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We have studied the electric and thermal response of two-dimensional Dirac fermions in a quantizing
magnetic field in the presence of localized disorder. The electric and heat current operators in the presence of
magnetic field are derived. The self-energy due to impurities is calculated self-consistently and depends
strongly on the frequency and field strength, resulting in asymmetric peaks in the density of states at the
Landau level energies, and small islands connecting them. The Shubnikov–de Haas oscillations remain peri-
odic in 1/B, in spite of the distinct quantization of quasiparticle orbits compared to normal metals. The
Seebeck coefficient depends strongly on the field strength and orientation. For finite field and chemical poten-
tial, the Wiedemann-Franz law can be violated.
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I. INTRODUCTION

Recent advances of nanotechnology have made the cre-
ation and investigation of two-dimensional carbon, called
graphene, possible.1–4 It is a monolayer of carbon atoms
packed densely in a honeycomb structure. In spite of being
few atoms thick, these systems were found to be stable and
ready for exploration.5 One of the most intriguing properties
of graphene is that its charge carriers are well described by
the relativistic Dirac’s equation and are two-dimensional
massless Dirac fermions.6 This opens the possibility of in-
vestigating “relativistic” phenomena at a speed of �106 m/s
�the Fermi velocity of graphene�, 1 /300th the speed of light.
The linear, Dirac-like spectrum causes the density of states to
increase linearly with energy, which is to be contrasted with
the constant density of states of normal metals. Due to this
peculiar property, the response of graphene to external
probes is expected to be unusual. This manifests itself in the
anomalous integer quantum Hall effect,7 which occurs at
half-integer filling factors, and in the presence of universal
minimal value of the conductance. The dependence of the
thermal conductivity on applied magnetic field has been
measured in highly oriented pyrolytic graphite.8,9

Dirac fermions show up in other systems, at least from the
theoretical side. They characterize the low-energy properties
of orbital antiferromagnets, a density wave system with a
gap of d-wave symmetry.10,11 A similar model has been pro-
posed for the pseudogap phase of high Tc cuprate supercon-
ductors, known as d-density wave, with peculiar electronic
properties.12 A similar system was also mentioned in the con-
text of heavy fermion material URu2Si2, which shows a clear
phase transition at 17 K without any obvious long-range or-
der, detectable by x-ray or NMR experiments. Its low-
temperature phase was attributed to another spin-density
wave with a d-wave gap13,14 Experimentally, the aforemen-
tioned materials possess unusual electric and thermal re-
sponses as a function of temperature and magnetic field.15,16

Therefore, the interest in studying the transport properties
of two-dimensional Dirac fermions is not surprising.
Sharapov and co-workers have studied exhaustively17–23 the

electric and thermal responses of two-dimensional systems
with linear energy spectrum, with special emphasis on the
Wiedemann-Franz law and magnetic oscillations. However,
their self-energy due to scattering from impurities was not
determined in a self-consistent manner but rather they as-
sumed a constant, energy, magnetic field, and temperature-
independent scattering rate. Moreover, they completely ne-
glected the real part of the self-energy, responsible for the
shift of energy levels. Nevertheless, they derived beautiful
analytical formulas for the various transport coefficients,
which, although suffering from the above limitations, turned
out to be useful in explaining experiments.7

Impurity scattering can be taken into account in the pres-
ence of quantizing magnetic field in the usual self-consistent
way.24 This program has been carried out, among many
others,25 by Peres et al.26 In their work, the full self-
consistent Born approximation was used before taking the
strength of the impurity potential to infinity. They studied the
frequency dependence of the electric conductivity for various
fields but never entered into the realm of thermal transport.
Parallel studies have also been performed in the limit of
weak scatterers.27,28

In this paper, we extend the work of Refs. 17–20, and
determine self-consistently the energy and magnetic-field-
dependent self-energies and study the Seebeck coefficient as
well, and also generalize Ref. 26 to include thermoelectricity.
We study Dirac fermions in a Landau quantizing magnetic
field �B� in the presence of scatterers, allowing for arbitrary
field orientations. In a way, our study here bridges between
the efforts of the previous groups. After the introduction of
the general formalism, we determine the electric and heat
current operators, essential for further steps. By introducing
impurities in the system, we can study the quasiparticle den-
sity of states, the electric and heat conductivity, the Seebeck
coefficient, and the Wiedemann-Franz law as a function of
magnetic-field strength and orientation and temperature. For
high fields, the discrete nature of the Landau levels is re-
vealed in the density of states in the form of asymmetric
peaks at Landau level energies �far from being Lorentzians�,
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which smoothen with decreasing field. Shubnikov–de Haas
oscillations are visible in all transport coefficients, periodic
in 1/B, similar to normal metals.29 The angular-dependent
conductivity oscillations become more pronounced with in-
creasing field. The chemical-potential dependence of the
conductivity resembles closely the experimental findings.7

The Seebeck coefficient depends strongly on the applied
field and temperature.

II. LANDAU QUANTIZATION, AND ELECTRIC
AND HEAT CURRENTS

The Hamiltonian of noninteracting quasiparticles living
on a single graphene sheet is given by26,30,31

H0 = − vF �
j=x,y

� j�− i� j + eAj�r�� , �1�

where � j’s are the Pauli matrices and stand for Bloch states
residing on the two different sublattices of the bipartite hex-
agonal lattice of graphene.19,26 Strictly speaking, the Hamil-
tonian above describes quasiparticles around the K points of
the Brillouin zone, where the spectrum vanishes. The vector
potential for a constant, arbitrarily oriented magnetic
field reads as A�r�= �−By cos � ,0 ,B�y sin � cos �
−x sin � sin ���, where � is the angle the magnetic field
makes from the z axis, and � is the in-plane polar angle
measured from the x axis. We have dropped the Zeeman
term, its energy would be negligible with respect to energy of
the Landau levels, Eq. �5�, using vF�106 m/s, characteristic
to graphene. Equation �1� applies for both spin directions.

In the absence of magnetic field, the energy spectrum of
the system is given by

E�k� = ± vF�k� . �2�

This describes massless relativistic fermions with spectrum
consisting of two cones, touching each other at the end
points. From this, the density of states per spin follows as

���� =
1

�
�
k

��� − E�k�� =
1

�

Ac

2�
	

0

kc

kdk��� ± vFk� =
2���
D2 ,

�3�

where kc is the cutoff, D=vFkc is the bandwidth, and Ac
=4� /kc

2 is the area of the hexagonal unit cell.
In the presence of magnetic field, the eigenvalue problem

of this Hamiltonian �H0	=E	� can readily be solved.26 For
the zero energy mode �E=0�, the eigenfunction is obtained
as

	k�r� =
eikx


L
� 0

�0�y − klB
2� � , �4�

and the two components of the spinor describe the two
bands. The energy of the other modes reads as

E�n,
� = 
�c

n + 1, �5�

with 
= ±1, n=0,1 ,2 , . . ., �Fig. 1� �c=vF
2e�B cos���� is
the Landau scale or energy but is different from the cyclotron
frequency.32 Only the perpendicular component of the field
enters into these expressions, and by tilting the field away
from the perpendicular direction corresponds to a smaller
effective field. The sum over integer n’s is cut off at N given
by N+1= �D /�c�2, which means that we consider 2N+3
Landau levels altogether. For later convenience, we define a
magnetic field B0, whose Landau scale is equal to the band-
width ��c=D�.

The corresponding wave function is

	n,k,
�r� =
eikx


2L
� �n�y − klB

2�

�n+1�y − klB

2�
� , �6�

with cyclotron length lb=1/
eB. Here, �n�x� is the nth
eigenfunction of the usual one-dimensional harmonic oscil-
lator. The electron-field operator can be built up from these
functions as

	�r� = �
k
�	k�r�ck + �

n,

	n,k,
ck,n,
� . �7�

The Green’s functions of these new operators do not depend
on k and read as

G0�i�n,k� =
1

i�n
, �8�

G0�i�n,k,n,
� =
1

i�n − E�n,
�
, �9�

for ck and ck,n,
, respectively, and �n is the fermionic Mat-
subara frequency.

With the use of these, we can determine the electric and
heat current operators of the system. Following Mahan,33 we
define the polarization operator as

E = 0

FIG. 1. �Color online� The structure of the Landau levels is
visualized schematically for the first few levels.
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P =
1

2
	 dr�r��r� + ��r�r� , �10�

with ��r�=	+�r�	�r� giving the charge density, and the
symmetric combination ensures hermiticity. The total current
is its time derivative, which follows as

J = �tP = i�H,P� . �11�

By performing the necessary steps, after straightforward cal-
culations, this yields26

Jx = vFe�
p,

� 1


2
�cp

+cp,0,
 + cp,0,

+ cp�

+ �
n,�

�

2
�cp,n+1,


+ cp,n,� + cp,n,�
+ cp,n+1,
�� , �12�

Jy = ivFe�
p,

� 1


2
�cp

+cp,0,
 − cp,0,

+ cp�

+ �
n,�

�

2
�cp,n,�

+ cp,n+1,
 − cp,n+1,

+ cp,n,��� , �13�

where �= ±1. The heat current operator for the pure system
can be determined similarly. In analogy with polarization,
one defines the energy position operator34 as

RE =
1

2
	 dr�rH�r� + H�r�r� , �14�

and the total Hamiltonian is H=
drH�r�. Using this, one
deduces the energy current from

JE = �tR
E. �15�

This leads to

Jx
E =

vF

2 �
p,

�E�0,
�


2
�cp

+cp,0,
 + cp,0,

+ cp� + �

n,�

�

2
�E�n + 1,
�

+ E�n,����cp,n+1,

+ cp,n,� + cp,n,�

+ cp,n+1,
�� , �16�

Jy
E =

ivF

2 �
p,

�E�0,
�


2
�cp

+cp,0,
 − cp,0,

+ cp� + �

n,�

�

2
�E�n + 1,
�

+ E�n,����cp,n,�
+ cp,n+1,
 − cp,n+1,


+ cp,n,��� . �17�

These follow naturally from the electric current operator, af-
ter multiplying each term with the corresponding mode en-
ergy. Note that the energy of the state labeled solely by �p� is
zero, it belongs to the state situated at the meeting point of
the two cones. Finally, the heat current operator is related to
the energy current by the simple formula JQ=JE−�J, where
� is the chemical potential. So far, we have considered the
particle-hole symmetric case with �=0, but we can easily
use a finite chemical potential to break this symmetry, and
introduce finite Seebeck coefficient.

III. IMPURITY SCATTERING IN THE PRESENCE
OF MAGNETIC FIELD

In the presence of impurities, an extra term is added to the
Hamiltonian:

Himp = V�
i=1

Ni

��r − ri� , �18�

where Ni denotes the number of impurities. As a result, the
explicit form of the previous operators might change. How-
ever, using Eq. �18�, the electric current remains unchanged,
but the heat current changes due to the noncommutativity of
the impurity Hamiltonian and the energy position operator.33

As a result, impurities need to be taken into account not only
in the calculation of the self-energy but also in the form of
the operators, and one has to use the same level of approxi-
mation for both.

However, to avoid this difficulty, one can replace the en-
ergy terms in JE by the Matsubara frequency,34 since from
the poles of the Green’s function, this will pick the appropri-
ate energy. This replacement works perfectly in the case of
impurities as well, when quasiparticle excitations possess fi-
nite lifetime.

Since graphene is two dimensional, positional long-range
order �i.e., lattice formation� is impossible at finite tempera-
tures, since thermal fluctuations will destroy it.5 This is why
the introduction of defect is natural in this system. To mimic
disorder, we have chosen to spread vacancies in the honey-
comb lattice, which can be modeled by taking the impurity
strength �V� to infinity.

To take scattering into account, we have to determine the
explicit form of Himp in the Landau basis. Then, the standard
noncrossing approximation can be used,24 which, in the case
of graphene, is called the full self-consistent Born approxi-
mation due to the neglect of crossing diagrams.26–28 Averag-
ing over impurity positions is performed in the standard way.
As a result, we arrive to the following set of equations:

G�i�n,k,n,
� =
1

i�n − E�n,
� − 
1�i�n�
, �19�

G�i�n,k� =
1

i�n − 
2�i�n�
, �20�

where


1�i�n� =
niV

2
� 1

1 − Vgc�G�i�n,k� + S�i�n�/2�

+
1

1 − VgcS�i�n�/2� , �21�


2�i�n� =
niV

1 − Vgc�G�i�n,k� + S�i�n�/2�
, �22�

where gc=1/ �N+1� is the degeneracy of a Landau level per
unit cell and ni is the impurity concentration per lattice sites.
These equations describe impurity effects for arbitrary scat-
tering potential V. The summation over Landau levels can be
performed to yield
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S�i�n� = �
n,


G�i�n,k,n,
� = 2
z

�c
�	�1 − z2� − 	�N + 2 − z2�� ,

�23�

where z= �i�n−
1�i�n�� /�c, 	�z� is the digamma function.
By letting the impurity strength V→�, which would cor-

respond to the unitary scattering limit in unconventional
superconductors,35 our self-consistency equations simplify to


1�i�n� = −
ni

gc
� 1

2G�i�n,k� + S�i�n�
+

1

S�i�n�� , �24�


2�i�n� = −
2ni

gc�2G�i�n,k� + S�i�n��
. �25�

Similar equations have been derived in Ref. 26. The self-
consistency equations can further be simplified, and after
analytic continuation to real frequencies �i�n→�+ i0+�, we
can read off


1��� =

2���

2

gc
2��� + 2ni�� − 
2����
gc
2��� + ni�� − 
2����

. �26�

At zero frequency, this simplifies to


2�0� = 
1�0��2 −
1

1 − ni�N + 1�� . �27�

The imaginary part of the self-energy is always negative to
ensure causality. This means that the last term in parentheses
on the right-hand side must always be positive to assure the
same sign of the imaginary parts of the self-energies. This
translates into

ni �
1

N + 1
. �28�

For each impurity concentration, there is a certain magnetic-
field strength �when N= �1/ni�−1�, above which our approxi-
mation breaks down. For higher field, the self-energy at zero
frequency needs to be zero to fulfill Eq. �27� and causality.
This means that at a finite impurity concentration, we still
have excitations in the system with infinite lifetime. Further,
we are going to show that this occurs not only on the zeroth
Landau level but on all Landau levels for field exceeding the
critical one. To improve on this, crossing diagrams need to
be considered, which is beyond the scope of the present
work. Hence, we restrict our investigation to fields allowed
by Eq. �28�. The larger the impurity concentration, the larger
the magnetic field we can take into account. We mention that
causality is also maintained for ni�1/2�N+1�, which trans-
lates into a Landau energy ��c� comparable to the bandwidth
for realistic concentrations, and is beyond the reach of valid-
ity.

The quasiparticle density of states can be evaluated from
the knowledge of the Green’s function and it reads as

���� = −
gc

�
� 1

� − 
2���
+ S����

=
ni

�
Im� 1


2���
−

1


2��� − 2
1���� . �29�

Without impurities, the density of states consists of Dirac-
delta peaks located at zero frequency and at E�n ,
�. By in-
troducing impurities in the system, we expect the broadening
and shift of these levels, and it can be determined from the
solution of the self-consistency equations.

For large magnetic fields �small N�, we can still solve the
self-consistency equations �Eqs. �24� and �25��, but we dis-
cover Dirac-delta peaks at the position of the levels and
small islands between them �Fig. 2, N=100�. This signals
that the noncrossing approximation is insufficient to provide
these peaks with a finite broadening. As we decrease the field
�increase N�, the peaks and islands merge, and all excitations
possess finite lifetime, but clean gaps are still observable
between the levels. By further decreasing the field, the gaps
disappear, the density of states becomes finite for all ener-
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FIG. 2. �Color online� The density of states is shown in the
upper panel for ni=0.001 for N=100 �red�, 1000 �blue�, 3000
�black� with decreasing �c. The vertical red lines stand for the
Dirac-delta peaks for N=100. The lower panel visualizes the ni

=0.01 case for N=100 �red�, 200 �blue�, 300 �black�. The clean case
without magnetic field �N=�� is also plotted for comparison in both
panels �blue dashed line�.
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gies, and small successive bumps remain present due to Lan-
dau level formation, which tend to be smoothened by further
decreasing the field. In this limit, the resulting density of
states is very close to that in a d-wave superconductor,36

stemming from its linear frequency dependence in the pure
case.

The broadening of the levels is not symmetric, more spec-
tral weight is transferred to the lower-energy part, which
arises from the important energy dependence of the imagi-
nary part of the self-energies. It is related to the presence of
resonances near the Landau level energies in the complex
plane, similar to the resonance in the Dirac point without
magnetic field.37 Also, the level position is modified in the
presence of impurities due to the finite real part of the self-
energies, and this shift increases with the impurity concen-
tration. This was also found in a similar treatment.26 How-
ever, in normal metals with nonrelativistic dispersion, such a
renormalization is forbidden due to Kohn’s theorem.38

The numerical solution of Eqs. �24� and �25� and the re-
sulting density of states, is shown in Fig. 2. From this, one
can conjecture that a given ni and N can qualitatively well
describe different fields and concentrations, if their product
�niN� is the same. These features, including the non-

Lorentzian broadening of the Landau levels and the develop-
ment of small islands between the levels, should be observ-
able experimentally by scanning tunneling microscopy, for
example.

IV. ELECTRIC AND THERMAL CONDUCTIVITIES

Using the spectral representation of the Green’s functions,
we can evaluate the corresponding conductivities after
straightforward but lengthy calculations. These are related to
the time-ordered products of the form33

�i,j
AB�i�� = − 	

0

�

d�ei���T�Ji
A���Jj

B�0�� , �30�

where A and B denote the electric and heat currents, and i
and j stand for the spatial component. These can be ex-
pressed with the use of the following transport integrals:29

Ln = 	
−�

� d�

4T

����
cosh2��� − ��/2T�� � − �

T
�n

, �31�

where

���� = �c
2�



� Im 
2���

�x − Re 
2����2 + �Im 
2����2

Im 
1���
�x − E�0,
� − Re 
1����2 + �Im 
1����2

+
1

2�
n,�

Im 
1���
�x − E�n,
� − Re 
1����2 + �Im 
1����2

Im 
1���
�x − E�n + 1,�� − Re 
1����2 + �Im 
1����2� �32�

is the dimensionless conductivity kernel. With the use of
these, we obtain the various transport coefficients as usual:

� =
2e2

�h
L0, �33�

S =
1

e

L1

L0
, �34�

�

T
=

2

�h
�L2 −

L1
2

L0
� , �35�

L =
�

�T
=

1

e2

L2L0 − L1
2

L0
2 . �36�

Here, � is the electric conductivity, S is the Seebeck coeffi-
cient, � is the heat conductivity, where the last term ensures
that the energy current is evaluated under the condition of
vanishing electric current, and L is the Lorentz number. Off-
diagonal components of the conductivity tensors, such as the
Nernst coefficient, are also of prime interest, but they cannot
be simply evaluated from Kubo formula. Even in the case of
a normal metal with parabolic dispersion, the Kubo formula

turned out to be invalid,39,40 and additional corrections have
been worked out. Their determination for two-dimensional
Dirac fermions is beyond the scope of the present investiga-
tion.

For the particle-hole symmetric case ��=0�, the Seebeck
coefficient is trivially zero. If we consider the zero-
temperature, half-filled case and assume small magnetic
fields, we obtain the universal conductivity given by

�0 =
2e2

�h
, �37�

and similarly for the thermal conductivity as

�

T
=

2kB
2�

3h
, �38�

upon reinserting original units. The Seebeck coefficient is
zero. From this, the Lorentz number takes its universal value

Lu =
�2

3
� kB

e
�2

, �39�

which means that in this limit, the Wiedemann-Franz law
holds.17,24 Landau levels always develop around the meeting
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point of the conical valence and conduction band. If we are
at half filling ��=0�, no levels cross � when varying the
magnetic field, since they are symmetrically placed below
and above. However, when � is finite, Landau levels can
cross its value with changing the field, and we expect
Shubnikov–de Haas oscillations. In general, when the num-
ber of levels below � is large �or �c� ����, we can conjec-
ture the periodicity of these oscillations. Assume that a level
�the nth� sits right at the chemical potential ��=�c


n+1�.
Then, the distance from the adjacent level determines the
period of the oscillations. This is

�E�n + 1,
� − E�n,
�� �
�c

2
n + 1
=

�c
2

2�
=

vF
2e�B cos����

�
� B

�40�

provided that n�1. This means that albeit the Landau levels
show an unusual �
n dependence of the level index com-
pared to that in a normal metal �n, the Shubnikov–de Haas
oscillations turn out to be still periodic as a function of 1/B.
The comparison of the coefficient of the magnetic field in
Eq. �40� to that in a parabolic band29 suggests that the cyclo-
tron mass can be defined as mc=� /vF

2 . Even though the spec-
trum is linear, the finite chemical potential provides us with
an energy scale for mc.

7 This can readily be checked in Fig.
3, where not only the field but the angle dependence of the
conductivity is shown for different field strengths. The larger
the magnetic field, the more visible the oscillations are, al-
though these can be smeared by increasing the concentra-
tions. When the Landau energy exceeds the value of the
chemical potential ��c���, oscillations disappear for higher
magnetic fields, because no Landau levels remain to cross �.

The explicit value of the chemical potential, which is
fixed by the particle number at a given temperature and field,
should also be determined self-consistently. However, no se-
rious deviations from its initial values have been detected
during the evaluation process, and these did not affect the
dependence of physical quantities on T and B in the investi-
gated range of parameters. Presumably, taking a large value
of the chemical potential would require its self-consistent
determination as well.

In Fig. 4, we show the magnetic-field dependence of the
heat conductivity. It resembles closely to the electric one at
low temperatures. However, at higher temperatures, each
peak in the oscillations splits into two. This occurs because
in the electric conductivity, the kernel is sampled by the
1/cosh2���−�� /2T� function, which gathers information
about excitations at the chemical potential. However, an ex-
tra ��−��2 factor appears in the heat response, which mea-
sures the immediate vicinity of � above and below, within a
window 2T, which gives the splitting. The oscillations be-
come smoothened with decreasing field, in contrast to Ref.
19, where large oscillations were found even at small fields.
The difference can be traced back to our field-dependent
scattering rate �Eqs. �24� and �25��, as opposed to the field
independent one used in Ref. 19. Similar features have been
observed in highly oriented pyrolytic graphite.8,9 By decreas-
ing the field, N increases, and the density of states becomes
similar to that of a d-wave superconductor,36 without signifi-

cant deviations from linearity. Both � and � decrease with
field, a feature already present at �=0. As we increase the
field, �c increases, and so does the distance between Landau
levels. Then, at a given temperature, a smaller number of
states will be present for excitations around �; hence, the
corresponding conductivity decreases. The Seebeck coeffi-
cient shows sharp oscillations which die out with tempera-
ture. Its background value, after subtracting the oscillations,
is found to be almost magnetic field independent but
smoothly increases with temperature. The Lorentz number
remains close to 1, if we subtract the oscillations. However,
due to the double �single� peak structures in the heat �elec-
tric� response, their ratio shows wild but sharp deviations
from unity at specific fields, where the Wiedemann-Franz
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FIG. 3. �Color online� The angular-dependent magnetoconduc-
tivity oscillations are visualized for �=0.05D, ni=0.001, and T
=0.0001D, for magnetic fields N=600 �red�, 1000 �blue�, �2000�
�black�, �3000� �green�, and 5000 �magenta� in the upper panel from
bottom to top. With increasing field �decreasing N�, the oscillations
become more pronounced, signaling the discrete Landau level
structure. The lower panel shows the electric conductivity for �
=0.05D, ni=0.001, and T /D=0.0001 �red�, 0.001 �black�, and 0.01
�blue� with decreasing oscillations. For higher field, we arrive to the
region, where crossing diagrams need to be taken into account. The
inset shows the electric conductivity as a function of 1/ �B cos���� to
emphasize its periodicity.
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law is violated. In contrast to this, one would have encoun-
tered large and wide oscillations in the Lorentz number as a
function of field in the presence of phenomenological, con-
stant scattering rate.

In Fig. 5, we show the evolution of the electric and heat
conductivities and the Seebeck coefficient as a function of
chemical potential. In accordance with experiment in Ref. 7,
we also find oscillations, corresponding to Landau levels,
which also smoothen with temperature. Interestingly, the
splitting of the peaks in the heat conductivity is nicely ob-
servable as a function of �. These occur in such a way that
they produce antiphase oscillations with respect to the elec-
tric one and lead to the violation of the Wiedemann-Franz
law. The Seebeck coefficient shows peculiar behavior. At the
particle-hole symmetric case, it is zero and remains mainly
so apart from large oscillations.

The temperature dependence of the electric and heat re-
sponses is shown in Fig. 6. Both increase steadily with tem-
perature, since more available states are accessible with T.
However, at small temperatures, a small decrease is observ-
able in low fields, in accordance with other studies.17,26 The
Seebeck coefficient first increases, and after a broad bump,

decreases with T. For higher temperatures, the bandwidth D
makes its presence felt. The Wiedemann-Franz law remains
intact at low temperatures and fields but becomes violated
for higher T or B.

Our results for the electric and heat conductivities and the
Lorentz number agree in general with those found in Refs.
17–23 for a constant scattering rate. However, the
Shubnikov–de Haas oscillations become asymmetric in both
the electric and heat conductivities due to the energy-
dependent scattering rate, determined self-consistently in our
work. These oscillations are suppressed as one lowers the
magnetic field as is seen in Fig. 4, as opposed to Ref. 19. The
periodic structures are also suppressed with temperature,
which feature was not directly observable in previous works.
The periodic violation of the Wiedemann-Franz law �Fig. 4�
becomes stronger and sharper with increasing field compared
to Ref. 19, since the broadening of the Landau levels de-
creases �Fig. 2�, as is borne out from our self-consistent cal-
culation of the self-energies. In addition, we considered the
temperature, field, and chemical-potential dependence of the
Seebeck coefficient in detail. By considering a magnetic field
with a component parallel to the plane, we were able to study
the angular-dependent magnetoconductivity as well.

V. CONCLUSION

We have studied the effect of localized impurities in two-
dimensional Dirac fermions in the presence of quantizing,
arbitrarily oriented magnetic field. The energy spectrum de-
pends on the level index as �
n, as opposed to the n+1/2
linear dependence in normal metals.24 Expressions for both
the electric and heat currents in the presence of magnetic
field were worked out. The self-energy in the full Born ap-
proximation obeys self-consistency conditions, resulting in
important magnetic field and frequency dependence of scat-
tering rate and level shift. In the density of states, only a
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FIG. 4. �Color online� The upper panel shows the Lorentz num-
ber as a function of the inverse magnetic field to stress the periodic
violation of the Wiedemann-Franz law for �=0.05D, ni=0.001, and
T /D=0.0001 �red�, 0.001 �black dashed line�, and 0.01 �blue�. The
lower panel shows the heat conductivity and the Seebeck coefficient
�inset� for the set of same parameters.
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Wiedemann-Franz law is violated.
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small island shows up close to zero frequency for small
fields, similar to d-wave superconductors.35 By increasing
the field, oscillations become visible, corresponding to Lan-
dau levels. By further increasing the field, these become
separated from each other, and clean gaps appear between
the levels, in which intragap states, small islands show up at
high field. The non-Lorentzian broadening of Landau levels
and the intragap features differ from previous studies assum-
ing a constant scattering rate and should be detected experi-
mentally in graphene.

Both the electric and thermal conductances show
Shubnikov–de Haas oscillation in magnetic field, which dis-
appear for small fields and higher temperatures. These are
periodic in 1/B, similar to normal metals, in spite of the
different Landau quantization. The Seebeck coefficient
shares these features, but its oscillations are really large as
opposed to � and �. The Wiedemann-Franz law stays close
to unity, except at certain fields, where large deviations are
encountered, which vanish with decreasing field. Besides os-
cillations, both � and � decrease with field, since the larger
the Landau energy, the smaller the probability of finding
states around �. These are in agreement with experiments
on the thermal conductivity of highly oriented pyrolytic
graphite.8,9 Oscillations are also present as a function of
chemical potential, similar to experimental findings.3

The temperature dependence of the conductivities is
rather conventional, both � and � increase with temperature
steadily, regardless of the value of the chemical potential.
The Seebeck coefficient exhibits a broad bump around T
�� and decreases afterward. The Wiedemann-Franz law is
obeyed for small temperatures and field but violated for
higher values.
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