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We study the electrical excitation of nonlinear plasma waves in heterostructures with two-dimensional
electron channels and with split gates, and the propagation of these waves using hydrodynamic equations for
electron transport coupled with two-dimensional Poisson equation for self-consistent electric potential. The
term related to electron collisions with impurities and phonons as well as the term associated with viscosity are
included into the hydrodynamic equations. We demonstrate the formation of shock and solitonlike waves as a
result of the evolution of a strongly nonuniform initial electron density distribution. It is shown that the shock
wave front and the shape of solitonlike pulses pronouncedly depend on the coefficient of viscosity, the thick-
ness of the gate layer, and the nonuniformity of the donor distribution along the channel. The electron colli-
sions result in the damping of the shock and solitonlike waves, while they do not markedly affect the thickness
of the shock wave front.
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I. INTRODUCTION

Plasma waves, i.e., self-consistent spatiotemporal varia-
tions of the electron density and electric field in two-
dimensional electron gas �2DEG� channels1–5 can be used in
different semiconductor heterostructure devices. One of the
most important advantages of 2DEG systems in comparison
with three-dimensional electron gas systems is the possibility
of realizing situations when the characteristic plasma fre-
quency markedly exceeds the frequency of electron colli-
sions with impurities and phonons. This is achieved using the
selective doping when donors are spatially separated from
the 2DEG channel, so that the electron density can be rather
high, while the electron-impurity interaction is weakened. In
2DEG systems with highly conducting electrodes �gates�
similar to field-effect transistor structures, the electron den-
sity can be effectively controlled �in particular, significantly
increased� by the applied voltage. Another attractive feature
of the 2DEG system is that at realistic parameters, the char-
acteristic plasma frequency falls in the terahertz range. This
opens up the prospects of creating novel terahertz devices,
for example, sources and detectors of terahertz radiation, fre-
quency multipliers, and so on.6–8 In recent experiments,9–16

the detection of terahertz radiation in and terahertz emission
from transistorlike 2DEG systems associated with the reso-
nant excitation of plasma waves was realized �see also Refs.
17–20�. Results of theoretical studies of plasma phenomena
in 2DEG systems have been reported in numerous publica-
tions. However, nonlinear plasma phenomena in these sys-
tems are studied far less extensively. In particular, the plasma
phenomena associated with hydrodynamic nonlinearities in
2DEG transport were considered in Refs. 21–27. The effect
of nonlinearities associated with different contact effects
were considered theoretically in Refs. 28–30. Nevertheless,
nonlinear properties of 2DEG systems can themselves be
used in device applications. This and the recent progress in
experimental studies of terahertz plasma phenomena stimu-
late a significant interest in nonlinear plasma effects in dif-
ferent 2DEG systems.

In this paper, we study nonlinear plasma phenomena as-
sociated with the electrical excitation of plasma waves in
2DEG systems using both analytical treatment and numerical
modeling. We consider structures with a 2DEG channel sup-
plied with side contacts and a system of highly conducting
electrodes �split gates�, which provides an opportunity to
control the 2DEG by applying voltage signals. The structures
under consideration are schematically shown in Fig. 1. We
use the hydrodynamic model for electron transport along the
channel coupled with the 2D Poisson equation for self-
consistent electric potential in and around the channel. In

(a)

(b)

FIG. 1. �Color online� Schematic view of heterostructures with
a 2DEG channel and with split gate electrode configurations.
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contrast to previous studies of nonlinear waves in 2DEG
systems,21–25 we take into consideration the 2D nature of the
potential distributions. This allows us to follow the change in
nonlinear wave properties with the transition from 2DEG
systems with the gates very close to the channel to those with
rather remote gates when the plasmon spectrum essentially
varies. The effect of spacing between 2DEG and highly con-
ducting gates on the linear plasma properties was studied
through many papers beginning with the paper by Chaplik.2

�See, in particular, Refs. 31–34, where the role of the gates
and contacts on the spectra of linear plasma oscillation was
considered.�

As one might expect and is shown below, the 2DEG sys-
tems with different plasmon spectra exhibit different behav-
iors for nonlinear plasma waves. This is akin to the differ-
ence in properties of gravity surface waves in shallow and
deep water pools.6,7,22,35 Apart from this, in our numerical
modeling, we focus on electron scattering on impurities and
phonons as well as on the 2DEG viscosity due to electron-
electron collisions.

II. EQUATIONS OF THE MODEL

We consider the hydrodynamic equations �the Navier-
Stokes equation and the continuity equation� and the Poisson
equation in the following form:
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Here, v=v�t ,x� and �=��t ,x� are the electron hydrody-
namic velocity along and sheet density in the 2DEG channel,
�=��t ,x ,z� is the electric potential, �=��t ,x ,0� is the elec-
tric potential in the channel �z=0�, �d=�d�x� is the donor
sheet concentration in the 2DEG channel �or near it�, � is the
frequency of the electron scattering on impurities and
phonons, K is the coefficient of viscosity associated with the
electron-electron scattering processes, e= �e� and m are the
electron charge and effective mass, respectively, æ is the
dielectric constant, and ��z� is the Dirac delta function de-
scribing the electron confinement in a relatively narrow
channel �its width is assumed to be much smaller than any
lateral size and the distance between the 2DEG channel and
the gate electrode�. The axis x is directed along the channel,
so that the coordinates of the side contacts are x= ±L /2
� ±Lg /2, where L and Lg are the lengths of the channel and
gate �see Fig. 1�, respectively �Lg�L�. The axis z is directed
perpendicular to the 2DEG channel. The latter corresponds
to z=0, whereas the gate electrode corresponds to z=Wg,
where Wg is the thickness of the gate layer. In Eq. �1�, we
disregard the term corresponding to the gradient of the pres-
sure in 2DEG in comparison with the electric force �see, for

instance, Ref. 25�. The boundary conditions follow from the
assumption that the electron sheet densities at the side con-
tacts are fixed and that the electric potentials at the electrodes
�the side contacts to the channel and the gate sections� are
given functions of time. For the electric potential at noncon-
ducting surfaces �between the electrodes�, linear approxima-
tion is used. It is also assumed that at z→−	, the electric
field �� /�z→0. The equations of the model under consider-
ation account for the generally two-dimensional character of
the potential spatial distribution, as well as the electron trans-
port in the 2DEG channel considering electron scattering and
viscosity.

In the case of the structures with a relatively small thick-
ness of the gate layer Wg �Wg
�, where � is the character-
istic length of the electron density and electric potential non-
uniformities�, the Poisson equation �Eq. �3�� can be replaced
by the following:

� − Vg

Wg
=

4�e

æ
��d − �� . �4�

We shall consider the following case. It is assumed that
generally the bias dc voltage Vg is applied to the side gate
sections. Apart from this, a relatively high transient voltage
Vg�t� is applied to the central section, so that Vg�t�=Vg

+�Vg��−t�+�t�exp�−t / t0��, where �t� is the unity step
function and t0 is the characteristic time of the gate section
recharging. The recharging time t0 is determined by the ca-
pacitance C0 of the gate section and the pertinent resistance
R0 of the control circuit: t0=R0C0. The bias gate voltages
result in a nonuniform distribution of the electron density
along the channel, which at t�0 exhibits a maximum in the
channel center. We shall mainly consider 2DEG systems with
uniformly distributed donors in the channel �or in the gate
layer slightly above the channel�. The case of strongly non-
uniform doping along the channel will be briefly studied as
well �in Sec. V�.

The linearized version of Eqs. �1�–�3� governs the propa-
gation of the plasma waves with the dispersion relation,
which in the case Vg=const is given by the following for-
mula:

��� + i�� + Kq2�� =
s0

2q

Wg�coth��q�Wg� + 1�
. �5�

Here, � and q are the frequency and wave number of a linear
plasma wave,

s0 =�4�e2�0Wg

æm
�6�

is the characteristic velocity of the plasma wave in the gated
2DEG channel, and

�0 = �d +
æVg

4�eWg
�7�

is the ac electron sheet density. In the limits of long waves
�qWg
1� and short waves �qWg�1�, Eq. �5� yields the fol-
lowing relationships:1,3

VOSTRIKOVA et al. PHYSICAL REVIEW B 76, 035401 �2007�

035401-2



Re � � s0q�1 −
�q�Wg
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and

Re � � s0� �q�
2Wg

. �9�

The dispersion relations given by Eqs. �5�, �8�, and �9� are
similar to those for gravity waves on the surface of a water
channel. In particular, Eq. �8� corresponds to the so-called
“shallow water” case, whereas Eq. �9� corresponds to the
“deep water” case �see, for instance, Refs. 6, 7, 22, and 35�.
This is a consequence of the analogy of Eqs. �1�–�3� and the
pertinent hydrodynamic equations for waves on the surface
of a liquid under gravity force. The damping rate of the
plasma wave �in the case �+Kq2
Re �� is given by

Im � � −
1

2
�� + Kq2� . �10�

III. RIEMANN SOLUTION AND SHOCK WAVE
FORMATION

Consider first Eqs. �1�, �2�, and �4�. Assuming that the
gate layer is sufficiently thin, the length of the channel is
sufficiently large, so that we may disregard the boundary
conditions, and that the electron collisions with impurities
and phonons as well as the viscosity can be neglected. In this
case, we arrive at the following equations:
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The system of Eqs. �11�–�13� can be presented as
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As pointed out above, Eqs. �14� and �15� are akin to the
equations governing gravity waves in shallow water chan-
nels. They are also identical in form to the equations govern-
ing isentropic flows of a compressible gas with the adiabatic
index �=2. This indicates that Eqs. �14� and �15� have solu-
tions in the form of the Riemann waves which, under certain
conditions, can transform into shock waves.35,36 One also
needs to point out that the solution of Eqs. �14� and �15�
should describe nonlinear waves, with the front steepening
with time until the moment when the solution becomes three
valued. Analyzing Eqs. �14� and �15�, we shall use a standard

approach �see, for instance, Refs. 36 and 37�, assuming that
v=v���. Considering the latter, Eqs. �14� and �15� become as
follows:
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Equations �16� and �17� are identical if
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Equation �18� results in
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Considering the solution corresponding to the sign “�” in
Eq. �19� and introducing

s = s0� �

�0
, �20�

we obtain

v��� = 2s + const. �21�

Assuming that �=�0 at v=0, we find

v��� = 2�s − s0� = 2s0�� �

�0
− 1	 . �22�

Using Eq. �22� with Eqs. �16� and �19�, we arrive at the
Riemann solution,

x = �v��� + s����t + C��� , �23�

where s��� is given by Eq. �20� and C��� is determined by
the initial conditions. Hence, the electron density as a func-
tion of x and t is given �in implicit form� by the following
equation:

x = s0�3� �

�0
− 2	t + C��� . �24�

Using Eq. �24�, we can find the wave breaking time tbr, i.e.,
the time of formation of the discontinuity or the time of
formation of a shock wave. This time is determined by the
following conditions:35
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As an example, let us consider the case when the initial
distribution of the electron density is as follows:

���t=0 = �0 + ��0 exp
− � x

a
	2� , �28�

where ��0 is the magnitude of the electron density pertur-
bation and a is its characteristic length. This yields

C��� = a�ln� ��0

� − �0
	 . �29�

According to Eq. �22�, this distribution of the electron den-
sity corresponds to the following initial velocity distribution:
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one obtains

C��� = a tan
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2
��0 − �
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	� . �32�

Figures 2 and 3 show the transformation of the Riemann
waves governed by Eq. �23�, with the initial conditions given

by Eqs. �28� and �31�, respectively, up to the moments when
conditions �26� and �27� are satisfied �up to t= tbr�. These
moments correspond to the rightmost curves in Figs. 2 and 3.
The electron density and the coordinate in Figs. 2 and 3 are
normalized by �0 and s0 /�, respectively. The obtained spa-
tiotemporal variations of �=��t ,x� and v=v���t ,x�� were
compared with the results of direct numerical solution of
Eqs. �14� and �15�, and their coincidence was confirmed.

The solutions obtained above are related to the formation
of shock waves with zero front thickness. The inclusion of
electron collisions and viscosity �that correspond to real sys-
tems� might affect the shape of the shock wave front. At a
sufficiently sharp wave front, i.e., at a small thickness of the
front �, the viscosity term −Kq2v in Eq. �1� markedly ex-
ceeds the term associated with the electron collisions �v.
Indeed, comparing these two terms and setting q��−1, one
can find that the effect of viscosity dominates when �
��K /�. Using Eqs. �1�, �12�, and �13� �valid in the case of
small gate layer thickness� and following the standard
procedure,35 the shock wave thickness determined by the vis-
cosity can be estimated as ��K /s0. Substituting � from this
equation into the above inequality, we obtain the condition
when the viscosity prevails the collisions in the formation
of the shock wave front: K
s0

2 /�=Kc. Assuming s0
=108 cm/s and �=1012 s−1, we have Kc�104 cm2/s. Since
the characteristic value of the coefficient of viscosity in real
2DEG systems is K�� /m �see, for instance, Refs. 6 and 7�,
where � is the reduced Planck constant, for the GaAs chan-
nel, one obtains K�15 cm2/s. This implies that K
Kc and
that the electron collisions should not affect the shape of the
shock wave front as confirmed by the results on numerical
modeling in the following.

In 2DEG systems where the gate layer is not too thin,
the thickness of the wave front � can be determined by the
deviation of the plasma wave dispersion relation from the
linear one �i.e., by 2D effects leading to a difference in
the group velocities of the harmonics with different wave
numbers q� rather than by the viscosity. Comparing the
contributions of these two mechanisms, one can find that
the first mechanism dominates if K�s0Wg=Kd, with Kd
�Kc�Wg� /s0�.

Thus, in 2DEG systems with a moderate gate layer thick-
ness, the nonlinear waves should be fairly smooth, so that a
solitonlike wave can form26,27 rather than a shock wave. This
is confirmed by the results of numerical simulations based on
the general system of Eqs. �1�–�3� demonstrated in the next
section.

IV. SHOCK AND SOLITONLIKE WAVES:
NUMERICAL MODELING

Since an analysis of nonlinear regimes governed by the
general equations of our model, which accounts for both the
electron collisions and viscosity, i.e., Eqs. �1�–�3�, cannot be
realized analytically, we solved these equations numerically,
considering for definiteness the upper structure in Fig. 1. The
following dimensionless variables are used: time �= t�, coor-
dinates �=x� /s0 and �=z� /s0, velocity u=v /s0, electron
density �=� /�0, and electric potential �=e� /ms0

2. In these

FIG. 2. �Color online� Transformation of the spatial distribution
of the normalized electron density � /�0 in the Riemann wave
governed by Eq. �23� with the initial condition in Eq. �28� and
��0 /�0=1.

FIG. 3. �Color online� The same as in Fig. 2 but for the initial
condition given by Eq. �31� and ��0 /�0=0.5.
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variables, the system of equations �1�–�3� is characterized
by the following parameters: Lg=Lg� /s0, wg=Wg� /s0
= �Wg /Lg�Lg, �0= t0�, and k=K� /s0

2. The Galerkin spectral
method38 was used in numerical calculations.

Figures 4–7 demonstrate the evolution of the spatial dis-
tributions of the electron density �normalized by �0� in the
structures with Lg=10 and different normalized gate layer
thicknesses �wg=0.001–1� in response to a drastic change of
the central gate section potential: �vg=2 exp�−100�� ��0

=10−2�. It is assumed that k=2�10−3. These cases corre-
spond to the spatial distributions of the electron density at
the initial moment with a maximum at x=0, where
��� /�d��t=0�1.3–3. If s0=108 cm/s and �=1012 s−1, the re-

sults demonstrated in Figs. 4–7 correspond to the gate length
Lg=10 �m �i.e., to a fairly long channel� and Wg /Lg
=10−4–10−1. The length of the central gate section is about
0.5 �m. As shown, in systems with small values of the pa-
rameter wg �Figs. 4 and 5�, the initial perturbation of the
electron density transforms into two pulses propagating from
the channel center to the side contacts. After a short time, the
front of these pulses becomes sharp, so the pulses turn into
shock waves. In the case of small wg and the pertinent con-

ditions, our model, which includes the 2D Poisson equation,
yields the same results as in papers by Dmitriev et al. 22 and
Rudin and Samsonidze.23,24 However, in 2DEG systems with
larger values of the parameter wg, the propagating waves
have the form of relatively smooth pulses with a solitonlike
shape �Fig. 6�. At sufficiently large wg, the transformation of
the initial perturbation of the electron density �Fig. 7� is even
qualitatively different from that in the case of effectively
gated 2DEG systems. This difference in the nonlinear waves
propagated in 2DEG systems with different parameters wg
can be attributed to a significant difference in the dispersion
relations of the plasma waves in the cases of small and large
spacings Wg �small and large values of parameter wg�.

As seen in Figs. 4–7, the amplitude of the propagating
pulses markedly decreases with time. This effect is obviously
associated with electron collisions. Comparing Figs. 4–6,
one can see that the thickness of the wave front markedly
increases with increasing wg, characterizing the role of the
plasma wave dispersion associated with the 2D nature of the
distributions of the electrical potential in the systems under
consideration.

Figure 8 shows the evolution of the electron density dis-
tributions in a 2DEG system with parameter k substantially
smaller than in Figs. 4–7. One can see that in this case, the
electron density distributions behind the shock wave front
exhibit pronounced oscillations. To avoid numerical calcula-
tion artifacts, the pertinent modeling was conducted with
rather different numbers of modes in the Fourier transforma-
tion �varied from 2�103 to 2�104�. The independence of
the result of the number of the modes used in the calculations
was confirmed.

FIG. 4. �Color online� Evolution of spatial distributions of the
normalized electron density � /�0 in the 2DEG system with a nor-
malized gate layer thickness wg=10−3. The inset corresponds to the
early stage when the shock wave is formed. This case is analogous
to the propagation of surface waves in a shallow water channel.

FIG. 5. �Color online� The same as in Fig. 4 but for
wg=10−2.

FIG. 6. �Color online� The same as in Fig. 4 but for
wg=10−1.

FIG. 7. �Color online� The same as in Fig. 4 but for wg=1 �thick
gate layer–deep water case�.
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The oscillatory character of the electron density distribu-
tions can be attributed to the instability of the shock waves
with relatively smooth �but nonuniform� distributions behind
the shock wave front. As shown previously,39 the nonunifor-
mity of 2DEG in the channel can markedly affect the condi-
tions of plasma instability. Considering the nonuniformity of
the electron density distribution in a propagating shock wave
and assuming that the characteristic length of this perturba-
tion q−1 is small in comparison with the scale of the nonuni-
formity of the electron density distribution behind the front,
one can get the following equation for the damping rate of
the electron density perturbations behind the front �compare
with Eq. �10��:

Im � � −
1

2
�� + Kq2 − s0

d ln �0

qdx
	 . �33�

In the case Im ��0, i.e., when

d ln �0

dx
�

� + Kq2

s0
, �34�

the nonuniform but relatively smooth electron density distri-
bution behind the shock wave front can become unstable,
resulting in the formation of oscillatory distributions. This
instability condition shows that the electron density distribu-
tion can be unstable when the gradient of the electron density
is sufficiently large. Since the magnitude of the electron den-
sity peak decreases with wave propagation �due to electron
collisions� and the total number of electrons is constant, the
electron density gradient decreases as well. As a result, in-
equality �34� can be satisfied for the perturbations, with the
spatial period increasing with time. Just such a behavior of
the oscillatory structure behind the shock wave front is seen
in Fig. 8.

Figure 9 shows how the velocity of the wave front �nor-
malized by s0� changes with time �normalized by �−1�. We
define the velocity of the wave front as the velocity of move-
ment of the point where �= ��max+�0� /2. Here, �max is the
peak value of the electron density. One can see that in 2DEG
systems with relatively thin gate layers, in which the forma-
tion of the shock waves occurs �corresponding to Figs. 4 and
5�, the velocity of the front movement exceeds the character-
istic plasma wave velocity s0, but this front movement decel-

erates with elapsed time. This can be attributed to the fact
that according to the general properties of shock waves34

�see also Ref. 24�, their velocity is determined by s0 and s
=s0

�� /�0 �see Eq. �20��, with the latter value decreasing
throughout the wave propagation �as seen in Figs. 4 and 5�.
However, the velocity of propagation of more smooth pulses
�see curve marked by squares in Fig. 9� in the case of larger
gate thicknesses is close to s0.

The results shown in Figs. 4–8 correspond to a relatively
fast switch-off of the voltage applied to the central gate sec-
tion ��0=10−2�. The obtained results do not change when �0

increases up to �0=10−1. However, at relatively slow voltage
switch-off, i.e., at moderate values of parameter �0, the pat-
tern of relaxation of electron density becomes markedly dif-
ferent. Figure 10 shows the relaxation of electron density in
the 2DEG system with the same parameters as in Fig. 4 at
�0=1. In this case, the transformation of the electron density
distribution closely resembles the density peak smearing
considered previously in the framework of the conductive
model.22,40

V. WAVE PROPAGATION IN NONUNIFORM CHANNEL:
EFFECT OF “TSUNAMI”

Consider now a 2DEG system with markedly nonuniform
distribution of donors �d=�d�x� along the channel, so that
the quantity �0 given by Eq. �7� also depends on the coordi-
nate x. We assume that

FIG. 8. �Color online� Snapshots of spatial distributions of the
normalized electron density � /�0 with an oscillatory structure be-
hind the shock wave front in the system with a normalized gate
layer thickness wg=10−2 and a small viscosity �k=10−4�.

FIG. 9. �Color online� Time dependences of the front velocity
for the same parameters as in Figs. 4–6.

FIG. 10. �Color online� Evolution of the spatial distribution of
the normalized electron density � /�0 in the 2DEG system with the
same parameters as in Fig. 4 but at a relatively slow voltage switch-
off ��0=1�.
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�d = �d
c if �x� � L0,

�d
e + ��d

c − �d
e�e−�2�x� − Ld/2ad�2

if �x� � L0,
�

where �d
c is the sheet density of donors in the channel center,

�d
e is the donor density near its edges, and Ld and ad are the

characteristic lengths of the spatial distribution of donors
�Ld�L�. Figure 11 shows the evolution of the spatial distri-
bution of the sheet charge density in the 2DEG channel nor-
malized by ��0�, where the symbol �¯� means the averaging
over the channel length. One can see that two solitonlike
waves propagating in opposite directions toward the side
contacts arise. However, upon reaching the regions with a
relatively low donor density ���0.25�, these waves trans-
form into shock waves with rather sharp fronts and complex
structures behind the front. In particular, the fronts are fol-
lowed by depletion regions and then by the secondary shock
waves. The behavior pattern of the wave that originated from
the initial pulse resembles a tsunami in the ocean. This is due
to an analogy between the equations governing the 2DEG in
the systems under consideration and the equations describing
the gravity surface waves in shallow and deep water pools.

VI. CONCLUSIONS

We studied the electrical excitation of nonlinear plasma
waves in heterostructures with 2DEG channels and split
gates. The propagation of these waves was considered both
analytically and using numerical modeling. The hydrody-
namic electron transport model accounted for electron colli-
sions with impurities and phonons as well as 2DEG viscos-
ity. The hydrodynamic equations were supplemented by the
2D Poisson equation for the self-consistent electric potential.

We demonstrated the formation of shock and solitonlike
waves as a result of the evolution of strongly nonuniform
initial electron density distribution. It was found that the
shock wave front and the shape of solitonlike pulses pro-
nouncedly depend on the coefficient of 2DEG viscosity, the
thickness of the gate layer, and the nonuniformity of the
donor distribution along the channel. In the case of the
2DEG channel with a strongly nonuniform doping, the effect
of transformation of relatively smooth waves into shock
waves, resembling a tsunami effect, was observed. The elec-
tron collisions result in the damping of the shock and soli-
tonlike waves. However, they do not markedly affect the
thickness of the shock wave front. Due to the fairly sharp
wave front of nonlinear waves in the 2DEG systems under
consideration or due to their strongly oscillatory structure �as
shown in Fig. 8�, the transient charges induced by the propa-
gating charges of these waves in the side contacts and, hence,
in the external circuit might exhibit steep surges. Fast tran-
sient currents in such a circuit including an antenna might
provide generation of electromagnetic radiation with rela-
tively high frequencies. The heterostructures with a nonuni-
form doping of 2DEG channel appears to be rather promis-
ing. In the structures with the gate separated into several
short sections �see the lower structure in Fig. 1�, the propa-
gating charges of shock waves might result in even steeper
surges of the charges induced in these sections.41 Since these
sections can serve as antenna components, fast variations of
the induced charges and, hence, the dipole momentum can
lead to the emission of electromagnetic radiation. There are
several characteristic frequencies related to the situation: f1
�s0 /Lg, f2�s0 / lg, where lg is the lateral spacing between
the neighboring gate sections, and f3�s0 /�. The frequencies
f1, f2, and f3 can be much larger that the inverse recharging
time t0

−1 easily falls in the terahertz range at realistic values
of the characteristic lengths due to fairly large values of the
characteristic velocity of plasma wave s0 �about 108 cm/s�.
The mechanism of the generation of relatively high fre-
quency electrical signals, which convert into electromagnetic
radiation, is akin to the frequency multiplication due to the
plasma nonlinearity. Thus, the excitation of shock and soli-
tonlike waves in the heterostructures under consideration by
external electrical signals might be used to generate terahertz
radiation.
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FIG. 11. Evolution of the spatial distribution of the normalized
sheet charge ��−�0� / ��0� in the 2DEG system with a nonuniform
donor distribution.
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