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We investigate the electron resonance transmission through a symmetric double-barrier structure with the
Dresselhaus spin-orbit coupling and an oscillating field applied to the potential-well region. Based on numeri-
cal evaluations, it is demonstrated that the multiphoton process results in a two-set multiplet structure of the
transmission spectrum. The number of the resonance peaks and the distance between the adjacent peaks can be
controlled by adjusting the amplitude and the frequency of the external field, respectively. Moreover, it is
shown that a high spin polarization of the photon-mediated transmission probability can be achieved in the case
of narrow potential well with a small amplitude of the oscillating field, which may be useful in the tunable spin
filters of high efficiency.
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The spin-polarized quantum transport, as a matter of fact,
is the theoretic foundation of the spintronic devices. In the
past few years, tremendous efforts were devoted to the in-
vestigation of the spin-polarized transport in magnetic tun-
neling junctions and much progress was made both theoreti-
cally and experimentally in understanding of the
fundamental physics of spintronics.1–3 Recently, the spin-
dependent-tunneling phenomena in semiconductor hetero-
structures have attracted a great deal of attention4–13 and
shown the possible application in creating spin injectors and
detectors based on nonmagnetic tunneling structures. Spin-
dependent tunneling in semiconductor is due to the spin
splitting in the electron conductive band which originates
from two microscopic mechanisms, Rashba spin-orbit cou-
pling induced by the structural inversion asymmetry14,15 and
Dresselhaus spin-orbit coupling in noncentrosymmetric
materials.16–18 Spin-orbit interaction couples spin states and
space motion of the conductive electrons, which results in
the dispersion relation depending on the orientation of elec-
tron spin. On the other hand, it was found that in the hetero-
structures, the electron motion parallel to the tunnel-structure
boundary �in-plane motion� can play a well-defined role in
the transmission processes because of the discontinuity of
the electronic-band parameters at the tunnel-structure
interfaces.12 In asymmetric heterostructures with built-in or
external electric fields, coupling between the in-plane elec-
tron motion and the electron-spin polarization brings about
spin splitting effect through spin-dependent boundary condi-
tions or spin-dependent term in the effective-mass
Hamiltonian.4,12,19 For symmetric heterostructures with
Dresselhaus spin-orbital coupling, in-plane electron motion
modifies the effective mass of electron and leads to spin
splitting.11,20 Spin-dependent transports in semiconductor
heterostructures have shown much interesting prospect of
technological applications, for example, spin-polarized scan-
ning probe microscopy with an optical orientation of the tun-
neling electrons,21 tunneling spin valves, spin filter,5,22 and
so on.

Recently, the double barrier has been used to study the
spin-dependent resonance tunneling,4,11–13 however, without

the Fano resonance. In the asymmetric double-barrier struc-
ture induced by an external electric field, the transmission
probability depending on the in-plane electron wave vector
and the electron-spin polarization is obtained in Ref. 4 and
12 by considering Rashba spin-orbital coupling. Reference
11 is devoted to the spin-dependent tunneling through a sym-
metric double-barrier structure with Dresselhaus spin-orbital
interaction showing the spin-orientation and electron wave-
vector dependence of the tunneling probability. Moreover,
for the single-barrier–well structure, it is demonstrated that
the large spin polarization of the transmission can be ob-
tained using Fano resonance characteristic for energy win-
dows that significantly exceed the spin splitting,20,30 where
the Fano resonance is induced by the quasibound state in the
X valley of the semiconductor.20,30 In this paper, we investi-
gate the photon-mediated resonance tunneling of the electron
through a symmetric semiconductor double-barrier structure
with Dresselhaus spin-orbit coupling and an oscillating field
confined in the potential-well region. The potential well pro-
vides the bound-state channel of transport inducing the Fano
resonance. The advantage of our device compared with the
indirect barrier tunneling30 is that the Fano resonance is con-
trollable by the external field. A multiplet structure of the
transmission spectrum occurs because of the multiphoton
process. The number of the resonance peaks in the multiplet
spectrum and the distance between the adjacent peaks can be
controlled by adjusting the amplitude and the frequency of
the external field, respectively. The combination of spin-orbit
coupling and in-plane wave vector makes the multiplet spec-
trum splitting into two sets, which may be used to modulate
the spin polarization of the transmission electron. For a nar-
row potential well, the large spin polarization occurs in the
energy windows whose width can be properly controlled by
the applied field, which is useful in the tunable spin filter of
high efficiency.

We consider the transmission of a single electron with
incident wave vector k= �k� ,kz� through a symmetrical
double-barrier structure along the z � �001� direction with an
oscillating field confined in the potential-well region ex-
pressed as
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V�z,t� = �0, z � − b and z � a + b

− V0 + V1 cos��t� , 0 � z � a

Vm, − b � z � 0 and a � z � a + b ,
� �1�

where V0 is the static well depth and V1 and � denote the
amplitude and frequency of the applied field, respectively.
Vm is the barrier height depending on the practical semicon-
ductor material. k� is the wave vector parallel to the barrier
plane �i.e., in-plane wave vector�, and kz is the wave vector
perpendicular to the barrier plane along the direction of tun-
neling. In this paper, we consider the five-layer semiconduc-
tors GaAs/Ga0.7Al0.3As/GaSb/Ga0.7Al0.3As/GaAs. A single
electron incident form the left passes five regions denoted by
I, II, III, IV, and V �see Fig. 1�. We assume the low enough
temperature so that the electron-phonon interaction can be
neglected. Thus, the electron motion can be described by a
time-dependent Schrödinger equation,

i�
�

�t
� = Ĥ� , �2�

with the effective-mass approximation Hamiltonian

Ĥ = −
�2

2�i

�2

�z2 +
�2k�

2

2�i
+ V�z,t� + ĤD �i = 1,2,3� . �3�

Here, �1, �2, and �3 are, respectively, the effective masses
of the electron for materials GaAs, Ga0.7Al0.3As, and GaSb.

ĤD describes the Dresselhaus spin-orbit coupling in zinc-
blende structure. Assuming that the kinetic energy of inci-
dent electron is much smaller than the potential-well depth

V0, the Dresselhaus term ĤD may be expressed as10,11

ĤD

= �
0, z � − b and z � a + b

��	̂xkx − 	̂yky�
�2

�z2 , 0 � z � a

0, − b � z � 0 and a � z � a + b ,
�

�4�

where � is the spin-orbit coupling strength in region III
�GaSb layer� with �1�0 and �2�0 because �1
� and �2

� ��1 and �2 are the spin-orbit coupling strength in GaAs
layer and Ga0.7Al0.3As layer, respectively�. 	̂� are the Pauli
matrices. Inserting ��z ,s , t�=��z , t�
s and Eq. �4� into the
Schrödinger equation �Eq. �2��, we obtain the electron-spin
states of opposite spin polarizations,


± =
1
	2


 1

�e−i� � , �5�

where 
± are two pure spinor states and � denotes the polar
angle of the wave vector k�� = �k� cos � ,k� sin �� in the xy
plane. The orientation of electron spin s�±�k���=
±

+	̂
±

= ��cos � , ±sin � ,0� corresponding to the eigenstates 
± de-
pends on the direction of the wave vector k��. In equilibrium,
the momentum distribution of the incident electrons is iso-
tropic in the xy plane and therefore the average spin of the
transmitted electrons vanishes.10 In order to obtain the net
spin polarization in the transmitted electrons, we consider the
case that the in-plane wave vector of the incident electron is
along a fixed direction, for example, �=0, which results
completely from an electric field applied along the −x direc-
tion. For simplicity, we assume that k� is invariable. In the

spin subspace, the Hamiltonian Ĥ may reduce to

Ĥ± = 
±
+Ĥ
± = −

�2

2�±

�2

�z2 +
�2k�

2

2�
+ V�z,t� , �6�

where �±=��1±�2�k� /�2�−1 is the modified effective mass
of electron which depends not only on Dresselhaus coupling
constant � and the in-plane electron wave vector k� but also
on the orientation of electron spin. Although the modification
of the electron effective mass is very small, it plays an im-
portant role in generating of the resonance-peak splitting.
Using Floquet theory,23–25 we obtain the wave function in-
side the potential well,20

V1cos(ω t)

t

r

(k
||
,k

Z
)

Z

VIVIIIIII

V0

Vm

a+ba0-b

FIG. 1. Potential profile of symmetrical double-barrier structure.
Vm is the height of the barriers and V0 is the depth of the well. a and
b are the width of the well and the thickness of the barriers, respec-
tively. V1 cos��t� is the oscillatory perturbation applied to the
middle well region.
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�±
III = 
± �

n=−�

+�

�
m=−�

+�

�am
± eiqm

± z

+ bm
± e−iqm

± z�Jn−m
 V1

��
�e−iEzn

± t/� exp�ik�� · �� − iE�
±t/�� ,

�7�

where am
± and bm

± are constant coefficients,

qm
± = 	2�±

�2 �Ez0
± + m�� +

�2k�
2

2�1
−

�2k�
2

2� + V0� ,

and

Jn−m� V1

���
is the Bessel function of the first kind. �� = �x ,y� is a vector
parallel to the plane of the potential well. The incoming and
outgoing waves form the sidebands �or Floquet channels�
with energy spacing �� according to En

±=EF
± +n�� �n is the

sideband index�. The mode of En�0 is an evanescent mode,
and the corresponding sideband is called an evanescent side-
band because such a mode with imaginary kn cannot
propagate.26,27

Since incident electrons will be scattered inelastically into
an infinite number of Floquet sidebands inside the potential
well, the wave function outside the well can be written as the
superposition of waves with all values of energy:

�±
I �z,t� = 
±
eikz0

a±z−iEz0
± t/� + �

n=−�

+�

rn0
± e−ikzn

a±z−iEzn
± t/��

�exp�ik�� · �� − iE�
±t/�� , �8�

�±
II�z,t� = 
± �

n=−�

+�

�cn0
± e−kzn

b±z + dn0
± ekzn

b±z�e−iEzn
± t/�

�exp�ik�� · �� − iE�
±t/�� , �9�

�±
IV�z,t� = 
± �

n=−�

+�

�en0
± e−kzn

b±z + fn0
± ekzn

b±z�e−iEzn
± t/�

�exp�ik�� · �� − iE�
±t/�� , �10�

�±
V�z,t� = 
± �

n=−�

+�

tn0
± eikzn

a±z−iEzn
± t/� exp�ik�� · �� − iE�

±t/�� ,

�11�

where

kzn
a± = 	2�1

�2 �Ez0
± + n��� ,

kzn
b± = 	2�2

�2 �Vm − Ez0
± − n�� −

�2k�
2

2�1
+

�2k�
2

2�2
�

, E�
±=

�2k�
2

2�1
, and Ez0

± +E�
±=E0

±. We only consider the case that
Ez0

± � �0,��� corresponding to the propagating mode of low-
est energy. cn0

± , dn0
± , en0

± , and fn0
± are the constant coefficients.

rn0
± and tn0

± are the probability amplitudes of the reflecting

waves and outgoing waves from the sideband 0 to sideband
n, respectively. The continuity of �± and 1

�
�
�z�± at the inter-

faces z=−b, z=0, z=a, and z=a+b requires

e−ikzn
a±b�n0 + eikzn

a±brn0
± = ekzn

b±bcn0
± + e−kzn

b±bdn0
± ,

e−ikzn
a±b�n0 − eikzn

a±brn0
± =

�1kzn
b±

i�2kzn
a± �− ekzn

b±bcn0
± + e−kzn

b±bdn0
± � ,

cn0
± + dn0

± = �
m=−�

+�

Jn−m
 V1

��
��am

± + bm
± � ,

− cn0
± + dn0

± = �
m=−�

+�
1

kzn
b±Jn−m
 V1

��
� i�2qm

±

�±
�am

± − bm
± � ,

�
m=−�

+�

Jn−m
 V1

��
��eiqm

± aam
± + e−iqm

± abm
± � = e−kzn

b±aen0
± + ekzn

b±afn0
± ,

�
m=−�

+�
1

kzn
b±Jn−m
 V1

��
� i�2qm

±

�±
�eiqm

± aam
± − e−iqm

± abm
± � = − e−kzn

b±aen0
±

+ ekzn
b±afn0

± ,

e−kzn
b±�a+b�en0

± + ekzn
b±�a+b�fn0

± = eikzn
a±�a+b�tn0

± ,

− e−kzn
b±�a+b�en0

± + ekzn
b±�a+b�fn0

± =
i�2kzn

a±

�1kzn
b± eikzn

a±�a+b�tn0
± . �12�

The continuity conditions of the wave functions �Eq. �12��
can be expressed as a compact matrix form,


�

R
� =

1

2

S+ S−

S+
* S−

* �
C

D
� , �13�


C

D
� =

1

2
J̄* J̄

J̄ J̄*
�
A

B
� , �14�


A

B
� =

1

2

J− J+

J−
* J+

* �
E

F
� , �15�


E

F
� =

1

2

X− X−

*

X+ X+
* �
T

O
� , �16�

where A, B, C, D, E, F, R, �, T, and O are the column
matrices with the elements An=an

±, Bn=bn
±, Cn=cn0

± , Dn=dn0
± ,

En=en0
± , Fn= fn0

± , Rn=rn0
± , �n=�n0, Tn= tn0

± , and On=0. The

square matrices S±, X±, J̄, J+=Q−1�J−1+ J̃−1�Xa, and J−

=Q−1�J−1− J̃−1�Xa
−1 are defined by the following matrix

elements:

S+nm = eikzn
a±b
1 +

i�1kzn
b±

�2kzn
a± �ekzn

b±b�nm,
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S−nm = eikzn
a±b
1 −

i�1kzn
b±

�2kzn
a± �e−kzn

b±b�nm,

J̄nm = 
1 +
i�2qm

±

�±kzn
b±�Jn−m�V1/��� ,

X+nm = 
1 +
i�2kzn

a±

�1kzn
b± �exp��ikzn

a± − kzn
b±��a + b���nm,

X−nm = 
1 −
i�2kzn

a±

�1kzn
b± �exp��ikzn

a± + kzn
b±��a + b���nm,

Jnm = Jn−m�V1/��� ,

J̃nm =
i�2qm

±

�±kzn
b± Jn−m�V1/��� ,

Qnm = eiqm
± a�nm, Xanm = ekzn

b±a�nm.

A straightforward calculation yields the matrix form of
the transmission amplitude with the help of Eqs. �13�–�16�,

T = 16P−1� , �17�

with P= �S+J̄*+S−J̄��J−X−+J+X+�+ �S+J̄+S−J̄*��J−
*X−

+J+
*X+�. The total electron-transmission probabilities of the

opposite spin orientations are given by

T± = �
m=0

+�
km

a

k0
a �tm0

± �2. �18�

We now study numerically the resonance transmission of
a single incident electron through a symmetric semiconduc-
tor double-barrier structure with Dresselhaus spin-orbit cou-
pling and an oscillating field. The minimum number of side-
bands needed in the sum of Eq. �18� depends on the

oscillation amplitude of the potential. In general, it is enough
to consider the number N�V1 /��.

The interaction between the incident electron and the os-
cillating field leads to photon-mediated resonance transmis-
sion which results in the multiplet structure of the transmis-
sion coefficients.28 Dresselhaus spin-orbit coupling induces
the splitting of the multiplet spectrum, in which in-plane
electron wave vector plays an important role. In Fig. 2, we
plot the transmission probability as a function of the in-plane
electron wave vector k� along the direction of �=0 and the
energy Ez of the incident electron in the absence of the os-
cillating field. The transmission spectrum splits into two
resonance peaks corresponding to the electrons with opposite
spin polarizations. The spacing between two splitting reso-
nance peaks depends on in-plane electron wave vector for a
given semiconductor heterostructure. The positions of two
resonance peaks shift to the higher energy direction as k�

increases, which results from the fact that the effective po-
tential well becomes shallower with increasing k� and thus
the quasibound level �above Fermi level� lifts. When an os-
cillating field is applied in the potential well, the photon-
mediated transmission resonances occur. Figure 3�a� shows
the transmission resonances for the weak coupling �V1

=1 meV� between the electron and field similar to the case in
Fig. 2. The quasibound levels for spin-up and spin-down
electrons are Eq

+=22.6 meV and Eq
−=17.8 meV, respectively,

10

20

30

40

EzHmeVL

0

0.005

0.01

0.015

0.02

k ˛ HÅL

0

0.25

0.5

0.75

1

T≤
10

20

30

40

EzHmeVL

0

0.25

0.5

0.75

1

T≤

FIG. 2. Splitting of the resonance transmission in the absence of
oscillating field for V0=200 meV, Vm=250 meV, a=90 Å, b
=30 Å, �1=0.066me, �2=0.088me, �3=0.041me, and �=1.87
�105 meV Å3. The mesh curve corresponds to spin-up electron and
smooth curve to spin-down electron.
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YE et al. PHYSICAL REVIEW B 76, 035345 �2007�

035345-4



corresponding to the positions of two splitting peaks. With
the increasing amplitude of the applied oscillating field, the
multiplet structure of transmission spectrum occurs and the
central peak decreases progressively. Figure 3�b� shows one-
photon process for V1=5 meV and ��=5 meV, in which an
incident electron of energies Ez

±=Eq
±−�� �or Ez

±=Eq
±+���

absorbs �or emits� a photon exciting to the quasibound level,
and, consequently, the lateral peaks occur as shown in Fig.
3�c� for V1=7 meV. The two-photon process takes place by
two-photon absorption �Ez

±=Eq
±−2��� or emission �Ez

±=Eq
±

+2���. The left-end and right-end small peaks in Fig. 3�d�
correspond to the two-photon process for V1=9 meV and the
central peak is lower than the lateral peaks. When V1 in-
creases to 14 meV, the lateral peaks are dominant and the
central peak disappears �see Fig. 3�e��. For a given semicon-
ductor heterostructure, the position of the central peak de-
pends on the in-plane electron wave vector k� and the posi-
tions of the lateral peaks are determined by k� and the
oscillating frequency of the applied field �. However, their
intensities are determined only by the field parameters V1
and �. Figure 4 shows the transmission probability as a func-
tion of V1 for ��=5 meV, which varies quasiperiodically
with increasing V1. The phase of one-photon process is al-
most opposite to that of two-photon process for the high field
amplitude.29

In Fig. 3, it is more interesting to see that the position of

the left �or right� lateral peak of spin “�” �or “�”� in one-
photon process coincides with that of the central peak of spin
� �or ��. When V1 increases from 0 to 14 meV, the central
peak of spin � �or �� decreases from the maximum to zero;
contrarily, the left �or right� lateral peak of spin � �or ��
changes from zero to a finite value, which provides a possi-
bility of controlling the spin polarization of the transmitting
electrons with an applied field. The spin polarization of
transmitting electrons as a function of the field amplitude V1
is shown in Fig. 5 according to P= �T+−T−� / �T++T−� for the
incident electron with energies Ez=17.8 and 22.6 meV
which are the quasibound levels for spin-up and spin-down
electrons and may be changed by a gate voltage �included in
V0 in our model�. When V1 increases from 0 to 14 meV, the
spin polarization changes from −0.9 to +0.9 for the incident
electron of energy Ez=17.8 meV �from +0.9 to −0.9 for Ez
=22.6 meV�. The characteristics of transmission spectrum
suggest that one can exploit the splitting of the multiplet
spectrum as the basis of a spin-polarization modulator and
control the spin polarization of the current.

For a very narrow potential well, the quasibound levels
disappear and the resonance tunneling via the quasibound
levels cannot take place. However, the electron tunneling
through the first barrier may emit a photon dropping to the
bound state �bound level Eb�0� and is then excited back to
the original state by absorbing a photon to tunnel through the
second barrier. The photon-mediated tunneling is shown in
Fig. 6 for different V1. The asymmetric line shape in Fig. 6 is
the typical characteristic of Fano resonance. The position of
the transmission-probability peak is determined by ��=Ez
−Eb. The width of transmission-probability peak depends on
the amplitude of the field V1 proportional to the coupling
strength between electron and field which leads to the broad-
ening of the energy level. The insets of Fig. 6 correspond to
the spin polarization as a function of the incident energy. For
example, the spin polarization is about 90% for V1
=20 meV, while it can approach to 95% �for the energy Ez
from 1 to 3.5 meV� and even 99% �for the energy Ez from
3.5 to 4.5 meV� with a smaller value of the field amplitude
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V1=10 meV. It is apparent that this spin filtering occurs due
to the fact that the energy window for the electrons of spin
states � is almost closed with respect to the electrons of spin
states � and vice versa.

The spin filtering mechanism for the electrons tunneling
via the quasibound state is similar to that explained in Ref.

11. However, for a narrow well in the absence of the quasi-
bound state, the sharp Fano resonance induced by the bound
state results in higher spin filtering capability. The large spin
polarization occurs in the energy window between the reso-
nance and associated antiresonance �Fig. 6�, in agreement
with the observation in Ref. 30. Since the energy separation
between the resonance and antiresonance depends on the os-
cillating field in the potential well, the energy window width
of the large spin polarization in our model can be controlled
by the applied field, which is essentially different from other
schemes. It is not difficult to experimentally implement this
proposal with the technology of the high-precision epitaxial
semiconductor growth.31

In summary, we have studied the electron transmission
through a symmetric double-barrier structure with Dressel-
haus spin-orbit coupling in the presence of an oscillating
field applied to the potential-well region. Dresselhaus spin-
orbit coupling eliminates the spin degeneracy and results in
the spin splitting, which is determined by the in-plane wave
vector k�� for a given double-barrier structure. The multiplet
structure in the transmission spectrum appears and splits into
two sets due to the multiphoton process. The number of the
resonance peaks in the multiplet spectrum and the distance
between the adjacent peaks can be controlled by adjusting
the amplitude and the frequency of the external oscillating
field, respectively. It is interesting to observe the position
overlap between the left �or right� lateral peak of spin � �or
�� and the central peak of spin � �or ��, as well as the V1
dependence of resonance peaks, which may provide a possi-
bility of controlling the spin polarization of the transmitting
electrons with an applied field. For the narrow well case, the
asymmetric line shape of Fano resonance in the transmission
probability due to the interference between the photon-
mediated transition via the bound state and the direct tunnel-
ing results in the large spin polarization.
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