k�
−�z�Ĥ+�k�f�x,y� ,

E�r;k� =
N�k�z0

��z�k0
�
+�z�

kxkz

V
,
+�z�

kykz

V
,
−�z�V� f�x,y� ,

�6�

where


±�z� = r exp�ikzdz� ± exp�− ikzdz�, z � 0,


±�z� = ± �1 − r�exp�− ikzmz�, z � 0. �7�

Here, the amplitudes for the plane wave’s components
equate to �−�k�=N�k�, a normalization factor, and
�+�k� /�−�k�=r�k�, the reflectivity of the dielectric-metal in-
terface:

r�k� =
�dkzm − �mkzd

�dkzm + �mkzd
. �8�

Equations �6� and �7� along with their associated disper-
sion relations provide the mode fields for this geometry de-
scribing the propagation of surface waves along the ±x̂ and ŷ
directions. The guided mode has the following dispersion
relation arising from the condition that �+�k�=0, irrespective
of �−�k� and �−�k�: i.e., r�k��	. This provides the follow-
ing well known dispersion relation for surface plasmons:
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kx,g = k0� �m�d

�m + �d
. �9�

The surface plasmon field functions arise from Eqs. �6�
and �7� by direct substitution for r�k��	 and kx=kx,g. The
dispersion relation for the radiation modes is continuous with
kz,r�z�� �0,	�. Note that for kzd,r���dk0, radiation modes
are evanescent in the x̂ direction.

The mode matching analysis that follows involves both
forward and backward surface waves in the ±x̂. As discussed
at the beginning of this section, surface waves consist of up
to four interfering plane waves, so some confusion can arise
with respect to the relative signs of the various field vectors
for the composite surface waves. However, the lengths of the
field vectors for forward and backward propagating surface
waves in a particular region are identical; only sign changes
of some of the field components distinguish the propagation
direction. Figure 1�c� highlights these sign changes. The up-
per two plane wave vector triads describe forward propagat-
ing surface waves and the lower two, backward propagating
surface waves. Taken individually, the relative signs of the
field components of counterpropagating plane waves in the
±ẑ direction can be seen. Taken as upper and lower groups,
the relative signs of the field components of counterpropa-
gating surface waves in the ±x̂ direction can be seen. In the
analysis that follows, a bar over a field vector or amplitude
represents a backward propagating surface wave traveling in
the −x̂ direction. The barred field components for surface
waves are therefore

H̄�r;k� = �− Hx�r�,Hy�r�,0	 ,

Ē�r;k� = �Ex�r�,− Ey�r�,− Ez�r�	 . �10�

B. Mode orthogonality, normalization,
and coupling coefficients

Knowledge of the set of surface waves of the geometry in
Fig. 1�a� allows the expansion of any electromagnetic field
distribution in that region. In order to describe the field dis-
tribution at the interface of two such regions �i , j�, as shown
in Fig. 1�b�, the various amplitudes of the two eigenmode
expansions must be determined. The integral expression in
Eq. �11� is a generalization of the orthogonality integral28 for
electromagnetic eigenmodes. Here, it is extended to describe
coupling between the eigenmodes of the two regions in ques-
tion: it is essentially a scalar product acting on the union of
the two eigenmode spaces. Later on, Eq. �11� defines the
coupling coefficients between two modes of regions i and j
and naturally reduces to the mode orthogonality integral for
i= j,


Ei�ki�,H j�k j��� =� �
−	

	

Ei�r;ki� � H j
†�r;k j�� · x̂dydz

= ��ki − k j�� if i = j . �11�

Here, the dagger indicates the adjoint field, which is
equivalent to reversing the propagation direction of the

field.28 The use of the adjoint field as opposed to complex
conjugate ensures Hermiticity of the coupling coefficients,
one of the requirements for a consistent scalar product. The
requirement of linearity follows naturally from the definition.
Note that both mode coupling and mode orthogonality are
independent of each individual mode’s harmonic variation in
the x̂ direction. Evaluating Eq. �11� is straightforward for
harmonic variation in the ŷ direction and by direct substitu-
tion of the field components from Eqs. �6� and �7�, and inte-
gration over y leaves an integral over z,


Ei�ki�,H j�k j�� =
Ni�ki�Nj�k j�z0kx,jVi

k0Vj
��ky,i − ky,j�I�ki,k j� ,

�12�

where

I�ki,k j� = �
−	

	 
i,−�z�
 j,−�z�
�i�z�

dz

= −
�ri�ki� + rj�k j��


�d,i
��kzd,i − kzd,j�

+ i
�1 − ri�ki���1 − rj�k j��

�m,i�kzd,i
2 − kzd,j

2 �

kzm,i −

�d,j�m,i

�d,i�m,j
kzm,j

−
�kzd,i

2 − kzd,j
2 �

�kzm,i + kzm,j�
� . �13�

It is noteworthy that the mathematical foundation of the
following mode matching analysis lies in this single integral.
It provides analytical expressions for the coupling between
the surface waves of the various regions in a calculation. The
full analytical evaluation of the integral leads to a robust and
numerically stable implementation, which sets this approach
aside from past reports on this problem.

In the case of radiation modes, both kzd,i� �0,	� and
kzd,j � �0,	�, so that the radiation to radiation mode coupling
coefficients retain all parts of Eq. �13�. In region i, radiation
modes are orthogonal by inspection, such that Eq. �12� is
evaluated to


Ei�ki�,Hi�ki��� = − 

Ni�ki�Ni�ki���ri�k� + ri�k���z0kx,i�

�di
k0

���ky,i − ky,i� ���kz,i − kz,i� � . �14�

Therefore, the radiation modes are orthonormal with the
normalization constant

Nr,i�ki� = i� �dk0

2
riz0kx,i
. �15�

For the surface plasmon in region i, ri�ki ;kxi�kxg,i��	.
From here on, small letters distinguish the surface plasmon’s
field components from those of the radiation modes to con-
dense: for example, �Ei�ki ;kx=kxg,i� ,H j�ki ;kx=kxg,i�	
= �ei ,h j	. The reader will note that the radiation modes and
surface plasmon are orthogonal by inspection of Eq. �13�.
Evaluating the integral 
ei ,hi� leads to the following normal-
ization;
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Ng,i = −� k0

z0kx,i

2i�d,i�m,i

2 kzd,i

�d,i
2 − �m,i

2 �1/2

. �16�

In surface plasmon field normalization, the factor �1
−ri�ki���1−rj�k j���	 appears in the coupling coefficient
expression of Eq. �13� but is omitted from the definition of
Ng,i. In fact, Ng,i must implicitly eliminate the singularity as
ri�ki��	. A consequence of removing the singularity re-
quires an additional minus sign in the definition of Ng,i.

The set of normalized surface waves and the coupling
coefficients can now be applied to the framework of the
mode matching technique. Generally, this requires the non-
trivial coefficients: radiation to radiation coupling

Ei�ki� ,Hi�k j��, guided to guided coupling 
ei ,h j�, guided to
radiation coupling 
ei ,H j�k j��, and radiation to guided cou-
pling 
Ei�ki� ,h j�. In addition, the reader should note the
following orthogonality relations: 
Ei�ki� ,Hi�ki���=��ky,i

−ky,i� ���kz,i−kz,i� �, 
ei ,hi�=1, and 
ei ,Hi�ki��= 
Ei�ki� ,hi�=0.

C. Mode matching equations

The mode matching equations arise from the matching of
field components across the discontinuity at x=0, shown in
Fig. 1�b�, followed by use of the coupling coefficients inte-
gral of Eq. �12�. Using the expressions from Sec. II B, the
continuity of the transverse components of the Ez and Hy
field components implies

�a − ā�ez,i�r� + �
0

	

�A�k� − Ā�k��Ez,i�r;k�dkz

= �b − b̄�ez,j�r� + �
0

	

�B�k� − B̄�k��Ez,j�r;k�dkz,

�17�

�a + ā�hy,i�r� + �
0

	

�A�k� + Ā�k��Hy,i�r;k�dkz

= �b + b̄�hy,j�r� + �
0

	

�B�k� + B̄�k��Hy,j�r;k�dkz.

�18�

This is a summation over the set of surface waves with
integration over the continuous radiation modes. Choosing to
integrate the radiation modes with respect to kzd proves to be
useful later on when evaluating the delta function term in the
coupling coefficients. Post vector multiplication of Eq. �17�
by �hy,i�r� and �Hy,i�r ;ki� followed by vector integration
over the z-y plane provides two mode matching equations.
Similarly, prevector multiplication of Eq. �18� by ez,j�r��
and Ez,j�r ;ki�� followed by vector integration over the z-y
plane provides the other two,

a − ā = �b − b̄�
e j,hi� + �
0

	

�B�k j� − B̄�k j��
E j�k j�,hi�dkzd,j ,

A�ki� − Ā�ki� = �b − b̄�
e j,Hi�ki�� + �
0

	

�B�k j� − B̄�k j��

�
E j�k j�,Hi�ki��dkzd,j ,

b + b̄ = �a + ā�
e j,hi� + �
0

	

�A�ki� + Ā�ki��
e j,Hi�ki��dkzd,i,

B�k j� + B̄�k j� = �a + ā�
E j�k j�,hi� + �
0

	

�A�ki� + Ā�ki��

�
E j�k j�,Hi�ki��dkzd,i. �19�

To allow a numerical solution to these coupled integral
equations, consider truncated summations to approximate the
integrals over radiation modes. However, in order to improve
accuracy and convergence, the integrals are written as a
Gaussian quadrature summation. In this case, the quadrature
weighting factors require special treatment: the solution to
the mode matching problem yields a set of radiation modes
that, when summed, gives the total scattered power. So, for
example, the backscattered radiation power is approximated
by

� �Ā�ki��2dkz � �
m

�Ām�x��2wm. �20�

It follows that A�ki��Am /�wm gives the correct transfor-
mation between the continuous and discrete representations,
where wm are the weighting coefficients of the Gaussian
quadrature scheme used.29 Note that, in principle, any set of
abscissa and weight functions may be incorporated into this
method. Approximating the integrals in Eq. �19� with Gauss-
ian quadrature summations and substituting for the normal-
ized radiation mode amplitudes, the following mode match-
ing equations result:

a − ā = �b − b̄�
e j,hi� + �
m=1

�Bm − B̄m�
E j�km�,hi��wm,

An − Ān = �b − b̄�
e j,Hi�kn���wm + �Bn − B̄n�
E j�kn�,Hi�kn��

+ �
m=1

�Bm − B̄m�
E j�km�,Hi�kn��wm,

b + b̄ = �a + ā�
e j,hi� + �
m=1

�Am + Ām�
e j,Hi�km���wm,

Bn + B̄n = �a + ā�
E j�kn�,hi��wm + �An + Ān�
E j�kn�,Hi�kn��

+ �
m=1

�Am + Ām�
E j�kn�,Hi�km��wm. �21�

Arranging these expressions yields two coupled matrix
equations,

An + Ān = �
m=0

�Bm + B̄m�Cmn,
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Bn − B̄n = �
m=0

�Am − Ām�Cmn
T , �22�

where

C00 = 
e j,hi�, m = n = 0,

C0n = 
e j,Hi�kn���wm,

Cm0 = 
E j�km�,hi��wm,

Cmn = 
E j�km�,Hi�kn��, m = n ,

Cmn = 
E j�km�,Hi�kn��wm, m � n . �23�

Here, the continuous region labels i and j are replaced
with discrete labels m and n, respectively, with m ,n=0 la-
beling the surface plasmon. Accordingly, the matrix positions
m ,n=0 represent surface plasmon coupling coefficients and
m ,n�1 represent those of the radiation modes. Note that the
elements Cmn are not trivial to evaluate analytically at the
singularity, kzd,i=kzd,j. However, since this matrix equation is
actually a representation of an integral equation, in cases
where kzd,i=kzd,j, the principal part of the singular term in
�kzd,i−kzd,j�−1 should be considered in the calculation. The
contribution from this term is negligible near kzd,i=kzd,j and
only the non-singular components of Eq. �12� contribute to
Cmn. The weight functions in Eq. �23� indicate the strength of
coupling between the guided and radiation modes. Guided to
radiation mode coupling is clearly important with a scaling
of �wm, whereas scattering between unmatched radiation
modes is not as important with a scaling wm. Again, exam-
ining the parts of the Cmn elements from Eq. �12� shows that
the contribution from the delta function is the most signifi-
cant term since the other parts scale with wm. Manipulating
the matrix equations further gives the interface scattering
matrix relating the modal outputs to the inputs such that

�B

Ā
� = �S11 S12

S21 S22
��B̄

A
� , �24�

where

S11 = �1 + CCT�−1�1 − CCT� ,

S12 = �1 + CCT�−1C ,

S21 = �1 + CTC�−1CT,

S22 = �1 + CCT�−1�1 − CCT� . �25�

D. Multiple interface calculations

The scattering matrix method describes general multiple
surface discontinuities by defining a propagation scattering
matrix for the discretized system of modes from Sec. II C.
The scattering matrix relating amplitudes within the same
region propagating between the positions x1 and x2 has the
form

�A�x2�

Ā�x1�
� = �0 P

P 0
��Ā�x2�

A�x1�
� , �26�

where

Pmn = exp�ikxg�x2 − x1�	 m = n = 0

= exp�ikxr,m�x2 − x1�	�mn. �27�

Combining both interface �Eq. �25�� and propagation �Eq.
�26�� scattering matrices provides the description of any sys-
tem of coplanar discontinuities of the form under investiga-
tion. Note that combining scattering matrices requires the
usual concatenation method.

III. NUMERICAL ANALYSIS

This section assesses the accuracy and convergence of the
model with a series of numerical tests. Firstly, checking the
matching of field functions on either side of an open wave-
guide discontinuity ensures both correct operation of the
model as well as self-consistency. Secondly, the method is
compared with the commercial finite-element modeling soft-
ware from Comsol �FEMLAB�.

Firstly, consider a comparison of the matched fields at the
abrupt discontinuity of two open waveguides with �m,1
=�m,2=−18.3−0.5i ��Ag at �=632.8 nm �Ref. 31��, �d,1
=2.25, and �d,2=1. To generate an accurate matching of field
functions, the model uses 200 radiation modes in addition to
the single surface plasmon mode. Studies show that solution
convergence requires a large number of evanescent radiation
modes; here, the radiation mode truncation is set at kzd,max

=10��d,maxk0, where �d,max is the highest dielectric permittiv-
ity in a structure. This prescription works well and only
small improvements in convergence occur with kz,max

=100��d,maxk0. Figures 2�a� and 2�b� show the real and
imaginary parts of the Hy and Ez fields, respectively, on ei-
ther side of the discontinuity; clearly, the correspondence is
excellent.

A more detailed examination of the fields very near the
metal-dielectric interface highlights the largest deviations
from ideal field matching. Using more radiation modes, a
larger proportion of which are evanescent eliminates these
errors, indicating asymptotic convergence to the true solu-
tion. The mean standard deviation between the fields on ei-
ther side of the discontinuity for the case considered above is
slightly larger than 1%. With 500 radiation modes truncated
at kz,max=100��d,maxk0, the deviation is 0.5%. A high level of
convergence clearly requires significant computational ex-
penditure as noted originally for this problem by Stegeman
et al.24 However, the reader should note that field matching
requires a much higher number of modes of satisfactory con-
vergence compared with the surface plasmon reflection and
transmission amplitudes: satisfactory convergence of modal
amplitudes occurs for about 50 modes in most of the calcu-
lations in this paper.

Upon comparison with Comsol’s finite-element �FE� soft-
ware for this problem, the correspondence is also excellent.
Figures 3�a�–3�c� compare the absolute field components
�Hy�, �Ez�, and �Dx� �where Dx�r�=��z ,x�Ex�r� is the electric
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displacement�, respectively, at the same open waveguide dis-
continuity as in Fig. 2 for the FE �solid lines� and semiana-
lytical �broken lines� methods. The discontinuities of the
fields at dielectric boundaries in both Figs. 2 and 3 are con-
sistent with the boundary conditions implied by Maxwell’s
equations.

The FE software uses scattering boundary conditions to
minimize interference between the solution and boundary re-
flections within the calculation domain: this was a rectangu-
lar region of 10 �m �x direction� �2 �m �y direction� di-
vided into quarters with permittivities �d,1, �m,1, �m,2, and
�d,2 in an counterclockwise fashion starting from the top left
quarter. Convergence of the FE software for this problem
required a pregenerated adaptive mesh with nearly 500 000
elements and a calculation time of approximately 2 min on a
2.4 GHz Pentium IV. The semianalytical result took only 5 s
using MATLAB on the same machine.

The accuracy of either method is clearly not in question
from the results in Figs. 2 and 3. Although the time saving in
using the semianalytical approach is a clear advantage, the
principal benefit of this approach is that it provides the
modal scattering amplitudes directly. In fact, in generating
the field plots in Figs. 2 and 3, the analytical approach must
perform additional computations that constitute almost 50%
of the overall calculation time. In stark contrast, deconvolv-
ing the modal scattering amplitudes from the fields of the FE
approach is not a straightforward task.

The numerical analysis has shown that mathematically,
the set of surface waves interacts in such a way as to satisfy

the boundary conditions dictated by Maxwell’s equations.
The complexity of the problem arises because there are two
independent sets of surface wave eigenmodes where no two
eigenmodes from different media have the same field distri-
bution. This is distinct from the case of an infinite planar
interface dividing two dielectric regions: this problem is
straightforward because there are always two plane waves on
either side of the interface that have the same field distribu-
tion �below the critical angle�. So, in the case of an incident
surface plasmon, radiation surface waves are generated at the
discontinuity, in addition to the reflected and transmitted sur-
face plasmon waves, to ensure both phase and field match-
ings. This is evident from the oscillating mode matched field
components at the surface discontinuity plotted in Fig. 2.

Physically, the corner dividing all the dielectric regions
generates surface waves with kzd,i� �0,	�. This includes ra-
diation waves that are both propagating, kzd,i���ik0, and
evanescent, kzd,i���ik0, along the x̂ direction. In the case
under examination, a surface plasmon mode impinges on the
corner, generating both reflected and transmitted surface
plasmon waves in addition to some distribution of radial
scattering that radiates from the corner. From the numerical
analysis in this section, radiation modes are generated with
up to kzd,max=10��d,maxk0, which indicates the importance

FIG. 2. Comparison of the matched �a� Hy and �b� Ez fields on
either side �x=0+,0−� of an abrupt open waveguide discontinuity.
Here, �m,1=�m,2=−18.3−0.5i ��Ag at �=632.8 nm�, �d,1=2.25, and
�d,2=1.
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of the evanescent spectrum of radiation modes in these
calculations.

IV. RESULTS

This section is split into four parts. The first two parts
show the results of transmission, reflection, and scattering
calculations for a surface plasmon wave incident on an inter-
face between two dielectric and/or metal half spaces; the first
part considers dielectric discontinuities and the second part
considers metallic discontinuities. The final part considers
the compilation of multiple surface discontinuities into a sur-
face plasmon distributed Bragg reflector �DBR�. In all cases,
the results show the scattering effect of a single incident
surface plasmon wave. Figure 1�b� shows the general case of
surface waves that enter and leave a surface discontinuity. In
the following calculations, a surface wave impinges from the

left such that a=1 and b̄=0, where ā is the surface plasmon
reflectivity �R= �ā�2� and b is the surface plasmon transmis-
sion �T= �b�2�. Radiation modes propagating toward a discon-

tinuity are set to zero, Am= B̄m=0, such that Ām and Bm quan-
tify backward and forward scatterings, respectively. The total
scattered power S is a summation over the relevant forward

and backward radiation modes, �m�Ām�2 for kzd,m���d,ik0
and �n�Bn�2 for kzd,n���d,jk0, respectively. Note that the eva-
nescent portion of the radiation modes generated at the dis-
continuity does not contribute to the radiated power.

In the following calculations, the same model parameters
as in Sec. III are used. When not scanning spectrally, results
of the following study are for the helium-neon red laser line
at 632.8 nm.

A. Dielectric discontinuity

Figure 4 shows the reflection R, transmission T, and scat-
tering S to radiation modes for a surface plasmon wave nor-
mally incident on a dielectric discontinuity, yet guided along
the same continuous silver surface. The interface calculations
satisfy energy conservation by virtue of the fact that S�1
−R−T to an acceptable tolerance; note that for the high to
low permittivity case of Fig. 4�a�, the calculations would
converge better with more radiation modes and a higher eva-
nescent wave vector truncation. The results are in general
qualitative agreement with those of Stegeman et al.,25 who
analyzed this problem for an approximate closed waveguide
geometry.

A particularly interesting feature of these calculations is
the close correspondence of the surface plasmon reflectivity
with the Fresnel value that accounts for the effective phase
index of the surface wave, ni. The dots indicate the Fresnel
reflectivity RF given by

RF = � �ni − nj�
�ni + nj�

�2

, �28�

where ni=��d,i�m,i / ��d,i+�m,i�. The correspondence is exact
for low to high surface plasmon wave vectors, with a small
deviation for the high to low permittivity case. Related re-
ports have identified similar nonreciprocal behavior.25,27

Stegeman et al.25 also identify the correspondence with the
Fresnel coefficients; however, due to the approximate
method, they do not identify the close correspondence in the
case of low to high permittivity. Although their results are
not directly comparable with these, the surface plasmon re-
flectivity appears to be slightly underestimated.

Analysis of the radiation mode distributions, shown in
Fig. 5 for �d,i=2.25 and �d,j =1 interfaces with silver, reveals
further nonreciprocal behavior. In both cases, most of the
scattered power is in the forward direction; however, only in
the case of high to low permittivity is there any significant
backscattering. This provides an indication of the cause of
deviations from the Fresnel coefficient. These results are in
basic qualitative agreement with those of Voronko et al.;26

however, quantitatively, there are significant discrepancies
indicating a significantly reduced surface plasmon reflectiv-
ity for the high to low permittivity case. It is noteworthy that,
as a rule of thumb, the reflection is equivalent to the Fresnel
value for bulk waves and the transmission and scattering
share from the remaining electromagnetic power with pro-
portions that depend on the size of the discontinuity.

B. Metallic discontinuity

Consider now the scattering of surface plasmon waves
normally incident on a metallic surface discontinuity, where
the dielectric half space is continuous. This study briefly out-
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lines the effects of a perfect abrupt transition between two
metallic half spaces. Figure 6 shows results of calculating the
transition between regions of silver/air and aluminum/air.
The calculations consider real permittivity data for both
aluminum30 and silver.31

Surface plasmon reflection is minimal ��1% � and is only
significant near the surface plasma edge of silver, where the
shapes and effective indices of the modes on either side of
the discontinuity are most different. The small differences in
the shape of surface plasmon modes in each region cause a
significant amount of scattering, settling to about 10% far
from the surface plasmon edge. As with the case of the di-
electric discontinuity, forward scattering is dominant with
significant nonreciprocal backward scattering for the silver to
aluminum and aluminum to silver cases. Again, these results
are in qualitative agreement with those of Voronko et al.26

Following a similar approach to the dielectric case in Sec.
IV A, the inset of Fig. 6�a� compares the reflection coeffi-
cients with the effective Fresnel coefficient calculated using
Eq. �28�: the effective index for a surface plasmon on silver
in the current case is nAg���=��Ag��� / ��Ag���+1� �since
�d=1� and a similar expression holds for nAl���. Again, the
effective reflection coefficient describes the case of silver to
aluminum well. However, the reflectivity of this system is
even more asymmetric than in the dielectric case: for alumi-
num to silver, the results do not closely match at all. Again,
the strength of backward scattering in this case is five times
higher and indicates that the discrepancy arises due to sig-
nificant modal mismatch of the surface plasmon fields on
either side of the discontinuity.

The various combinations of gold, silver, and aluminum
produce similar results, with moderately significant reflection
only manifested near to a surface plasmon edge. It seems,
therefore, that this system is unappealing for creating a reso-
nant feedback system due to the intrinsic damping of surface

waves and the relatively week reflectivity of the discontinu-
ity. As the wavelength increases in these systems, the surface
plasmon dispersion approaches the light line and therefore
takes on more of the characteristics of a bulk wave. Since
there is no dielectric discontinuity, scattering and reflection
will tend to zero in the low frequency limit.

C. Surface plasmon distributed Bragg reflector

The final example of the current mode matching approach
examines the potential to design effective surface wave reso-
nators. One of the key components of nano- and microscale
cavities are highly reflective mirrors. Distributed Bragg re-
flectors �DBRs� are widely used in microcavity physics to
create effective mirrors for laser devices. The possibility of
using such structures on the nanoscale is extremely appeal-
ing in order to enhance the low Q factors of nanoparticulate
systems. Figure 7 plots the results of a mode matching analy-
sis of DBRs composed of alternating dielectric layers of
polymethyl methacrylate �PMMA� ��d=2.25� and air next to
a silver metallic interface. The optical thickness of each layer
is a quarter of the surface plasmon wavelength at �DBR
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=550 nm. Under these conditions, the DBR is mainly effec-
tive for surface plasmons and a few radiation modes near the
light line. Launching a surface plasmon from one side of the
structure allows calculation of the effectiveness of a DBR to
reflect and transmit surface plasmons as well as scatter ra-
diation waves. The first important feature of the results in
Fig. 7�a� is that only moderate surface plasmon reflection,
R�80%, is achievable in this type of structure. For a single
wavelength cavity formed between two such reflectors, the Q
factor could approach Q=2�SP

�R / ���1−R���10. Figure
7�b� highlights that the limitations are solely from scattering
to radiation modes. As the number of DBR periods increases,
the scattering only moderately increases, beyond the six pe-
riod result. The remaining power is shared between surface
plasmon transmission and reflection through the DBR. Even-
tually, the reflectivity saturates and the transmission tends to
zero. Although omitted from this paper, optimizing this sys-
tem to maximize reflectivity with permittivity contrasts
brings moderate improvements such that R=85%; this re-
quires balancing intrinsic propagation losses for a given
number of periods with the scattering loss of each interface.
However, one can see from Fig. 7�a� that the scattered power
is larger than that due to intrinsic losses �by comparing 1
−R−T with the scattered power�: in this case, propagation
losses comprise about 10% of the scattering losses. This is
encouraging since there are other surface plasmon systems
that suppress radiation scattering effectively such as for
coupled plasmons between the dielectric gap of two coplanar
metals.32,33

V. CONCLUSIONS

We report an efficient, robust, and semianalytical mode
matching approach for modeling the problem of electromag-
netic surface wave scattering at single and multiple surface
discontinuities. Excellent agreement between this method
and a numerical finite-element method was demonstrated for
the two-dimensional �2D� problem. However, the semiana-
lytical method solved the field profiles significantly faster
��25 times for typical 2D problems� and provided a wealth
of useful information such as modal coupling and scattering
coefficients that clearly highlight its applicability for the ef-
ficient and intuitive design of plasmonic devices based on
structural nonuniformities including nanoplasmonic cavity
structures.

Reflectivity, transmission, and scattering of surface plas-
mons impinging at normal incidence onto single and mul-
tiple dielectric and metallic surface discontinuities were ana-
lyzed. In the cases studied, the reflectivities for low to high
surface plasmon wave vectors followed very closely the
Fresnel reflection coefficient for bulk waves, while the trans-
mission and radiation scattering share the remaining power.
In the case of dielectric discontinuities, small deviations
from the expected Fresnel values occurred for high to low
surface plasmon wave vectors due to increased scattering;
this effect was much larger in the case of metallic disconti-
nuities. The modal analysis provided an explanation for this
behavior: in the case of low to high wave vector surface
plasmons, very little backscattered radiation indicated good
field matching in the incident medium. On the hand, for high
to low wave vector surface plasmons, significantly larger
backscattered radiation indicated poor mode matching in the
incident medium and therefore a deviation from the effective
Fresnel picture. Further analysis of the radiated fields shows
that the majority of the scattered power is in the forward
direction.

The open guiding geometry �i.e., with dielectric half
spaces� readily supports radiating waves and only allows
moderate DBR reflection coefficients of 80%–90%. The
physical reason lies in the competition between intrinsic and
scattering losses: on the one hand, the reflectivity �DBR pen-
etration� of the guided mode increases �decreases� with in-
creasing “strength” �ratio of the guided mode’s effective in-
dices� of the nonuniformities, thereby reducing propagation
losses; on the other hand, increasing the strength of the non-
uniformity results in increasing the scattering into radiation
modes. The competition between these two mechanisms re-
sults in an optimal �maximum� but nonunity reflection coef-
ficient. Since the main source of loss is through modal scat-
tering, alternative guiding geometries that suppress radiation
modes, such as gap and channel structures, would be supe-
rior for the design of strongly reflective DBRs.
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APPENDIX: DERIVATION OF I„ki ,kj…

The integral from Eq. �13� is first written in terms of the
field functions for z�0 in the metal region and for z�0 in
the dielectric region as follows:

I�ki,k j� = �
−	

	

�1 − H�z��

i,−�z�
 j,−�z�

�m,i
dz

+ �
−	

	

H�z�

i,−�z�
 j,−�z�

�d,i
dz

= �1 − ri��1 − rj��
−	

	

�1 − H�z��

�
exp„− i�kzm,i + kzm,j�z…

�m,i
dz

+ �
−	

	

H�z�
exp„− i�kzd,i + kzd,j�z…

�d,i
dz

− ri�
−	

	

H�z�
exp„i�kzd,i − kzd,j�z…

�d,i
dz

− rj�
−	

	

H�z�
exp„− i�kzd,i − kzd,j�z…

�d,i
dz

+ rirj�
−	

	

H�z�
exp„i�kzd,i + kzd,j�z…

�d,i
dz . �A1�

Note that ri is short for r�ki�. Each of the integrals in this
expression involves the Fourier transform of the Heaviside

step function H�z�, where H�z�0�=0, H�z=0�=0.5, H�z
�0�=1, and

�
−	

	

H�z�exp�±ikz�dz = 
��k� �
i

k
. �A2�

Substitution into Eq. �A1� gives the general expression for
the coupling coefficients integral,

I�ki,k j� = 

�1 − ri��1 − rj�

�m,i
��kzm,i + kzm,j� − i

�1 − ri��1 − rj�
�m,i�kzm,i + kzm,j�

+ 

�1 + rirj�

�d,i
��kzd,i + kzd,j� + i

�1 − rirj�
�d,i�kzd,i + kzd,j�

− 

�ri + rj�

�d,i
��kzd,i − kzd,j� + i

�ri − rj�
�d,i�kzd,i − kzd,j�

. �A3�

Here, note that only one delta function is retained, since
the signs of the k vectors have already been accounted.
Therefore, Eq. �A3� simplifies to

I�ki,k j� = − 

�ri + rj�

�d,i
��kzd,i − kzd,j� + i

�1 − rirj�
�d,i�kzd,i + kzd,j�

+ i
�ri − rj�

�d,i�kzd,i − kzd,j�
− i

�1 − ri��1 − rj�
�m,i�kzm,i + kzm,j�

. �A4�

This expression reduces to the form shown in Eq. �13� by
factorizing �1−ri��1−rj� and noting that

1 + ri

1 − ri
=

�m,ikzd,i

�d,ikzm,i
. �A5�
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