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The experimental demonstration of the modification of the Casimir force �Proc. K. Ned. Akad. Wet. 51, 793
�1948�� between a gold coated sphere and a single-crystal Si membrane by light pulses is performed. The
specially designed and fabricated Si membrane was irradiated with 514 nm laser pulses of 5 ms width in high
vacuum, leading to a change of the charge-carrier density. The difference in the Casimir force in the presence
and in the absence of laser radiation was measured by means of an atomic force microscope as a function of
separation at different powers of the absorbed light. The total experimental error of the measured force
differences at a separation of 100 nm varies from 10% to 20% in different measurements. The experimental
results are compared with theoretical computations using the Lifshitz theory �Zh. Eksp. Teor. Fiz. 29, 94
�1956� �Sov. Phys. JETP 2, 73 �1956��; Statistical Physics �Pergamon, Oxford, 1981�, Pt. II� at both zero and
laboratory temperatures. The total theoretical error determined mostly by the uncertainty in the concentration
of charge carriers when the light is incident is found to be about 14% at separations less than 140 nm. The
experimental data are consistent with the Lifshitz theory at laboratory temperature, if the static dielectric
permittivity of high-resistivity Si in the absence of light is assumed to be finite. If the dc conductivity of
high-resistivity Si in the absence of light is included into the model of dielectric response, the Lifshitz theory
at nonzero temperature is shown to be experimentally inconsistent at 95% confidence. The demonstrated
phenomenon of the modification of the Casimir force through a change of the charge-carrier density is topical
for applications of the Lifshitz theory to real materials in fields ranging from nanotechnology and condensed
matter physics to the theory of fundamental interactions.
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I. INTRODUCTION

After many years of pure academic research, the Casimir
effect1 is presently of much interest in connection with
applications in nanomechanical devices,2–4 noncontact
friction,5–8 carbon nanotubes,9–12 Bose-Einstein conden-
sation,13,14 and for constraining predictions of modern unifi-
cation theories of fundamental interactions.15–19 These areas
of application were made possible by extensive experimental
investigation of the Casimir force17–26 and the generalization
to real materials of field-theoretical methods which were ap-
plicable to only idealized boundaries �see reviews27,28�.

The basic theory of the Casimir and van der Waals forces
at nonzero temperature proposed by Lifshitz29,30 allows one
to calculate all quantities of physical interest using the di-
electric permittivity of boundary materials along the imagi-
nary frequency axis. This theory was originally developed
for the configuration of two semispaces and was later
extended for any layer structure.31–33 Using the proximity
force theorem,34 Lifshitz-type formulas for the configuration
of a sphere or a cylinder above a plate were obtained and
successfully used for the interpretation of experimental
data.3,17–24,26 For a long time, the lack of exact results for
these configurations made it possible to question the validity
of the comparison of experiment and theory based on the
proximity force theorem. Recently, however, both the exact
analytical35–37 and numerical38 results for the Casimir force
between a sphere �cylinder� and a plate were obtained, dem-
onstrating that at small z the corrections to the proximity
force theorem for both configurations are, in fact, less than

z /R �z is the separation between a cylinder or a sphere of
radius R and a plate�, i.e., less than it was supposed in the
comparison of experiment with theory. Thus, the use of the
proximity force theorem in Refs. 3, 17–24, and 26 and below
is substantiated on the basis of first principles of quantum
field theory.

The vital issue in many applications of the Casimir effect
is how to control the magnitude of the force by changing the
parameters of the system. In this respect, the possibility that
the Casimir force can change sign from attraction to repul-
sion depending on system geometry is of much importance.
It may be used to prevent collapse of small mechanical ele-
ments onto nearby surfaces in nanodevices.39 However, the
Casimir repulsion has yet to be observed experimentally. An
alternative method to control the magnitude of the Casimir
force is to change the material properties of the interacting
bodies. In Ref. 40, the Casimir force was measured acting
between a plate and a sphere coated with a hydrogen-
switchable mirror that becomes transparent upon hydrogena-
tion. Despite expectations, no significant decrease of the Ca-
simir force owing to the increased transparency of the plates
was observed. The negative result is explained by the Lif-
shitz theory which requires the change of the reflectivity
properties within a wide range of frequencies in order to
markedly affect the magnitude of the Casimir force. This
requirement is not satisfied by the hydrogenation.

All modern experiments on the measurement of the Ca-
simir force mentioned above3,17–26,40 used metallic test bod-
ies. Metallic surfaces are necessary to reduce and compen-
sate the effects of residual charges and work function
differences. It is, however, hard to modify their reflectivity
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properties over a sufficiently wide range of frequencies. The
appropriate materials for the control, modification, and fine
tuning of the Casimir force are semiconductors. The reflec-
tivity properties of semiconductor surfaces can be changed in
a wide frequency range by changing the carrier density
through the variation of temperature, using different kinds of
doping, or, alternatively, via the illumination of the surface
with laser light. At the same time, semiconductor surfaces
with reasonably high conductivity avoid accumulation of ex-
cess charges and, thus, preserve the advantage of metals. In
addition, as semiconductors are the basic fabrication materi-
als for nanotechnology, the use of semiconductor surfaces for
the control of the Casimir force will lead to many applica-
tions.

The modification of the Casimir force between a gold
coated plate and a sphere, attached to the cantilever of an
atomic force microscope �AFM�, through the variation of
temperature was considered in Ref. 41. While changing the
temperature to modify the carrier density in semiconductors
is a good method in theory, it leads42 to large systematic
errors in the measurement setup using the AFM. In Ref. 43,
the Casimir force between a gold coated sphere and a single-
crystal B-doped Si plate was measured in high vacuum. It
was found that the force between a metal and a semiconduc-
tor decreases with the increase of separation more quickly
than between two metals. In Ref. 44, the experimental data
for the Casimir force between a gold coated sphere and a
B-doped Si plate were compared with two different theoret-
ical computations, one made for the B-doped Si used and
another one for high-resistivity Si. It was shown that the
computation using the tabulated optical data for high-
resistivity Si is excluded by experiment at 70% confidence,
while the theoretical results computed for the plate used in
experiment are consistent with data. In Ref. 45, the differ-
ence in the Casimir forces between a gold coated sphere and
two P-doped Si plates with different charge-carrier densities
was directly measured at a 95% confidence level. This dem-
onstrates that the change of carrier density due to doping
leads to noticeable modification of the Casimir force.

The most suitable method to change the carrier density in
semiconductors is through the illumination of the surfaces by
laser light �see, e.g., Refs. 46 and 47�. An early attempt to
measure the van der Waals and the Casimir forces between
semiconductors and modify them with light was reported in
Ref. 48. Attractive forces were measured between a glass
lens and a Si plate and also between a glass lens coated with
amorphous Si and a Si plate. However, the glass lens is an
insulator and therefore the electric forces such as due to work
function potential differences could not be controlled. This
might also explain that no force change occurred on illumi-
nation at separations below 350 nm,48 where it should have
been most pronounced.

The present paper contains the detailed results of our ex-
periments on the modification of the Casimir force by the
irradiation of a Si membrane with laser pulses. An observa-
tion of this effect at only one absorbed power was briefly
reported in Ref. 49. Here, we report measurements per-
formed at different absorbed powers and the theoretical
analysis on the accuracy of the obtained results and on the
comparison of experiment with theory. In our experiments,

the carrier density in the Si membrane is changed by the
incident light, and the difference in the Casimir force acting
between that membrane and the gold coated sphere in the
presence and in the absence of light is measured. The experi-
mental error of difference force measurements for the differ-
ent absorbed powers determined at a 95% confidence level
varies between 10% and 20% at a separation of 100 nm and
increases with the increase of separation. The measurement
data collected at different powers of the incident light at the
laboratory temperature T=300 K were compared with the
Lifshitz theory at both zero and laboratory temperatures. The
data are shown to be consistent with theory at laboratory
temperature if in the absence of light the static dielectric
permittivity of Si is assumed to be finite. The Lifshitz theory
at laboratory temperature taking account of the dc conduc-
tivity of high-resistivity Si in the absence of light is excluded
experimentally at a 95% confidence level. Thus, our experi-
ments not only demonstrate the modification of the Casimir
force through the irradiation of a semiconductor surface but
also lead to the important result that the inclusion of zero-
frequency conductivity of high-resistivity Si in the model of
dielectric response results in a contradiction between the Lif-
shitz theory at laboratory temperature and experiment. This
contradiction is caused by different contributions from the
reflection of the transverse magnetic mode on a Si surface at
zero frequency in the absence and in the presence of conduc-
tivity. The obtained conclusion supports recent theoretical
results that the inclusion of dielectric dc conductivity for the
dielectric-dielectric8 and dielectric-metal50,51 configurations
at nonzero temperature leads to contradiction between the
Lifshitz theory and the Nernst heat theorem, and thus such
inclusion is impermissible. At the same time, the experimen-
tal data are shown to be consistent with the Lifshitz theory at
zero temperature, irrespective of whether the dc conductivity
of high-resistivity Si is included or not.

The paper is organized as follows. In Sec. II, the experi-
mental setup and sample preparation are described. Section
III contains the description of the measurement procedure
and obtained experimental results. This includes the calibra-
tion of the setup, the measurement of the lifetime of excited
carriers, the measurement of the difference in the Casimir
force when the light is on and off, and the analysis of the
experimental errors. In Sec. IV, the experimental results are
compared with the theory. Here, the difference in the Casimir
force with and without incident laser light is calculated and
the theoretical errors are analyzed. By combining the experi-
mental and theoretical errors, the quantitative measure of
agreement between experiment and theory at 95% confi-
dence is presented. Section V analyzes the role of the dc
conductivity of high-resistivity Si in the Casimir force. Sec-
tion VI contains our conclusions and discussion.

II. EXPERIMENTAL SETUP AND SAMPLE PREPARATION

Here, we discuss the experimental setup used to demon-
strate the modification of the Casimir force through the ra-
diation induced change in the carrier density. The general
scheme of the setup is shown in Fig. 1. A high vacuum based
AFM was employed to measure the change in the Casimir
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force between a gold coated sphere of diameter 2R
=197.8±0.3 �m and a Si membrane �colored black� in the
presence and in the absence of incident light. An oil-free
vacuum chamber with a pressure of around 2�10−7 Torr
was used. The polystyrene sphere coated with a gold layer of
82±2 nm thickness was mounted at the tip of a 320 �m
conductive cantilever �see Fig. 1�. The Si membrane �see
below for the process of its preparation� was mounted on top
of a piezo which is used to change the separation distance z
between the sphere and the membrane from contact to 6 �m.
The excitation of the carriers in the Si membrane was done
with 5 ms wide light pulses �50% duty cycle�. These pulses
were obtained from a cw Ar ion laser light at 514 nm wave-
length modulated at a frequency of 100 Hz using an acousto-
optic modulator �AOM�. The AOM is triggered with a func-
tion generator. The laser pulses were focused on the bottom
surface of the Si membrane. The Gaussian width of the fo-
cused beam on the membrane was measured to be
0.23±0.01 mm.

The cantilever of the AFM flexes when the Casimir force
between the sphere and the membrane changes depending on
the presence or the absence of incident light on the mem-
brane. This cantilever deflection is monitored with a 640 nm
beam from an additional laser �see Fig. 1� reflected off the
top of the cantilever tip. An optical filter was used to prevent
the interference of the 514 nm excitation light with the can-
tilever deflection signal. The transmission of this filter at
514 nm is 0.001%. Including the less than 1% transmission
through the Si membrane and the diode solid angle of 10−4,
the impact of the 514 nm light leakage leads to less than
10−6 pN changes in the force difference. These changes are
negligibly small as compared with the measured cantilever
deflection signal. The latter leads to a difference signal be-
tween the two photodiodes. The resulting modification of the
Casimir force in response to the carrier excitation is mea-
sured with a lock-in amplifier. The same function generator
signal used to generate the Ar laser pulses is also used as a
reference for the lock-in amplifier.

The most important part of the setup is the Si membrane.
It should be sufficiently thin and of high resistivity to ensure
that the density of charge carriers increases by several orders

of magnitude under the influence of the laser pulses. The Si
membrane should be thick enough to make negligible the
photon pressure of the transmitted light, as the illumination
is incident on the bottom surface of the membrane �see Sec.
IV B for details�. The thickness of the Si membrane has to be
greater than 1 �m, i.e., greater than the optical absorption
depth of Si at the wavelength of the laser pulses. Fabrication
of the few micrometer thick Si membrane with the necessary
properties is described below.

A commercial Si grown on an insulator wafer was used as
the initial product. The insulator in this case is SiO2, which is
the native oxide of Si and thus leads to only small reductions
of the excited carrier lifetime in Si. A layout of the wafer is
shown in Fig. 2. The wafer consists of a Si substrate of
600 �m thickness and a Si top layer of 5 �m thickness �both
are single crystals and have a �100� crystal orientation� with
the buried intermediate SiO2 layer of thickness 400 nm �see
Fig. 2�a��. The Si is p-type doped with relatively high nomi-
nal resistivity of about 10 � cm. The corresponding carrier
density is equal to ñ�5�1014 cm−3.52

The thickness of the Si substrate is reduced to about
200 �m through mechanical polishing. Then, after RCA
cleaning of the surface, the wafer is oxidized at T=1373 K in
a dry O2 atmosphere for a duration of 72 h. As a result, in
addition to the buried SiO2 layer, a thermal oxide layer with

AOM
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Force difference
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FIG. 1. Schematic of the experimental setup, showing its main components �see text�.
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FIG. 2. Fabrication process of Si membrane. �a� The Si substrate
�colored black� with a buried SiO2 layer �white�. �b� The substrate
is mechanically polished and oxidized, and �c� a window in SiO2 is
etched with HF. �d� Next, TMAH is used to etch the Si. �e� Finally,
SiO2 layer is etched away in HF solution to form a clean Si surface.
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a thickness of about 1 �m is formed on both �bottom and
top� sides of the wafer �Fig. 2�b��. This oxide layer serves as
a mask for subsequent tetramethylammonium hydroxide
�TMAH� etching of the Si. First, a hole with the diameter of
0.85 mm is etched with HF in the center of the bottom oxi-
dation layer �Fig. 2�c��. This exposes the Si substrate. Next,
TMAH is used at 363 K to etch the Si substrate through the
hole formed in the oxide mask �Fig. 2�d��. Note that TMAH
selectively etches Si as its etching rate for Si is 1000 times
greater than for SiO2. TMAH etching leads to the formation
of a hole through the Si substrate. Given the selectivity of the
etching, the buried 400 nm oxide is the stop etch layer. Fi-
nally, all the thermal oxidation layers and buried oxidation
layer in the hole are etched away in HF solution to form a
clean Si membrane over the hole as in Fig. 2�e�. The thick-
ness of this membrane was measured to be 4.0±0.3 �m us-
ing an optical microscope. In order for voltages to be applied
to the Si membrane, an ohmic contact is formed by a thin
film of Au deposited on the edge of the membrane followed
by annealing at 673 K for 10 min. The Si membrane was
cleaned with Nanostrip and then passivated by dipping in
49% HF for 10 s. The passivated Si membrane was then
mounted on top of the piezo as described above.

III. MEASURING PROCEDURE AND
EXPERIMENTAL RESULTS

A. Calibration of the setup

All calibrations and other measurements are done at the
same period of time as the measurement of the difference of
Casimir forces and in the same high vacuum apparatus. The
calibration of the deflection signal of the cantilever from the
photodiodes, Sdef, and the determination of the separation on
contact and residual potential difference between the gold
coated sphere and Si membrane are done by measuring the
distance dependence of an applied electrostatic force. For
this purpose, the same function generator �see Fig. 1� is used
for applying voltages to the membrane. For an attractive
force, Sdef�0 and can be measured either as a current or as a
voltage. In addition, a small correction has to be applied to
the separation distance between the gold sphere and the Si
membrane due to the movement of the cantilever. The actual
separation distance z between the bottom of the sphere and
the membrane is given by

z = zpiezo + mSdef + z0. �1�

Here, zpiezo is the distance moved by the piezo, m is the
deflection coefficient in units of nanometer per unit deflec-
tion signal, and z0 is the average separation on contact of the
gold surface and Si membrane. z0 is nonzero due to the sto-
chastic roughness of the surfaces. The complete movement
of the piezo was calibrated using a fiber optic interferometer.
To extend and contract the piezo, continuous triangular volt-
ages between 0.01 and 0.02 Hz are applied to it. Given that
the experiment is done at room temperature, applying static
voltages would lead to piezo creep and loss of position sen-
sitivity. The deflection coefficient m can also be measured by
the application of electrostatic forces between the sphere and
the membrane.

In our measurements, the gold sphere was kept grounded.
The electric contact to the sphere was accomplished by ap-
plying a very thin gold coating to the cantilever. The electro-
static force between the sphere and the membrane is given
by53

Fe�z� = 2��0�V − V0�2�
n=1

�
coth 	 − n coth n	

sinh n	
, �2�

where V is the voltage applied to the Si membrane, V0 is the
residual potential difference between the grounded sphere
and membrane, cosh 	=1+z /R, and �0 is the permittivity of
vacuum. The nonzero value of z at contact, z0, is due to the
surface roughness. In the complete measurement range of the
electrostatic force from contact to 6 �m, Eq. �2� can be re-
arranged to the following simpler form within the limits of
relative error less than 10−4 �Ref. 44�:

F�z� = − 2��0�V − V0�2 �
i=−1

6

ci	 z

R

i

� X�z��V − V0�2, �3�

where

c−1 = 0.5, c0 = − 1.182 60, c1 = 22.2375,

c2 = − 571.366,

c3 = 9592.45, c4 = − 90 200.5, c5 = 383 084,

c6 = − 300 357.

First, 30 different dc voltages between 0.65 and −0.91 V
are applied to the Si membrane. The cantilever deflection
signal is measured as a function of the distance. The 0.02 Hz
triangular wave was applied to the piezo to change the dis-
tance between the sphere and the membrane over a range of
6 �m. Larger applied voltages lead to more cantilever de-
flection and, according to Eq. �1�, to a contact of the two
surfaces at larger zpiezo. The dependence of zpiezo at contact of
the sphere and the membrane on the applied voltage can then
be used to measure the deflection coefficient m. In order to
determine the contact of the two surfaces precisely, 32 768
data points at equal time intervals were acquired for each
force measurement �i.e., the interval between two points was
about 0.18 nm�. In cases where the contact point was be-
tween two neighboring data points, a linear interpolation was
used to identify the exact value. The deflection coefficient
was found to be m=137.2±0.6 nm per unit deflection signal.
The difference in the value of m from previous
measurements24,43,44 is due to the use of the 514 nm filter
which reduced the cantilever deflection signal. The obtained
value of m was used to correct the separation distance in all
measurements in accordance with Eq. �1�. The electrostatic
force resulting from the application of the dc voltages is also
used in the determination of the separation on contact of the
two surfaces. The fit of the experimental force-distance rela-
tion to the theoretical Eq. �3� is done as outlined in our
previous work.24,43,44 The separation distance on contact was
determined to be z0=97 nm. The uncertainty in the quantity
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z0+mSdef from Eq. �1� was found to be 1 nm. This leads to
the same error in absolute separations 
z=1 nm because the
error in piezo calibration is negligibly small.

For the calibration of the deflection signal and the deter-
mination of the residual potential difference between the two
surfaces, an improved method, rather than a simple applica-
tion of the dc voltages to the membrane, was used. This was
done to avoid systematic errors due to scattered laser light. In
addition to the application of the dc voltage to the mem-
brane, described above, square voltage pulse of amplitudes
from 1.2 to −0.6 V and time interval corresponding to a
separation distance between 1 and 5 �m was also applied to
the membrane. Figure 3 shows the deflection signal of the
cantilever in response to both the applied dc voltage and the
square pulse as a function of the separation distance between
the gold sphere and the Si membrane. By measuring only the
difference in signal during the pulse allows one to avoid the
need for a background subtraction. The fit of the difference
signal to Eq. �3� leads to the value of the signal calibration
constant 6.16±0.04 nN per unit deflection signal. The same
fit was used to determine the residual potential difference
between the sphere and the membrane which was found to
be V0=−0.171±0.002 V. The large width of the pulse ap-
plied in addition to the dc voltage allowed confirmation of
the distance independence of the obtained values of the cali-
bration constant and the residual potential difference.

B. Excited carrier lifetime measurement

An independent measurement of the lifetime of the carri-
ers excited in the Si membrane by the pulses from the Ar
laser was performed. For this purpose, a noninvasive optical
pump-probe technique was used.54,55 The same Si membrane
and Ar laser beam modulated by the AOM at 100 Hz to
produce 5 ms wide square light pulses, as used in the Ca-
simir force measurement, were employed as the sample and
the pump, respectively. The diameter of the pump beam on
the sample was measured to be 0.72±0.02 mm. A cw beam

with a 1 mW power at a wavelength of 1300 nm was used as
a probe. The probe beam photon energy is below the band
gap energy of Si and is thus not involved in carrier genera-
tion. This beam was focused to a Gaussian width size w0
=0.135±0.003 mm. Thus, the focal spot size of the probe
beam is much smaller than the focal spot size of the pump
light. This allowed one to measure the lifetime in a homoge-
neous region of excited carriers. The change in the reflected
intensity of the probe beam in the presence and in the ab-
sence of Ar laser pulses was detected with an InGaAs pho-
todiode. The change in reflected power of the probe beam
was monitored as a function of time in an oscilloscope and
found to be consistent with the change of carrier density.
Near normal incidence for the pump and probe beams was
used, with care taken to make sure that the InGaAs photodi-
ode was isolated from the pump beam. The time decay of the
reflected probe beam in response to the square Ar light
pulses is shown in Fig. 4. The change of the reflectivity of
the probe is fitted to an exponential of the form −exp�−t /��,
where � is the effective carrier lifetime. By fitting the whole
5 ms decay of the change in reflected power, the effective
excited carrier lifetime was measured to be �
=0.47±0.01 ms. Note that this time represents both surface
and bulk recombination and is consistent with that expected
for Si. Some dependence of the lifetime of the excited carri-
ers on their concentration was observed. In the first 0.5 ms,
while the concentration is still high enough, the average
value of the excited carrier lifetime was measured to be �
=0.38±0.03 ms. The measured values of the carrier lifetime
will be used in Sec. IV A in the theoretical computations of
the Casimir force differences for the comparison with several
measurements having varying power of the Ar laser.

C. Experimental results and error analysis

Here, we present the determination of the difference in the
Casimir force resulting from the irradiation of the Si mem-
brane with 514 nm laser pulses. In fact, it is the difference in
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FIG. 3. The deflection signal of the cantilever in response to the
dc voltage and square voltage pulse applied to the Si membrane as
a function of separation.
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FIG. 4. The change of the reflectivity after the termination of the
laser pulse.
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the total force �Casimir and electric� which is measured. As
was indicated above, even with no applied voltages there is
some residual potential difference V0 between the sphere and
the membrane. The preliminary value of V0 was determined
during the calibration of the setup in the absence of laser
pulses. In the presence of pulses �even during the dark
phases of a pulse train�, the values of the residual potential
difference can be different. We represent these residual po-
tential differences during the bright and dark phases of a
laser pulse train �the latter is not exactly equal to the one
determined in calibration� V0

l and V0, respectively. During
the bright phases of the pulse train, we apply to the Si mem-
brane the voltage Vl and during the dark phases the voltage
V. Using Eq. �3� for the electric force, we can represent the
difference in the total force �electric and Casimir� for the
states with and without carrier excitation in the following
form:


Ftot�z� = X�z���Vl − V0
l �2 − �V − V0�2� + 
FC�z� . �4�

Here,


FC�z� = FC
l �z� − FC�z� �5�

is the difference in the Casimir force and FC
l �FC� is the

Casimir force with �without� light. The difference in the total
force in Eq. �4� was measured by the lock-in amplifier with
an integration time constant of 100 ms, which corresponds to
a bandwidth of 0.78 Hz. The measurement procedure is de-
scribed below.

First, we kept V=const and changed Vl. The parabolic
dependence of 
Ftot on Vl in Eq. �4� was measured at differ-
ent separations z. Care should be taken to apply only small
voltage amplitudes �up to a few tens of millivolts� so as to
keep the space charge region negligible. At every measured
separation distance, 
Ftot is plotted as a function of Vl. As is
seen in Eq. �4�, the value of Vl where the parabola reaches a
maximum is V0

l �recall that X�z��0�. In this way, the value
V0

l =−0.303±0.002 V was found and shown to be indepen-
dent of the separation from 100 to 500 nm where the differ-
ence in the Casimir force can be measured. Next, we kept
Vl=const, changed V, and measured the parabolic depen-
dence of 
Ftot on V at different separations. The value of V
where parabolas reach minima is V0=−0.225±0.002 V.
These values of the residual potential difference between the
sphere and the membrane in the presence and in the absence
of excitation light were substituted in Eq. �4�. The small
change of around 78 mV in the residual potential difference
between the sphere and the membrane in the presence and in
the absence of excitation light is primarily due to the screen-
ing of surface states by few of the optically excited electrons
and holes. The above small value is equal to the change in
band bending at the surface. It is consistent with the fact that
almost flat bands are obtained at the surface with the surface
passivation technique used �see, e.g., Refs. 56 and 57�.

Then, other voltages �Vl ,V� were applied to the Si mem-
brane and the difference in the total force 
Ftot was mea-
sured as a function of separation. Data were collected from
contact at equal time intervals corresponding to three points
per 1 nm �i.e., in 1209 points within the separation interval

from 100 to 500 nm�. From these measurement results, the
difference in the Casimir force 
FC

expt�z� was determined
from Eq. �4�. This procedure was repeated with some num-
ber of pairs �J� of different applied voltages �Vl ,V� and at
each separation the mean value �
FC

expt�z�� was found. In
Fig. 5, the experimental data for �
FC

expt�z�� as a function of
separation are shown by dots for different absorbed laser
powers: Peff=9.3 mW �J=31�, 8.5 mW �J=41�, and 4.7 mW
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FIG. 5. The differences of the Casimir forces in the presence
and in the absence of light versus separation for different absorbed
powers: �a� 9.3 mW, �b� 8.5 mW, and �c� 4.7 mW. The measured
differences �
FC

expt� are shown as dots, differences calculated using
the Lifshitz formula at T=300 K, 
FC

theor, and at T=0, 
FC
theor�T

=0�, as the solid and short-dashed lines, respectively, and those
calculated including the dc conductivity of high-resistivity Si,


F̃C
theor, as the long-dashed lines.
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�J=33� in Figures 5�a�–5�c�, respectively. The corresponding
incident powers were 15.0, 13.7, and 7.6 mW, respectively.
As expected, the magnitude of the Casimir force difference
has the largest values at the shortest separations and de-
creases with the increase of separation. It also decreases with
the decrease of the absorbed laser powers �the solid, short-,
and long-dashed lines in Fig. 5 are explained in Sec. IV
devoted to the comparison with theory�.

Now, we proceed with the analysis of the experimental
errors. The variance of the mean difference in the Casimir
force is defined as

s�
FC
expt��zi� = � 1

J�J − 1��j=1

J

�
FC
expt�zij� − �
FC

expt�zi���21/2

,

�6�

where i is the number of points in one set of measurements
changing from 1 to 1209, and j is the number of the pair of
the applied voltages. Using Student’s t distribution with a
number of degrees of freedom f =30 �or 40 and 32 for the
measurements with different absorbed powers� and choosing
�=0.95 confidence, we obtain p= �1+�� /2=0.975 and
tp�f�=2.00. Thus, the absolute random error in the measure-
ment of the difference Casimir force is given by


rand�
FC
expt�z�� = s�
FC

expt��z�tp�f� . �7�

In this experiment, the random error is separation dependent.
It is presented in Fig. 6 as a function of separation for the
three different measurements with different absorbed laser
powers �lines a, b, and c correspond to decreasing power
indicated above�. As is seen in Fig. 6, the random error is
rather different for different measurements. It is the lowest
for measurement b which was done with 8.5 mW absorbed
power. In this measurement, the random error decreases from
0.32 pN at z=100 nm to 0.23 pN at z=250 nm and pre-
serves the latter value at larger separations.

The main systematic error is due to the instrumental noise
and is equal to 
1

syst�
FC
expt��0.08 pN independent of sepa-

ration. The systematic error determined from the resolution
error in data acquisition, 
2

syst�
FC
expt��0.02 pN, also does

not depend on separation. The calibration error, 
3
syst�
FC

expt�,

depends on separation and is equal to 0.6% of the measured
difference in the Casimir force. These systematic errors are
random quantities characterized by a uniform distribution.
They can be combined at a given confidence probability �
with the help of statistical criterion58


syst�
FC
expt�

= min��
i=1

q


i
syst�
FC

expt�,k�
�q���

i=1

q

�
i
syst�
FC

expt��2 ,

�8�

where k�
�q� is a tabulated coefficient. In our experiment, there

are q=3 systematic errors listed above and at �=0.95 �95%
confidence level� k0.95

�3� =1.12. As a result, from Eq. �8� we
arrive at the total systematic error for all three measurements
varying from 0.092 to 0.095 pN.

The total experimental error of the force difference,

tot(
FC

expt�z�), at 95% confidence can be found by the com-
bination of random and systematic errors. This is done using
the statistical rule described in Ref. 58 and applied to the
Casimir force measurements in Refs. 18, 44, and 59. Accord-
ing to this rule, the total error is equal to the random one if,
as is the case in our experiments, the inequality

r�z� �

syst

„
FC
expt�z�…

s�FC
expt��z�

 0.8 �9�

is satisfied. Thus, the total experimental error in the values of

FC

expt�z� for all three measurements as a function of the
separation is presented in Fig. 6. As a result, the relative
experimental error changes from 10% to 20% at a separation
z=100 nm and from 25% to 33% at a separation z
=180 nm for different absorbed laser powers. This allows us
to conclude that the modulation of the dispersion force with
light is demonstrated at a high reliability and confidence. The
observed effect cannot be due to the mechanical motion of
the membrane. This is because membrane movement due to
heating �in our case less than 1 °C� would lead to a different
force-distance relationship for both electrostatic force and
the Casimir force in disagreement with our observation and
the confirmation of the distance independence of V0 and V0

l .
The temperature rise of less than 1 °C is estimated based on
the net thermal energy increase in the Si membrane. The
absorption of photons during the course of the optical pulse
increases the thermal energy of the membrane, while con-
ductive and radiative heat outflow to the Si around the mem-
brane and surroundings leads to a decrease in its thermal
energy. The net change results in less than 1 °C. The latter
would lead to a negligible, less than 10−6 relative expansion
in the diameter of the membrane.

In order to account for roughness, the surface topography
of the sphere and membrane was characterized using the
AFM. Images resulting from the surface scan of the gold
coating on the sphere demonstrate stochastically distributed
roughness peaks with heights up to 32 nm. Table I contains
the fractions vk of the gold coating with heights hk �k
=1,2 , . . . ,33�. The surface scan of the Si surface demon-
strates much smoother relief with maximum heights equal to
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FIG. 6. The random errors �which are equal to the total� versus
separation for the measurements with the different absorbed pow-
ers: a, 9.3 mW; b, 8.5 mW; and c, 4.7 mW.
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1.68 nm. The fractions vl of the Si surface with heights hl

�l=1,2 , . . . ,17� are presented in Table II. The roughness data
are used in Sec. IV in theoretical computations.

IV. COMPARISON OF THE EXPERIMENTAL RESULTS
WITH THE THEORY

A. Calculation of the Casimir force difference

The Casimir force acting between a large gold sphere of
radius R and a plane Si membrane can be calculated by
means of the Lifshitz formula,29,30,60 along with the use of
the proximity force theorem34–38

FC�z� = kBTR�
l=0

� 	1 −
1

2
�l0


��
0

�

k�dk��ln�1 − r�
�1���l,k��r�

�2���l,k��e−2qlz�

+ ln�1 − r�
�1���l,k��r�

�2���l,k��e−2qlz�� . �10�

Here, kB is the Boltzmann constant. The reflectivity coeffi-
cients for gold �k=1� and Si �k=2� for the two independent
polarizations of electromagnetic field �transverse magnetic
and transverse electric modes� are defined by

r�
�k���l,k�� =

�l
�k�ql − kl

�k�

�l
�k�ql + kl

�k� , r�
�k���l,k�� =

kl
�k� − ql

kl
�k� + ql

, �11�

where �l=2�kBTl /� are the Matsubara frequencies, �l
�k�

=��k��i�l�, ��k���� are the frequency-dependent dielectric per-
mittivities of gold and Si, and the following notations are
introduced:

ql = 	 �l
2

c2 + k�
2 
1/2

, kl
�k� = ���k��i�l�

�l
2

c2 + k�
2 �1/2

. �12�

The dielectric permittivities of gold and of high-resistivity
Si in the absence of laser light were computed18,61 by means
of the dispersion relation

��k��i�� = 1 +
2

�
�

0

�

d�
� Im ��k����

�2 + �2 , �13�

where Im ��k���� are taken from the tabulated optical data for
the complex index of refraction.52 High-precision results for
��1��i�� �gold� are presented in Ref. 61. For high-resistivity

TABLE I. Fractions vk of Au surface covered by roughness with
heights hk.

k
hk

�nm� vk

1 0 7�10−5

2 1 6.0�10−4

3 2 6.3�10−4

4 3 7.0�10−4

5 4 5.0�10−4

6 5 2.1�10−3

7 6 1.4�10−3

8 7 4.0�10−3

9 8 7.0�10−3

10 9 8.0�10−3

11 10 1.2�10−2

12 11 1.3�10−2

13 12 1.3�10−2

14 13 2.0�10−2

15 14 2.7�10−2

16 15 3.6�10−2

17 16 4.4�10−2

18 17 6.0�10−2

19 18 7.4�10−2

20 19 8.6�10−2

21 20 8.7�10−2

22 21 8.8�10−2

23 22 0.111

24 23 0.1

25 24 7.7�10−2

26 25 5.4�10−2

27 26 3.5�10−2

28 27 2.0�10−2

29 28 9.0�10−3

30 29 4.0�10−3

31 30 3.0�10−3

32 31 1.0�10−3

33 32 1.0�10−3

TABLE II. Fractions vl of Si surface covered by roughness with
heights hl.

l
hl

�nm� vl

1 0 5.0�10−4

2 0.18 1.5�10−3

3 0.28 2.0�10−3

4 0.38 4.0�10−3

5 0.48 7.0�10−3

6 0.58 5.0�10−3

7 0.68 1.0�10−2

8 0.78 4.0�10−2

9 0.88 8.0�10−2

10 0.98 0.15

11 1.08 0.22

12 1.18 0.215

13 1.28 0.147

14 1.38 8.3�10−2

15 1.48 2.4�10−2

16 1.58 9.0�10−3

17 1.68 2.0�10−3
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Si, the behavior of ��2��i�� as a function of � is shown by
the long-dashed line in Figs. 7�a� and 7�b�. In particular,
��2��0��11.66.

On irradiation of the Si membrane by light, the equilib-
rium value of the carrier density is rapidly established during
a period of time much shorter than the duration of the laser
pulse. Therefore, we assume that there is an equilibrium con-
centration of pairs �electrons and holes� when the light is
incident. Thus, in the presence of laser radiation, the dielec-
tric permittivity of Si along the imaginary frequency axis can
be represented in the commonly used form43–45,47,49,52

�l
�2��i�� = ��2��i�� +

�p
�e�2

��� + ��e��
+

�p
�p�2

��� + ��p��
, �14�

where �p
�e,p� and ��e,p� are the plasma frequencies and the

relaxation parameters for electrons and holes, respectively.

The values of the relaxation parameters ��e��1.8
�1013 rad/s and ��p��5.0�1012 rad/s can be found in Ref.
47. The plasma frequencies can be calculated from

�p
�e,p� = 	 ne2

me,p
* �0


1/2

, �15�

where the effective masses are47 mp
* =0.2063me and me

*

=0.2588me, me is the electron mass, and n is the concentra-
tion of charge carriers.

The value of n for the different absorbed powers can be
calculated in the following way. First, we note that for a
membrane of d=4 �m thickness, n does not depend on the
depth. The reason is that a uniform concentration in this
direction is established even more rapidly than the equilib-
rium discussed above.47 In fact, the assumption on a uniform
charge-carrier density in the Si membrane is justified due to
the long carrier diffusion lengths and the ability to obtain
almost defect-free surfaces in silicon through hydrogen
passivation.62 Next, we approximately model the central part
of the Gaussian beam of diameter w by a uniform cylindrical
beam of the same diameter. The power contained in this
cylindrical beam, Pw

eff, is equal to the power in the central
part of the Gaussian beam with a diameter w. Elementary
calculation using the Gaussian distribution leads to Pw

eff

=0.393Peff. The power Pw
eff is absorbed uniformly in the cen-

tral part of the Si membrane of diameter w having a volume
V=�w2d /4. Incidentally, the central region of the membrane
with a diameter w contributes almost 100% �99.9999% �Ref.
63�� of the total Casimir force acting between a membrane
and a sphere. At equilibrium, the number of created charge-
carrier pairs per unit time per unit volume Pw

eff / ���V�, where
�=3.66�1015 rad/s is the frequency of Ar laser light, is
equal to the recombination rate of pairs per unit volume n /�.
Thus, at equilibrium

n =
4Pw

eff�

��d�w2 . �16�

Equations �15� and �16� allow us to calculate the densities
of charge carriers na= �2.1±0.4��1019 cm−3, nb= �2.0±0.4�
�1019 cm−3, and nc= �1.4±0.3��1019 cm−3 and the respec-
tive plasma frequencies

�p,a
�e� = �5.1 ± 0.5� � 1014 rad/s,

�p,a
�p� = �5.7 ± 0.6� � 1014 rad/s,

�p,b
�e� = �5.0 ± 0.5� � 1014 rad/s,

�p,b
�p� = �5.6 ± 0.5� � 1014 rad/s,

�p,c
�e� = �3.7 ± 0.4� � 1014 rad/s,

�p,c
�p� = �4.1 ± 0.4� � 1014 rad/s �17�

in all measurements a, b, and c with different powers of the
absorbed laser light. In the calculations of charge-carrier
densities using Eq. �16�, we have used �a=�b
=0.38±0.03 ms and �c=0.47±0.01 ms in accordance with
the measurement results in Sec. III B, taking into account the
fact that � decreases when n increases. Recall that �a and �b
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FIG. 7. �a� The dielectric permittivity of the Si membrane along
the imaginary frequency axis in the absence of light �the long-
dashed line is for the model of Si with a finite static permittivity and
the short-dashed line includes dc conductivity of high-resistivity Si�
and in the presence of light for different absorbed powers �solid
lines: a, 9.3 mW; b, 8.5 mW; and c, 4.7 mW�. �b� The same is
shown on an enlarged scale in the region of the first Matsubara
frequency �1.
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were obtained from the first 0.5 ms of the time decay. Our
value for �c obtained using the whole 5 ms decay may lead
to a minor underestimation of the carrier density, a fact in-
cluded in the resulting 21% error in the value of nc. Note that
the above values of the relaxation parameters ��e� and ��p� do
not depend on the absorbed power47 and can be used in all
measurements.

In Fig. 7�a�, the dielectric permittivity of Si in the pres-
ence of laser radiation �Eq. �14�� is shown by solid lines a, b,
and c as a function of imaginary frequency for the measure-
ments with different absorbed powers a, b, and c, respec-
tively. The lines a and b in Fig. 7�a� almost coincide. The
region around the first Matsubara frequency �1 at T=300 K
is shown in Fig. 7�b� on an enlarged scale.

The obtained values of ��1��i��, ��2��i��, and �l
�2��i�� were

substituted in the Lifshitz formula �10�, and the difference of
the Casimir forces 
FC�z� from Eq. �5� in the presence and
in the absence of laser light was computed at the laboratory
temperature T=300 K. Note that there is a discussion in the
literature on the correct value of the reflection coefficient for
gold r

�

�1��0,k�� at zero frequency �see, e.g., Refs. 17–19 and
64–67�. Our calculation, however, does not depend on the
chosen value of r

�

�1��0,k�� because in Eq. �10� it is multiplied
by r

�

�2��0,k��=0 for the silicon. In the absence of light, the
latter equality holds for any true dielectric with finite static
dielectric permittivity. In the presence of light, the equality
r

�,l
�2� �0,k��=0 also holds true as is seen from the substitution

of Eq. �14� into Eq. �11�. In both cases, at zero frequency
only the transverse magnetic mode of the electromagnetic
field contributes to the result. Note that for Si in the absence
and in the presence of light for the transverse magnetic
mode,

r�
�2��0,k�� =

��2��0� − 1

��2��0� + 1
and r�,l

�2��0,k�� = 1,

�18�

respectively. Finally, the Lifshitz formula �10� was used to
compute the difference in the Casimir forces at all experi-
mental separations zi �1 i1209� and for the three mea-
surements performed at different absorbed powers.

The results of these calculations should be corrected for
the presence of surface roughness.68 The stochastic rough-
ness on our test bodies can be taken into account using the
procedure presented in detail in Refs. 18, 24, 43, and 44.
First, the zero roughness levels on both gold �H0

�1�� and Si
�H0

�2�� are determined from

�
k=1

33

�H0
�1� − hk�vk = �

l=1

17

�H0
�2� − hl�vl = 0, �19�

where the heights hk, hl and the fractions of the surfaces
covered by roughness with these heights are given in Tables
I and II, respectively. From Eq. �19�, it follows that H0

�1�

=20.0 nm and H0
�2�=1.1 nm. The absolute separation z be-

tween the test bodies is, in fact, measured between the zero
roughness levels. Then, the theoretical values of the differ-

ence Casimir force with account of the surface roughness are
calculated as the geometric averaging


FC
theor�zi� = �

k=1

33

�
l=1

17

vkvl
FC�zi + H0
�1� + H0

�2� − hk − hl� ,

�20�

where 
FC�z� was computed by the Lifshitz formula for per-
fectly shaped bodies with and without light on a Si mem-
brane. In the present experiments, the contribution from
roughness correction is very small. Thus, at z=100 nm, it
contributes only 1.2% of the calculated 
FC

theor�z�. At z
=150 nm, the contribution from surface roughness decreases
to only 0.5% of the calculated force difference. Similar to
Refs. 18, 24, and 44, it is easily seen that the contribution
from the nonadditive, diffraction-type effects to roughness
correction �which is not taken into account in Eq. �20�� is
negligibly small.

The results of the numerical computations of the differ-
ence Casimir force between rough surfaces 
FC

theor�z� are
shown as solid lines in Figs. 5�a�–5�c� for the measurements
with different powers of the absorbed laser light. They are in
very good agreement with the experimental data shown by
dots in the same figures �see the following sections for the
quantitative measure of agreement between experiment and
theory�.

For completeness, we also present the results of theoreti-
cal computations using the Lifshitz formula at zero tempera-
ture. They are obtained from Eq. �10� by changing the dis-
crete Matsubara frequencies �l for continuous � and by
replacement of the summation for integration,

kBT�
l=0

� 	1 −
1

2
�l0
 →

�

2�
�

0

�

d� . �21�

Following the same procedure as at T=300 K, we first cal-
culate 
FC�z ;T=0� using the Lifshitz formula and then find

FC

theor�z ;T=0� including the effect of surface roughness
with Eq. �20�. The results of these computations are shown
as short-dashed lines in Figs. 5�a�–5�c�. As is seen in the
figure, in all cases the short-dashed lines describe a slightly
larger magnitude of the Casimir force difference than at T
=300, in rather good agreement with the experimental data
shown as dots �see the next sections for further discussion�.

B. Analysis of theoretical errors

The theoretical errors in the computation of the Casimir
force acting between a sphere and a membrane were dis-
cussed in detail in Refs. 24 and 44. The major source of the
theoretical uncertainty in this experiment is the error in the
concentration of charge carriers n when the light is on. From
Sec. IV A, this error is of about 20%. Calculations using the
Lifshitz formula show that the resulting relative error in the
difference Casimir force, �1�
FC

theor��0.12, i.e., is equal to
approximately 12% and does not depend on separation. The
error due to uncertainty of experimental separations zi, in
which the theoretical values 
FC

theor should be computed, is
equal to 3
z /z and takes the maximum value of 3% of the
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Casimir force at the shortest separation of z=100 nm �recall
that according to Sec. III A 
z=1 nm�. This leads to only
2% error in the difference of the Casimir force at z
=100 nm �so that �2�
FC

theor��0.02� and to smaller errors at
larger separations. The other sources of theoretical errors,
discussed in Refs. 24 and 44, such as sample-to-sample
variation of the tabulated optical data in Au, use of the prox-
imity force theorem, patch potentials, nonlocal effects, and
finite thickness of the gold coating on the sphere contribute
negligible amounts to the error in 
FC

theor. Thus, for example,
using the Lifshitz formula for a polystyrene sphere covered
by a gold layer of 82 nm thickness instead of Eq. �10� writ-
ten for a solid gold sphere, we would get only a 0.03% de-
crease in the Casimir force magnitude.

A specific uncertainty which is present in this experiment
is connected with the pressure of light transmitted through
the membrane and incident on the bottom of the sphere �see
Sec. II�. This effect is present only during the light phase of
the pulse train and can be easily estimated. The maximum
intensity of the laser light incident on a sphere section with
radius 0rR parallel to the membrane is

I�r� =
2	Peff

�w2 e−2r2/w2
, �22�

where 	 is the fraction of the absorbed power transmitted
through the membrane. The value of 	 is given by

	 = re−d/lopt � 0.006 41, �23�

where lopt=1 �m �see Sec. II� and the transmission coeffi-
cient r�0.35.

The force due to light pressure acting on the sphere in
spherical coordinates takes the form

Fp =
4�R2

c
�

0

�/2

d�I�R sin ��cos2 � sin � . �24�

Substituting Eq. �22� into Eq. �24� and integrating, one ob-
tains

Fp =
2	Peff

c
�1 − e−2R2/w2��w Erfi��2R/w�

2�2R
� , �25�

where Erfi�z� is the imaginary error function.
For the absorbed powers used in three experiments �Peff

=9.3, 8.5, and 4.7 mW, respectively�, Eq. �25� leads to the
following maximum forces which may act on the sphere due
to light pressure: Fp=0.085, 0.078, and 0.043 pN. The force
due to light pressure can be taken into account as one more
error in the theoretical evaluation of the Casimir force differ-
ence 
FC

theor. At a separation z=100 nm, the respective rela-
tive error, �3�
FC

theor�, is equal to 2.3%, 2.7%, and 1.5% for
the three absorbed powers. At z=200 nm, the relative theo-
retical error in 
FC

theor due to light pressure increases up to
8.9%, 8.7%, and 5.0%, respectively.

All three errors discussed above can be considered as the
random quantities described by the same distribution law
which is close to a uniform distribution. For this reason, the

statistical criterion58 used in Sec. III C can be applied once
more, giving the total relative theoretical error in the differ-
ence Casimir force,

�tot�
FC
theor� = min��

i=1

q

�i�
FC
theor�,k�

�q���
i=1

q

��i�
FC
theor��2 ,

�26�

with q=3 and k0.95
�3� =1.12. The resulting total absolute theo-

retical error,


tot�
FC
theor� = �
FC

theor��tot�
FC
theor� , �27�

is presented in Fig. 8 as a function of separation for the three
experiments with decreasing power of the absorbed laser
light �lines a, b, and c, respectively�. As is seen in this figure,
the total theoretical errors for measurements a and b are
almost equal, and for measurement c this error is slightly
lower. The relative total theoretical error changes from
13.5% to 13.7% at z=100 nm and from 13.7% to 14.4% at
z=140 nm for the three different absorbed powers. At z
=200 nm, the relative total theoretical error ranges from
14.9% to 17.2% for the different absorbed powers.

C. Measure of agreement between experiment and theory

In the foregoing sections, we have independently found
the total experimental �Sec. III C� and theoretical �Sec. IV B�
errors in the difference of the Casimir force in the presence
and in the absence of laser light excited carriers at 95% con-
fidence. To compare experiment with theory, we consider the
quantity 
FC

theor−
FC
expt and determine its absolute error

�0.95�z� as a function of separation at the confidence of 95%.
This can be done in the same procedure as in Refs. 18, 44,
and 59 applying the statistical criterion58 and using the data
in Figs. 6 and 8,

�� = min�
tot�
FC
expt�

+ 
tot�
FC
theor�,k�

�2���
tot�
FC
expt��2 + �
tot�
FC

theor��2� .

�28�

Here, k0.95
�2� =1.10. The resulting confidence intervals
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FIG. 8. The total theoretical errors versus separation for mea-
surements with different absorbed powers: a, 9.3 mW; b, 8.5 mW;
and c, 4.7 mW.

CONTROL OF THE CASIMIR FORCE BY THE… PHYSICAL REVIEW B 76, 035338 �2007�

035338-11



�−�0.95�z� ,�0.95�z�� are shown in Figs. 9�a�–9�c� as the solid
lines for the three measurements with the largest, intermedi-
ate, and smallest powers, respectively.

The differences between the theoretical values of 
FC
theor

�computed in Sec. IV A at T=300 K� and experimentally
measured �
FC

expt� are shown in Fig. 9 by dots labeled 1
�once again, dots in Figs. 9�a�–9�c� are related to the three
measurements with different powers�. As seen in Fig. 9,

practically all dots labeled 1 are well inside the confidence
intervals at all separation distances. This means that the Lif-
shitz theory at nonzero temperature, using the dielectric per-
mittivity of high-resistivity Si ��2��i�� in the absence of laser
light and the dielectric permittivity �l

�2��i�� given by Eq. �14�
in the presence of light, is consistent with experiment. The
consistency of the experiment with the theory is preserved
when the theoretical values of 
FC

theor are computed at zero
temperature �see the short-dashed lines in Figs. 5�a�–5�c� and
the discussion in Sec. IV A�. The reason is that the thermal
correction to the Casimir force in the region of small sepa-
rations under consideration is practically negligible and the
thermal effect cannot be resolved taking into consideration
the experimental and theoretical errors reported above.

For illustrative purposes, the agreement between experi-
ment and theory is presented in a more standard form in Fig.
10. Here, a more narrow separation interval from
100 to 150 nm is considered and each third experimental
point from the measurement b is plotted together with its
error bars �±
z , ±
tot�
FC

expt�� shown as crosses �there are
too many points to present all of them in this form�. The
theoretical force difference 
FC

theor computed by the Lifshitz
formula at T=300 K is shown by the solid line. It is seen that
the experimental data are in very good agreement with the
theory, in confirmation of the conclusion made above using
Fig. 9.

V. PROBLEM OF dc CONDUCTIVITY
OF HIGH-RESISTIVITY Si IN THE LIFSHITZ THEORY

In Sec. IV A, the dielectric response of high-resistivity Si
in the absence of excitation laser light was described by the
function ��2��i�� having a finite static value ��2��0��11.66. It
is common knowledge, however, that dielectrics have some
nonzero dc conductivity �0 at any nonzero temperature. This
conductivity decreases with the decrease of temperature as
�0�exp�−b /T�, where b can be expressed in terms of the
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FIG. 9. Theoretical minus experimental differences in the Ca-
simir force versus separation for the measurements with different
absorbed powers, �a� 9.3 mW, �b� 8.5 mW, and �c� 4.7 mW, are
shown as dots. The results computed at T=300 K using the model
with a finite static permittivity of high-resistivity Si are labeled 1
and those including the dc conductivity are labeled 2. Solid lines
show the 95% confidence intervals.
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FIG. 10. The experimental differences in the Casimir force with
their experimental errors are shown as crosses. Solid and dashed
lines represent the theoretical differences computed at T=300 K
using the model with a finite static permittivity of high-resistivity Si
and that including the dc conductivity, respectively.

CHEN et al. PHYSICAL REVIEW B 76, 035338 �2007�

035338-12



band gap or dopant activation energy. To take the dc conduc-
tivity into account in the Lifshitz theory, the dielectric per-
mittivity of Si along the imaginary frequency axis ��2��i��
used in Sec. IV A should be replaced with

�̃�2��i�� = ��2��i�� +
�̃p

�p�2

��� + ��p��
. �29�

The value of the plasma frequency in Eq. �29� is found by
substituting the concentration of carrier density ñ�5
�1014 cm−3 �see Sec. II� into Eq. �15� with the result �̃p

�p�

�2.8�1012 rad/s. Note that for n1.0�1017 cm−3, the
value of the relaxation parameter has an insignificant effect
on the magnitude of the Casimir force.47 Because of this, in
Eq. �29� the same value of ��p� as in Eq. �14� is used. The
behavior of �̃�2� as a function of � is plotted in Fig. 7�a� by
the short-dashed line.

The presence of some low dc conductivity in dielectric
materials was used in Refs. 7 and 69 to obtain a large effect
of the van der Waals friction which could bring the observa-
tions of Ref. 6 in agreement with theory. In Ref. 8 for two
dielectric plates and in Refs. 50 and 51 for one metal and one
dielectric plate, it was proved, however, that the inclusion of
the dc conductivity for dielectrics into the Lifshitz theory
leads to the violation of the third law of thermodynamics �the
Nernst heat theorem�. Thus, it is not acceptable from a the-
oretical point of view.

Our experiments on the modification of the Casimir force
with laser pulses clarify the problem whether or not the dc
conductivity of high-resistivity Si should be taken into ac-
count in the Lifshitz theory of the Casimir and van der Waals
forces. For this purpose, we have completely repeated the
theoretical computations of the difference Casimir force
made in Sec. IV A, replacing the dielectric permittivity of Si
��2��i��, used there, for �̃�2��i�� given in Eq. �29�. The ob-

tained theoretical results for 
F̃C
theor versus separation are

shown by the long-dashed lines in Figs. 5�a�–5�c� for all the
three measurements with different powers of the absorbed
light. As is seen in Fig. 5, all the long-dashed lines are far
outside both the experimental data shown as dots and from
the solid lines calculated using the Lifshitz theory disregard-
ing dc conductivity of high-resistivity Si at the laboratory
temperature. Notice that the computational results at T=0
�shown by the short-dashed lines in Fig. 5� do not depend on
whether the dc conductivity is included in the dielectric per-
mittivity used to describe the high-resistivity Si.

To make a quantitative conclusion on the measure of
agreement between the data and two models with and with-
out inclusion of dc conductivity of high-resistivity Si, we

have plotted in Figs. 9�a�–9�c� the differences 
F̃C
theor

− �
FC
expt�, where 
F̃C

theor was computed including the dc con-
ductivity according to Eq. �29�. These differences are shown
as dots labeled 2 in Figs. 9�a�–9�c�. As is seen in Figs. 9�a�
and 9�b�, the model with included dc conductivity of high-
resistivity Si is excluded experimentally at 95% confidence
within the region from 100 to 250 nm. In Fig. 9�c�, it fol-
lows that this model is excluded at 95% confidence within
the separation region from 100 to 200 nm.

The same conclusion, that the model of high-resistivity Si,
which includes dc conductivity, is inconsistent with our ex-
periments on the optically modulated Casimir force, is con-

firmed also in Fig. 10, where the quantity 
F̃C
theor versus

separation is plotted as the dashed line. It can be clearly
observed that the dashed line is not only far away from the
solid line based on theory neglecting the Si dc conductivity
in the absence of excitation light but also distant from all
error bars representing the experimental data.

The physical explanation for the deviations of the long-
dashed lines from the solid lines in Figs. 5�a�–5�c� and 10 is
as follows. When the dc conductivity of Si is taken into
account, the equalities r

�

�2��0,k��=r
�,l
�2� �0,k��=0 follow from

the substitution of Eqs. �14� and �29� into Eq. �11�. Once
again, at zero frequency only the transverse magnetic mode
contributes to the result. Here, however, for Si both in the
absence and in the presence of light the equations

r̃�
�2��0,k�� = 1 and r̃�,l

�2��0,k�� = 1 �30�

hold. It is exactly this change in the magnitude of the trans-
verse magnetic reflection coefficient r�

�2��0,k��, as given in
Eq. �18�, with r̃�

�2��0,k�� in Eq. �30� that leads to the devia-
tion of the long-dashed lines from the respective solid lines
in Figs. 5�a�–5�c� and 10. It seems somewhat surprising that
the use of the permittivity �̃�2��i�� in Eq. �29�, which can be
considered as more exact than ��2��i��, leads to the discrep-
ancy between experiment and theory. This is, in fact, one
more observation that there are puzzles concerning the appli-
cability of the Lifshitz theory to real materials. In the case of
metals, the Drude description of conduction electrons in the
thermal Casimir force was excluded experimentally in a se-
ries of experiments.17–19 It also leads to the contradiction
with the Nernst heat theorem for perfect crystal lattices.66

For metals, the deviation of the experimental results from the
Drude model approach and the violation of the Nernst theo-
rem are explained by the vanishing contribution from the
transverse electric mode at zero frequency. The present ex-
periment dealing with semiconductors is not sensitive
enough to detect this effect. The effect reported here arises
due to the difference in the contributions of the zero-
frequency transverse magnetic mode. These contributions, as
were shown above, depend on whether or not the dc conduc-
tivity of Si in the absence of light is taken into account.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we demonstrate that it is possible to control
the Casimir force between the gold coated sphere and the Si
membrane by the irradiation of Si with laser pulses. On ab-
sorption of light, the carrier density increases, leading to an
increase in the magnitude of the Casimir force. This change
in the Casimir forces was investigated as a function of sepa-
ration between the test bodies and the power of the absorbed
light. The experiments were performed with a specially pre-
pared single-crystal Si membrane in an oil-free vacuum
chamber using an AFM. The developed calibration procedure
permitted measurement of the difference Casimir force of the
order of 1 pN with a relative experimental error at the short-
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est separation of 100 nm varying from 10% to 20% for the
measurements performed at different absorbed powers. At a
separation of 180 nm, the relative experimental error in dif-
ferent measurements varies from 25% to 33%. All errors
were determined at 95% confidence. The obtained experi-
mental results demonstrate the ability to modulate the van
der Waals and Casimir forces in micro- and nanoelectrome-
chanical devices by irradiation with laser light. These are
experiments where the modification of the Casimir force act-
ing between the test bodies was achieved due to the influence
of some external factor other than the change of separation
distance.

The experimental results were compared with the results
of theoretical computations using the Lifshitz theory at both
zero and nonzero temperature. The Si membrane in the ab-
sence of laser light had a carrier density of approximately
5�1014 cm−3. In the first model, the dielectric permittivity
of high-resistivity Si was described with a finite static value.
In the presence of laser light, the Si had charge-carrier pair
densities varying from 2.1�1019 to 1.4�1019 cm−3 depend-
ing on the radiation power absorbed by the sample and was
described by the permittivity in Eq. �14�. The total theoreti-
cal error varied from 13.5% to 13.7% at z=100 nm and from
14.9% to 17.2% at z=200 nm depending on the absorbed
power. The main contribution to this error was given by the
uncertainty in the number of charge carriers in the presence
of laser light. The experimental and theoretical results were
found to be consistent over the whole measurement range
taking into account the experimental and theoretical errors
both at laboratory temperature T=300 K and at zero tem-
perature.

The same experimental data were compared with the Lif-
shitz theory using a second model of high-resistivity Si
which includes the dc conductivity of the Si membrane in the
absence of laser radiation. In this case, the dielectric permit-
tivity of Si in the absence of radiation is represented by Eq.
�29� and goes to infinity when the frequency goes to zero.
The detailed comparison leads to the conclusion that this
model is excluded by the experiment at 95% confidence if
computations are performed at the laboratory temperature T
=300 K. The difference in the force magnitudes when con-
ductivity at zero frequency is absent or present arises from
different contributions of the transverse magnetic modes of
the electromagnetic field reflected from the Si surface. The
physical explanation of our results can be understood in Fig.

7�a�. As is seen in this figure, the short-dashed line represent-
ing the dielectric permittivity of high-resistivity Si with in-
cluded dc conductivity is located far to the left of the first
Matsubara frequency �1 and does not belong to the region of
frequencies contributing to the force. At the same time, the
Lifshitz theory at zero temperature using the model of high-
resistivity Si with included dc conductivity remains experi-
mentally consistent.

Thus, we can infer that the Lifshitz theory at nonzero
temperature using the model of high-resistivity semiconduc-
tors and dielectrics with included conductivity properties at
zero frequency is inconsistent with our experiments. It is
notable that just this theoretical approach was demon-
strated8,50,51,70 to lead to the violation of the third law of
thermodynamics �the Nernst heat theorem�. To avoid contra-
dictions with thermodynamics and experiment, one should
follow the originators of the Lifshitz theory29,30 who de-
scribed dielectrics by a model with a finite static dielectric
permittivity in computations of the van der Waals and Ca-
simir forces at nonzero temperature �the same model was
used in the recent paper71 on the thermal effect in the
Casimir-Polder force�. This suggests that the theory of van
der Waals and Casimir forces between real materials requires
further investigation. Although we are still lacking a funda-
mental explanation of why the Lifshitz theory does not admit
inclusion of the conductivity properties of high-resistivity
materials at zero frequency, this prescription on how to per-
form computations in an experimentally and thermodynami-
cally consistent way is topical for numerous applications of
the van der Waals and Casimir forces ranging from con-
densed matter physics and nanotechnology to the theory of
fundamental interactions. The experimentally demonstrated
phenomenon of modulation of the Casimir force through op-
tical modification of charge-carrier density will be used in
the design and function of micro- and nanoelectromechanical
devices such as nanoscale actuators, micromirrors, and
nanotweezers.
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