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We have studied the influence of bulk inversion asymmetry �BIA� and the relativistic part of the low-
symmetry interface Hamiltonian �IH� on intersubband optical transitions, induced by linearly polarized light,
between strongly hybridized electron-hole states in asymmetrical InAs/GaSb broken-gap quantum wells grown
along the �001� direction. The self-consistent calculations were performed using the Burt-Foreman envelope
function theory and a sophisticated eight-band k ·p model Hamiltonian. We found that the BIA and the IH can
activate originally forbidden spin-flip optical transitions, and that the strength of the corresponding optical
matrix elements depends on the light polarization direction and the quasiparticle in-plane wave vector. Both the
BIA and the IH contribute significantly to this effect. When the initial electron-hole states are strongly hybrid-
ized, the spin-flip optical transition probability can be of the same order as the probability of the spin-
conserved transitions. The BIA results in interface-localized terms in the optical matrix elements due to the
material-dependent Kane’s B parameter and produces a strong in-plane anisotropy in the absorption of light

polarized along the �11� and �11̄� directions. The IH also contributes to this effect. We found that the primary
contribution to the optical anisotropy comes from the BIA-induced mechanism.
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I. INTRODUCTION

The spin split of the energy levels in semiconductor
heterostructures1–13 introduces a spin dependence not only in
the tunneling and magnetotunneling processes14–22 but also
in the intersubband optical transitions induced by linearly
polarized light.6,7,23,24 It is well known that the spin-orbit
interaction, structural asymmetry, and bulk inversion asym-
metry �BIA� can cause a spin split of the energy levels in
nonmagnetic systems in the absence of applied magnetic
fields. In zinc-blende heterostructures grown along the �001�
direction, the reduced crystal symmetry at the interfaces can
cause mixing of the light-hole and heavy-hole states at zero
in-plane wave vector,25,26 as well as a significant in-plane
anisotropy in the absorption of linearly polarized light,27–29

especially for polarizations along the �11� and �11̄� direc-
tions. These phenomena can be explained within the Burt-
Foreman envelope function theory by the linear-in-k terms in
the Hamiltonian, whose effect is largely enhanced in the vi-
cinity of an interface.30 Similar terms in the low-symmetry
interface Hamiltonian �IH� create additional spin splits of the
subbands.6

There exist only few works on spin-dependent optical
transitions induced by linearly polarized light in zinc-blende
quantum wells grown along the �001� direction, although
there are more studies on transitions induced by circularly
polarized light. Due to the spin split of the subbands, the
optical transition energy and the corresponding optical ma-
trix elements for an initial state with a given in-plane wave
vector are spin dependent.6,7,23 Under certain conditions, the
spin-orbit interaction can stimulate spin-flip optical
transitions.24 As mentioned above, the spin split of the sub-
bands is modified by the BIA and the linear-in-k IH, which

results in mixing and anticrossing of states with different
spins. Hence, the BIA and the linear-in-k IH are also relevant
to the spin-flip processes. The influence of spin mixing on
the absorption coefficients and lateral optical anisotropy in
GaAs/GaAlAs quantum wells under an external bias was
analyzed, taking only the BIA into account.31 The BIA terms
appear in the velocity operator and so in the optical transition
operator. The combined effects of the IH and the BIA on the
spin-flip transitions and on the in-plane anisotropy of the
matrix elements for the �11� and the �11̄� light polarization
directions are so far not studied.

The situation becomes more complicated in broken-gap
heterostructures where the hybridization of electron, light-
hole, and heavy-hole states changes the spin split of the sub-
bands. Hence, the effects of the BIA and the IH on the spin-
dependent optical transitions are further modified. We thus
expect an emergence of interesting features which we will
examine in the present work.

The active region of a typical broken-gap heterostructure
is an InAs/GaSb quantum well sandwiched between two
wide-gap AlSb barriers. The InAs conduction band overlaps
with the GaSb valence band. If at zero in-plane wave vector,
k� =0, the lowest electron level in the InAs layer lies below
the highest hole level in the GaSb layer, these levels may
anticross at some finite k�. The hybridization gap formed in
the in-plane dispersion was observed experimentally32,33 and
analyzed theoretically.6–9 For quasiparticle states with k�

along the �10� direction, the hybridization effects on the op-
tical matrix elements were studied7 for light polarizations
along and perpendicular to the sample growth direction. In
this study �Ref. 7�, the BIA and the IH were neglected, and
therefore two of the four possible transitions between the
states of the two pairs of spin-split subbands were found to
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be forbidden. For transitions from the zone-center states in
InAs/GaSb superlattices, it was found6,28 that the in-plane
anisotropy of the optical matrix elements is very small when
the BIA-induced terms are ignored in the optical transition
operator.

The eight-band k ·p model Hamiltonian used in our
present study on optical transitions in broken-gap hetero-
structures includes not only the BIA and the IH but also the
lattice-mismatch induced strain. Based on the complicated
eight-band Hamiltonian, self-consistent calculations were re-
cently performed to examine the quasiparticle cyclotron
masses and effective g factors in InAs/GaSb quantum
wells.34 It was found that self-consistency is essential for
deriving accurate results.

We will use the Burt-Foreman envelope function theory to
calculate self-consistently the subband dispersions and the
associated optical matrix elements in
AlSb/ InAs/GaSb/AlSb quantum wells grown along the
�001� direction. For a thorough understanding of the strain
effect, we will consider quantum wells grown on both InAs
and on GaSb substrates, since different substrates generate
different amount of lattice-mismatch induced strain in the
quantum well.

In Sec. II, we will describe our model Hamiltonian and
show the subband dispersion which we will need to define
the optical transitions. The optical matrix elements will be
analyzed and calculated in Sec. III, where the symmetry ef-
fect will be demonstrated. The optical anisotropy with re-
spect to different light polarizations will be studied in Sec.
IV. A conclusion will follow in Sec. V. The BIA and the IH
terms in the Hamiltonian are listed in Appendix A, and the
explicit form of velocity operator is given in Appendix B.

II. MODEL HAMILTONIAN AND ENERGY
DISPERSION

We consider an AlSb/ InAs/GaSb/AlSb quantum well
connected at both ends to either InAs or GaSb contact layers,
and analyze this system with an eight-band k ·p Hamiltonian
at the � point using the Burt-Foreman envelope function
theory. The z axis is along the growth direction �001�, and
the x and y axes are along the �100� and �010� directions,
respectively. With the set of basis functions9

S↑,X↑,Y↑,Z↑,S↓,X↓,Y↓,Z↓ , �1�

the Hamiltonian can be expressed as

Ĥ = �Ĥ4 0

0 Ĥ4

� + ĤSO + Ĥ� + Ĥ�k + ĤB + Ĥk. �2�

The 4�4 matrix Ĥ4 depends on the conduction band edge
EC, the valence band edge EV, the momentum operators, the
interband momentum matrix elements P�z�, and the modified
Luttinger parameters. The spin-orbit interaction is described

by the term ĤSO. The matrix Ĥ� is the lattice-mismatch in-
duced strain independent of the momentum operators. The

explicit expressions of Ĥ4, ĤSO, and Ĥ� can be found in Ref.

9 and will not be repeated here. The BIA Hamiltonian Ĥ�k

+ ĤB and the IH Ĥk are not considered in existing works on
optical transitions in broken-gap heterostructures, and their
explicit expressions are given in Appendix A. The operators

in Ĥ�k are proportional to the strain tensor components �ij

and the momentum operator components k̂l, and ĤB depends
on Kane’s B parameter. Equations �A6�–�A8� in Appendix A

give the matrix representation of the IH Ĥk, which consists of

two parts. The part containing the factor �C40, k̂z� is the rela-
tivistic term, and the part containing the factor � j��z−zj� is
the nonrelativistic term, where zj is the position of the jth
interface. C40 is a material parameter, and � j depends on the
materials at both sides of the interface. For the
AlSb/ InAs/GaSb/AlSb quantum well to be studied here,
there is so far no published value of � j, and the nonrelativ-
istic term will be ignored in our numerical calculation. This
simplification will not change our final conclusion qualita-
tively, and will be discussed in detail later. We should point

out that since both �C40, k̂z� and � j��z−zj� are finite only at
the interfaces, they are proportional to each other near the jth

interface. Consequently, the IH Ĥk is linear in k.
The subband dispersions and the corresponding wave

functions are derived from the Schrödinger equation

Ĥ� = E� , �3�

where � is the multicomponent envelope function and E the
corresponding energy. We use the basis-expansion method
given in Ref. 34 to solve the Schrödinger equation self-
consistently together with the Poisson equation. The subband
anisotropy in the quantum well is ignored in the charge-
density calculations. The numerical error created by this sim-
plification is negligibly small as discussed in Ref. 35. We
will here not repeat the details of the numerical computation
which is well documented in Refs. 34 and 35.

There are two commonly studied broken-gap heterostruc-
tures with the same quantum well AlSb/ InAs/GaSb/AlSb as
the active region. The GaSb-based type is the
GaSb/AlSb/ InAs/GaSb/AlSb/GaSb structure grown on
GaSb with two p-doped GaSb contacts, and the InAs-based
type is the InAs/AlSb/ InAs/GaSb/AlSb/ InAs structure
grown on InAs with two n-doped InAs contacts. Since the

term Ĥ�k changes the dispersions in the valence band, its
effects are stronger in the InAs-based structures where the
GaSb layer in the quantum well is strained. We will present
our numerical results calculated for the GaSb-based struc-
tures, since if the influence of BIA and IH is important in
GaSb-based structures, it may be even more influential in the
InAs-based structures.

For the numerical calculations, we set the thicknesses of
the AlSb, InAs, and GaSb layers in the active region to
10 nm. The acceptor concentration in the GaSb contacts is
1018 cm−3. The deformation potentials, stiffness constants,
and lattice constants are available in Ref. 36, and the energy
gaps, split-off energies, interband momentum matrix ele-
ments, conduction and valence band offsets, and the Lut-
tinger parameters are found in Ref. 7. The material param-
eters C4, B, and C40, which are introduced in Appendix A
and listed in Table I, are taken from Refs. 5, 11, and 30,
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respectively. Our self-consistent calculations are performed
at the low temperature of 4.2 K. The so-obtained energy-
band-edge diagram is shown in Fig. 1, where the solid lines
are for the conduction band edge and the dashed lines are for
the valence band edge.

The calculated dispersions for in-plane wave vector k�

along the �10� and �11� directions in the two-dimensional
Brillouin zone are shown in Fig. 2 with the Fermi level in-
dicated by the dashed line. According to the characteristic
features of the wave functions at k� =0, the six subbands of
interest are labeled as 1hh, 2hh, and 3hh for the heavy-hole-
like subbands, as 1e and 2e for the electronlike subbands,
and as 1lh for the light-hole-like subband. With increasing
magnitude of k�, the characters of subband can change. For
example, the 1e and the 1hh subbands anticross and inter-
change their character around k� =0.1 nm−1, where a hybrid-
ization gap between the two subbands is formed.

For finite k�, each subband splits due to the Rashba effect,
the BIA, and the low C2v symmetry of the IH. We found that

among the three terms Ĥ�k, ĤB, and Ĥk, only the spin split
contributed by the BIA mechanism is significant for all sub-
bands at large k�. The spin-split anisotropy exhibited in Fig. 2
is mainly due to the BIA and the structural asymmetry. Simi-
lar features in broken-gap heterostructures were investigated
previously.10–12 It is interesting to point out that the states of
the 1hh �or any other� subband with different spins anticross

because of their mixing due to the BIA and IH unless the
in-plane wave vector k� is along the �11� direction. If k� is
along the �11� direction, the levels cross. If the BIA and IH
are neglected, the 1hh levels cross also for k� along the �10�
direction. In the low-symmetry directions, on the other hand,
the warping terms in Hamiltonian mix states with different
spins, which results in an anticrossing behavior. This anti-
crossing or crossing appears in the vicinity of the hybridiza-
tion gap between the 1e and 1hh subbands. The 1hh and 1e
levels with different spins may also anticross for all direc-
tions of k� except for the �11� direction. Comparing our self-
consistent subband dispersions with those obtained in Ref. 9,
we see that the charge redistribution changes the ordering of
levels and shifts the positions of hybridization gaps to lower
k�. This certainly influences the optical matrix elements,
which will be examined in the next section.

III. OPTICAL MATRIX ELEMENTS

To calculate the optical transition probability between the
state l in one subband and the state k in another subband, we
first define the velocity operator

v̂ =
1

�

�Ĥ

�k̂
= v̂0 + v̂1. �4�

In the above expression,

TABLE I. Numerical values of the material parameters used in
the BIA terms and the IH. B is taken from Ref. 11, C4 from Ref. 5,
and C40 from Ref. 30.

InAs GaSb AlSb

B �eV Å2� 13.7 49.9 0

C4 �eV Å� 2.9 2.2 3.7

C40 �eV Å� −0.01 −0.23 −0.23
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FIG. 1. The self-consistent energy-band-edge diagram of a
GaSb-based AlSb/ InAs/GaSb/AlSb quantum well grown along the
�001� direction. The solid lines are for the conduction band edge
and the dashed lines are for the valence band edge. The inset shows
the magnification of the region where the InAs conduction band
overlaps with the GaSb valence band as well as the positions of the
lowest electronlike level 1e and highest heavy-hole level 1hh.
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FIG. 2. The subband dispersions in the GaSb-based InAs/GaSb
quantum well along the �10� direction �right half� and along the �11�
direction �left half�. The zero energy is set at the InAs conduction
band edge at the AlSb/ InAs interface. The Fermi-level position is
marked with the dashed horizontal line.
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�v̂0 = ��Ĥ4/�k̂ 0

0 �Ĥ4/�k̂
� �5�

is the contribution from Ĥ4, and

�v̂1 =
�ĤB

�k̂
+

�Ĥ�k

�k̂
�6�

is the contribution from the symmetry-related terms Ĥ�k and

ĤB. The operators v̂0 and v̂1 are given in Appendix B. The IH

Ĥk does not contribute to the velocity operator because the

various terms cancel. Hence, Ĥk affects the optical absorp-
tion only through its effect on the wave functions of the
hybridized electron-hole states. Through the boundary con-

ditions, Ĥk introduces an additional light-hole–heavy-hole
mixing which exists even at zero in-plane wave vector.

With e as the light polarization unit vector, the optical
transition operator is defined37 as e · v̂. The optical matrix
element is

M = �2m�1/2��k	e · v̂	�l
 , �7�

where m is the free electron mass. If in the operator Ĥ in Eq.
�4� we keep only terms proportional to the interband momen-
tum matrix element P�z�, then Eq. �7� reduces to the com-
monly used equation for the optical matrix element,

M = � 2

m
�1/2

��k	e · p̂	�l
 , �8�

where �k and �l are Bloch functions, and p̂ is the momentum
operator. We should point out that in Eq. �8�, the effect of
remote bands is neglected in the optical transition operator.
Consequently, the effect of BIA is ignored.

In a complete Hamiltonian, instead of the eight-band
model Hamiltonian considered here, all bands are taken into
account. In this case, across each interface, every state in
each band contributes to the optical matrix elements in a
continuous fashion. In our eight-band k ·p model Hamil-
tonian, the remote bands are treated with perturbation theory
and thus their contributions to the optical matrix elements are
localized at the interfaces. Although a similar interface con-

tribution also comes from the Ĥ4 term in Eq. �2�, the relevant

physical process is clearly embedded in the operator ĤB

which contains elements of the form k̂zBk̂l. If the light polar-
ization is along the l axis, there is a term proportional to

k̂zB�z� in the transition operator. Since B�z� is discontinuous

at each interface, the operator k̂zB�z� will generate terms pro-
portional to ��z−zj�, where zj marks the position of the jth
interface. This is the physical origin of the specific interface
contribution to the optical matrix elements.

For different light polarization directions, we will calcu-
late 	M0	2�	�M /�2m	2 along various in-plane wave vector
directions and use the numerical results to demonstrate the
symmetry effects of the BIA and IH. The position of the
Fermi energy in Fig. 2 suggests that the important optical
processes are the 1hh-2e transition between the states in the

1hh and 2e subbands and the 1e-2e transition between the
states in the 1e and 2e subbands. A non-self-consistent cal-
culation, using a simpler Hamiltonian without the BIA terms
�Ĥ�k and ĤB� and the IH term �Ĥk�, was performed in Ref. 7
to study these two 1hh-2e and 1e-2e transitions. At k��0,
each level in Fig. 2 splits into two, and thus there are four
possible optical transitions; two are named spin-conserved
transitions and two are named spin-flip transition. All four
transitions were found in Ref. 7 if the in-plane wave vector
k� is along a low-symmetry direction, such as �12�. However,
for k� along a high-symmetry direction such as �10� or �11�,
only the two spin-conserved transitions were allowed for
light polarization along the growth direction, e �z. It is then
interesting to demonstrate whether the BIA and IH terms can
activate the two forbidden spin-flip transitions. In the follow-
ing, we will present our numerical results for k� along the
�10� ��01�� axis and the �11� axis, but not along any low-
symmetry direction. In order to compare our results with
Ref. 7, we will use the notation introduced in Ref. 7 to label
the two spin-split dispersion branches of each energy level.
In Fig. 2, in the region of small k�, the lower dispersion
branch is assigned with a subscript a and the upper with a
subscript b. It is important to notice that with increasing k�,
the two spin-split branches may cross. When this happens,
the a branch lies above the b branch. We should keep this in
mind when we come to interpret our numerical results.

For the convenience of description, we define Ĥ0 as the
simplified version of the full Hamiltonian Ĥ excluding the

BIA and IH terms Ĥ�k, ĤB, and Ĥk. Let us first analyze the
behavior of 	M0	2 for e �z. For the 1hh-2e transition with k�

along the �10� direction, the results are shown in Fig. 3,

where panel �a� is calculated with Ĥ0 and panel �b� with Ĥ.
The two curves in Fig. 3�a� are due to the spin-conserved
1hhb-2ea transition �solid curve� and 1hha-2eb transition
�dashed curve�. When the BIA and the IH terms are included,
the originally forbidden spin-flip transitions are activated.
Hence, in Fig. 3�b� there are four curves representing the
1hhb-2ea transition �solid curve�, the 1hha-2eb transition
�dashed curve�, the 1hha-2ea transition �dotted curve�, and
the 1hhb-2eb transition �dash-dotted curve�. The spin-
conserved transitions are represented by the dotted and dash-
dotted curves for large k�. For small k�, the spin-up and spin-
down states of the 1hh subband are mixed. Comparing
panels �a� and �b� and checking with Fig. 2, it is clear that the
two spin-flip transitions are activated in the region of k�

where the 1hh level and the 1e level anticross and strongly
hybridize. Then, the values of 	M0	2 for the spin-flip transi-
tions are of the order of those for the spin-conserved transi-
tions. In the region of large k�, the 1hh-2e transition is actu-
ally of the character of the transition between the first and
second electronlike subbands. The heavy-hole-like states are
mainly localized in the GaSb layer and the electronlike states
in the InAs layer, and consequently 	M0	2 of the 1hh-2e tran-
sition is large only for large k�. Also, we have found that the
optical matrix elements are zero at k� =0 in Fig. 3�a�, while
they are negligibly small but nonzero in Fig. 3�b� due to the

light- and heavy-hole mixing caused by Ĥk.
Similar plots but for the 1e-2e transition are shown in Fig.

4, where the solid, dashed, dotted, and dash-dotted curves
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represent, respectively, the 1eb-2ea, 1ea-2eb, 1ea-2ea, and
1eb-2eb transitions. Again, we see that the spin-flip transi-
tions are activated by the BIA and IH terms in the region of
k� where the 1hh subband and the 1e subband are close. Here
for large k�, the 1e-2e transition is essentially of the 1hh-2e
character, resulting in a vanishing 	M0	2. We should mention
that spin-conserved transitions similar to those in Figs. 3�a�
and 4�a� were obtained in Ref. 7.

To separate the effects of the IH and the BIA terms, we
have calculated the optical matrix elements for the 1e-2e

transitions with Ĥk neglected but with BIA included. The
result is shown in Fig. 5, where we note that at k� =0 the sum
of the two 	M0	2 values for the spin-conserved and spin-flip
transitions is almost equal to that in Fig. 4�b�, and exactly
equal to the 	M0	2 in Fig. 4�a� where only the spin-conserved
transitions are present. Comparing these three figures, it is
clear that both the BIA term and the IH term shift the optical
transitions from the spin-conserved channel to the spin-flip

channel. While the effect of the BIA term appears in both
spin-state mixing and in the velocity operator, the IH term
does not contribute to the velocity operator at all. The IH

term Ĥk affects the optical transitions solely by changing the
wave functions.

The situation becomes quite different if we change the
direction of k� from �10� to �11�. For e �z again, the calcu-
lated 	M0	2 is shown in Fig. 6 with the solid, dashed, dotted,
and dash-dotted curves representing, respectively, the
1hhb-2ea, 1hha-2eb, 1ea-2ea, and 1eb-2eb transitions. These

results, derived with the full Hamiltonian Ĥ including both
the BIA and the IH terms, do not show any activated spin-
flip transitions. We would again like to point out that at k�

=0 the value of 	M0	2 for the 1e-2e transition in Fig. 6 is
exactly the same as the sum of the two 	M0	2 for the spin-
conserved and spin-flip transitions in Fig. 4�b�, but nearly the
same as that in Fig. 4�a�, as it should be. When 	M0	2 is

calculated with Ĥ0 only, the result is almost identical to that
obtained with full Hamiltonian, in agreement with Ref. 7.
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FIG. 3. Square of the absolute value of the optical matrix ele-
ment for transitions between the states in the 1hh and 2e subbands.
Light polarization is along the z axis and k� is along the �10� direc-

tion. Panel �a� is calculated with Ĥ0 and panel �b� with Ĥ. The solid,
dashed, dotted, and dash-dotted curves represent, respectively, the
1hhb-2ea, 1hha-2eb, 1hha-2ea, and 1hhb-2eb transitions.
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Hence, for k� along the �11� direction, the effect of the BIA
and IH terms on the optical transition is mainly quantitative
but not qualitative, because the BIA and IH do not mix states
with different spins.

Since the optical matrix elements depend on the directions
of both k� and e, we change the light polarization direction
from the z axis to the x axis and to the y axis to further
investigate the effect of BIA and IH. For the 1hh-2e transi-
tions with k� along the �10� direction, the calculated 	M0	2
using the full Hamiltonian is plotted in Fig. 7�a� for e �x and
in Fig. 7�b� for e �y. All four spin-conserved and spin-flip
transitions are obtained. However, similar calculations, with
the BIA and IH terms excluded, yield only two spin-
conserved transitions for e �x and two spin-flip transitions for

e �y. It is worthwhile to notice that for e �x and e �y, the value
of 	M0	2 is 2 orders of magnitude smaller than for e �z.

We have analyzed in detail the cases where k� is along the
high-symmetry directions �10� and �11� Lowering the sym-
metry by including the BIA and the IH terms activates the
spin-flip transitions. When k� deviates from the high-
symmetry axes, 	M0	2 remains finite for the spin-flip transi-
tions even when the BIA and the IH terms are neglected.
This is due to the contribution from the warping terms in the
Hamiltonian.

IV. OPTICAL ANISOTROPY

The numerical results presented above suggest a strong
anisotropy of the optical matrix elements with respect to the
light polarization. It was shown29 that the low C2v symmetry
of the IH causes such anisotropy with respect to in-plane
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polarization is along the z axis and k� is along the �10� direction.
The transition labels are the same as in Fig. 4.
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transitions.
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FIG. 7. Square of the absolute value of the optical matrix ele-
ment for the transitions between the states in the 1hh and 2e sub-
bands, calculated with the full Hamiltonian for k� along the �10�
direction. Panel �a� is for light polarization along the x axis, and
panel �b� along the y axis. The solid, dashed, dotted, and dash-
dotted curves represent, respectively, the 1hhb-2ea, 1hha-2eb,
1hha-2ea, and 1hhb-2eb transitions.
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light polarization in type-II superlattices. Similar phenom-
enon was obtained for the far-infrared transitions in
InAs/GaSb superlattices.6,28 The reason is the nonequiva-

lence of the �11� and the �11̄� directions caused by the inter-
face symmetry. This type of nonequivalence can also be
achieved in asymmetrical quantum wells due to the BIA.12

Here, we will investigate the combined effect of the BIA and
IH terms on the optical anisotropy. For a given light polar-
ization e and a given in-plane wave vector k�, and for optical
transitions between subbands � and 	, we first define a quan-
tity

I�	�e,k�� = 

i,j

	Mij�e,k��	2, �9�

where i runs over the states in the � subband and j runs over
the states in the 	 subband. Then, the optical anisotropy with
respect to the light polarizations e1 and e2 can be measured
by the polarization


�	 =
I�	�e2,k�� − I�	�e1,k��
I�	�e2,k�� + I�	�e1,k��

. �10�

If e1 is along the �10� direction and e2 along the �01� direc-
tion, at k� =0, 
�	=0 and there is no optical anisotropy.

For our numerical calculation, we set e1 along the �11�
direction and e2 along the �11̄� direction. We again consider
the high-symmetry situation where k� is along the �10� direc-
tion. In this case, if we remove the BIA and the IH terms

from the full Hamiltonian Ĥ, we find 
�	=0. To separate the
effect of BIA and the effect of IH, we will therefore calculate


�	 twice: first with the full Hamiltonian Ĥ and then with the

partial Hamiltonian Ĥ-Ĥk. The so-obtained polarization 
�	

is shown in Fig. 8�a�. The 1hh-2e and 1e-2e transitions, cal-
culated with the full Hamiltonian, are marked with the solid
and the dashed curves, respectively. For both transitions, the
degree of polarization is substantial for the entire range of k�.

When the IH term Ĥk is removed from Ĥ, the polarization is
reduced from the solid curve to the dotted curve for the
1hh-2e transition, and from the dashed curve to the dash-
dotted curve for the 1e-2e transition. Apparently, the primary
contribution to the polarization is from the BIA term, and the
IH term is only a secondary effect. Since the BIA does not
contribute to the wave functions at k� =0, the polarization in
this case is mainly due to the contribution from BIA to the
velocity operator. We also show in Fig. 8�b� the 
�	 calcu-
lated for k� along the �11� direction. In Ref. 6, where
InAs/GaSb superlattices were considered, the large in-plane
anisotropy was obtained for the far-infrared transitions be-
tween the 1e and 1hh subbands in the vicinity of the hybrid-
ization gap. Our calculations also show an increased aniso-
tropy for the 1hh-2e optical transitions when the initial 1hh
states anticross with the 1e states. We have again found a
very small contribution of the IH to the lateral optical aniso-
tropy.

The effect on lateral optical anisotropy suggested by our
numerical results can be detected by measuring the variation
of the absorption coefficients when the light polarization di-
rection is changed within the xy plane. Such experiments

were already performed in InAs/AlSb superlattices.38 If we
decrease the thickness of the InAs and/or the GaSb layer, the
percentage contribution from the interface region to the op-
tical matrix elements is increased, and so an enhanced lateral
optical anisotropy is expected. We have confirmed this con-
jecture with numerical calculations.

V. CONCLUSION

With accurate self-consistent calculations, we have dem-
onstrated that the bulk inversion asymmetry and the low C2v
symmetry of the interfaces can activate originally forbidden
optical transitions, induced by linearly polarized light, be-
tween subbands in broken-gap heterostructures containing an
InAs/GaSb quantum well. The originally forbidden spin-flip
transitions can be activated for light polarizations along the
growth direction or along the direction of k�. On the other
hand, when the light is polarized in the plane perpendicular
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FIG. 8. Optical anisotropy for k� �a� along the �10� direction and
�b� along the �11� direction. Solid and dashed curves are for the
1hh-2e and 1e-2e transitions, respectively. The corresponding de-

pendences obtained neglecting the term Ĥk are shown in dotted and
dash-dotted curves.
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to k�, the originally forbidden spin-conserved transitions can
be activated. The value of the optical matrix element of the
activated spin-flip transition depends on the light polarization
direction e and the carrier in-plane wave vector k�, and can
be of the same order as that of the spin-conserved transitions.
The in-plane optical anisotropy is significant for the �11� and

�11̄� light polarization directions with the main contribution
from the bulk inversion asymmetry induced terms in the
transition operator for k� �0.

Among the two types of commonly studied broken-gap
heterostructures, the GaSb-based and the InAs-based, we
have presented our numerical results for GaSb-based hetero-
structures. However, we have performed similar calculations
for InAs-based heterostructures, and only found quantitative
differences between the results of these two structure types.
In InAs-based structures, the strained GaSb layer in the well
quantitatively modifies the light-hole–heavy-hole mixing for
small k�, and hence the mixing of the light-hole and the
heavy-hole states with the electron states. One example of
this quantitative change appears in the optical anisotropy; for

small k�, the contribution from the IH term Ĥk to the optical
polarization for the 1e-2e transitions is much larger in InAs-
based heterostructures than in GaSb-based ones. Further-
more, the activation of spin-flip optical transitions by the

term Ĥ�k is stronger in InAs-based structures.
As mentioned earlier, the matrix representation of the IH

Ĥk consists of two parts, as given by Eqs. �A6�–�A8� in

Appendix A. The part containing the factor �C40, k̂z� is the
relativistic term, and the part containing the factor � j��z
−zj� is the nonrelativistic term.30,39 The nonrelativistic term
was studied for a GaAs/AlAs�001� heterointerface and pro-
duces a small shift of energy levels about 1 meV.30 The pa-
rameter � depends on the GaAs/AlAs�001� interface
condition.39 Its value is about 0.19 eV Å for a smooth waffle
interface, about 0.30 eV Å for an abrupt waffle interface,
about 0.082 eV Å for an abrupt planar interface, and about
0.056 eV Å for a smooth planar interface. At the same
GaAs/AlAs�100� interface, the relativistic contribution is
measured by the difference �CGaAs/AlAs between the C40
value for GaAs and the C40 value for AlAs, which is30

�CGaAs/AlAs=0.02 eV Å. Therefore, for the GaAs/AlAs�100�
interface, the dominating contribution to light-hole–heavy-
hole mixing comes from the nonrelativistic term in the IH

Ĥk.
For the InAs/GaSb�100� interface, there are very few

similar calculations of C40 and �. While �CInAs/GaSb
=0.22 eV Å can be found in the literature,30 to our knowl-
edge the value of � is not available. Consequently, in the
present work we cannot calculate the nonrelativistic contri-
bution to the light-hole–heavy-hole mixing. Nevertheless,
the BIA and the low-symmetry IH have a strong influence on
the optical properties of broken-gap heterostructures even
when the nonrelativistic term is ignored, as we have demon-
strated here. It is not unreasonable to expect a stronger influ-
ence if the nonrelativistic term is included. Our findings in
this paper are correct at least at the semiquantitative level
with possible improvements on the numerical accuracy.
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APPENDIX A

In this appendix, we give explicit expressions of the op-

erators Ĥ�k, ĤB, and Ĥk.

Ĥ�k = C4��zz − �xx��Ĥ0k Ĥ+

Ĥ− Ĥ0k

� , �A1�

where C4 is a material constant, and �zz and �xx are strain
tensor components ��xx=�yy�. The matrices H0k and H± are

Ĥ0k =
1

2�
0 0 0 0

0 0 0 ik̂y

0 0 0 ik̂x

0 − ik̂y − ik̂x 0
� �A2�

and

Ĥ± =�
0 0 0 0

0 − �k̂x ± ik̂y� 0 0

0 0 − �k̂x ± ik̂y� 0

0 0 0 − �k̂x ± ik̂y�
� .

�A3�

The matrix ĤB has the form

ĤB = �ĤB0 0

0 ĤB0

� , �A4�

where the matrix ĤB0 contains operators of the type k̂jBk̂l.

We use the symmetrized form of each element in ĤB0 be-
cause, to our knowledge, its exact form is still unknown. The

nonzero terms in ĤB0 are

ĤB021
= ĤB012

=
1

2
�k̂yBk̂z + k̂zBk̂y� ,

ĤB031
= ĤB013

=
1

2
�k̂xBk̂z + k̂zBk̂x� ,

ĤB041
= ĤB014

=
1

2
�k̂yBk̂x + k̂xBk̂y� . �A5�

The above matrices are defined using the basis functions in
Eq. �1�. They were obtained by applying a unitary transfor-
mation to the corresponding matrices in Ref. 40.

To present the matrix Ĥk, we start with the matrix in Ref.
30 which includes the relativistic part of IH for the basis set
in which the Hamiltonian is diagonal at k=0. We will ne-
glect the linear-in-k bulk inversion asymmetry terms which
are strain independent because they are small. Hence, the
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constants C3 and C5 in this Hamiltonian are set to zero. Also,
we only take the terms corresponding to the �8 band into
account because the split-off band states lie much below the
hybridized electron-hole states which we consider here. After
applying a unitary transformation to reach the basis set in Eq.
�1� and adding the nonrelativistic part of IH from Ref. 39, we
have

Ĥk = �Ĥk0 Ĥk+

Ĥk− Ĥk0

� , �A6�

where

Ĥk0 = �−
i

3
�C40, k̂z� + 


j

� j��z − zj���
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0
�
�A7�

and

Ĥk± = −
1

3
�C40, k̂z��

0 0 0 0

0 0 0 1

0 0 0 ±i

0 − 1 �i 0
� . �A8�

The constant C40 is renamed from the constant C4 defined by
Eq. �4� in Ref. 30. The constant � j is the coupling constant
for the light-hole–heavy-hole mixing at the jth interface lo-
cated at z=zj. The terms proportional to C40 are of relativistic
origin,30 while the terms proportional to � j are the nonrela-
tivistic contribution.39 In a heterostructure B, C4, and C40 are
all material dependent.

APPENDIX B

In this appendix, we will give the explicit form of the
velocity operator. Let us define the contribution to the veloc-

ity operator from the term ĤB as v̂B and from the term Ĥ�k as

v̂�. Then, we have v̂1= v̂B+ v̂�. The block diagonal ĤB is al-

ready defined in Appendix A with two identical blocks ĤB0.
Since v̂0 is also block diagonal, we have

��v̂0 + v̂B� = 

j=x,y,z

nj�
̂ j 0

0 
̂ j
� , �B1�

where nx, ny, and nz are unit vectors, and


̂x =�
0 iP

1

2
�Bk̂z + k̂zB� Bky

− iP 2Lkx Nky N+k̂z + k̂zN−

1

2
�Bk̂z + k̂zB� Nky 2Mkx 0

Bky N−k̂z + k̂zN+ 0 2Mkx

� , �B2�


̂y =�
0

1

2
�Bk̂z + k̂zB� iP Bkx

1

2
�Bk̂z + k̂zB� 2Mky Nkx 0

− iP Nkx 2Lky N+k̂z + k̂zN−

Bkx 0 N−k̂z + k̂zN+ 2Mky

� , �B3�


̂z =�
0 Bky Bkx iP

Bky Mk̂z + k̂zM 0 Nkx

Bkx 0 Mk̂z + k̂zM Nky

− iP Nkx Nky Lk̂z + k̂zL
� .

�B4�

In Eqs. �B2�–�B4�, the terms proportional to Kane’s B pa-
rameter define the operator v̂B, and the remaining terms de-
fine the operator v̂0. The material parameters M, L, N, N+,
and N− are functions of the coordinate z, and can be ex-

pressed in terms of the modified Luttinger parameters.9

The operator Ĥ�k contributes only to the x and y compo-
nents of the velocity operator. Let us define

GX =
1

C4��zz − �xx�
�v�x �B5�

and
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GY =
1

C4��zz − �xx�
�v�y , �B6�

where v�x and v�y are the components of v̂�. Then, the non-
zero components of GX are GX34=GX78= i /2, GX43=GX87

=−i /2, and GX26=GX37=GX48=GX62=GX73=GX84=−1.
The nonzero components of GY are GY24=GY68= i /2,
GY42=GY86=−i /2, GY26=GY37=GY48=−i, and GY62

=GY73=GX84= i.

1 E. I. Rashba, Sov. Phys. Solid State 2, 1109 �1960�; Yu. A. By-
chkov and E. I. Rashba, JETP Lett. 39, 78 �1984�.

2 F. T. Vasko and N. A. Prima, Sov. Phys. Solid State 21, 994
�1979�.

3 J. Luo, H. Munekata, F. F. Fang, and P. J. Stiles, Phys. Rev. B 38,
10142 �1988�; 41, 7685 �1990�.

4 V. M. Edelstein, Solid State Commun. 73, 233 �1990�.
5 M. Silver, W. Batty, A. Ghiti, and E. P. O’Reilly, Phys. Rev. B

46, 6781 �1992�.
6 R. Magri, L. W. Wang, A. Zunger, I. Vurgaftman, and J. R.

Meyer, Phys. Rev. B 61, 10235 �2000�.
7 E. Halvorsen, Y. Galperin, and K. A. Chao, Phys. Rev. B 61,

16743 �2000�.
8 A. Zakharova, S. T. Yen, and K. A. Chao, Phys. Rev. B 64,

235332 �2001�.
9 A. Zakharova, S. T. Yen, and K. A. Chao, Phys. Rev. B 66,

085312 �2002�.
10 X. Cartoixa, D. Z.-Y. Ting, and T. C. McGill, Phys. Rev. B 68,

235319 �2003�.
11 X. Cartoixa, D. Z.-Y. Ting, and T. C. McGill, e-print arXiv:cond-

mat/0212394.
12 I. Vurgaftman and J. R. Meyer, Phys. Rev. B 70, 115320 �2004�.
13 A. Zakharova, I. Lapushkin, K. Nilsson, S. T. Yen, and K. A.

Chao, Phys. Rev. B 73, 125337 �2006�.
14 Calvin Yi-Ping Chao and S. L. Chuang, Phys. Rev. B 43, 7027

�1991�.
15 A. Zakharova, F. T. Vasko, and V. Ryzhii, J. Phys.: Condens.

Matter 6, 7537 �1994�.
16 A. Voskoboynikov, S. S. Liu, and C. P. Lee, Phys. Rev. B 58,

15397 �1998�.
17 A. Voskoboynikov, S. S. Liu, C. P. Lee, and O. Tretyak, J. Appl.

Phys. 87, 387 �2000�.
18 David Z.-Y. Ting and X. Cartoixa, Phys. Rev. B 68, 235320

�2003�.
19 A. E. Botha and M. R. Singh, Phys. Rev. B 67, 195334 �2003�.
20 V. I. Perel’, S. A. Tarasenko, I. N. Yassievich, S. D. Ganichev, V.

V. Bel’kov, and W. Prettl, Phys. Rev. B 67, 201304�R� �2003�.

21 I. Vurgaftman and J. R. Meyer, Phys. Rev. B 67, 125209 �2003�.
22 A. Zakharova, K. Nilsson, K. A. Chao, and S. T. Yen, Phys. Rev.

B 72, 115329 �2005�.
23 Yia-Chung Chang and J. N. Schulman, Phys. Rev. B 31, 2069

�1985�.
24 R. J. Warburton, C. Gauer, A. Wixforth, J. P. Kotthaus, B. Brar,

and H. Kroemer, Phys. Rev. B 53, 7903 �1996�.
25 M. S. Kiledjian, J. N. Schulman, K. L. Wang, and K. V. Rousseau,

Surf. Sci. 267, 405 �1992�.
26 E. L. Ivchenko, A. Yu. Kaminski, and U. Rössler, Phys. Rev. B

54, 5852 �1996�.
27 O. Krebs and P. Voisin, Phys. Rev. B 61, 7265 �2000�.
28 L. W. Wang, S. H. Wei, T. Mattila, A. Zunger, I. Vurgaftman, and

J. R. Meyer, Phys. Rev. B 60, 5590 �1999�.
29 E. L. Ivchenko and M. O. Nestoklon, Phys. Rev. B 70, 235332

�2004�.
30 Bradley A. Foreman, Phys. Rev. Lett. 86, 2641 �2001�.
31 Bang-fan Zhu and Yia-Chung Chang, Phys. Rev. B 50, 11932

�1994�.
32 M. J. Yang, C. H. Yang, B. R. Bennett, and B. V. Shanabrook,

Phys. Rev. Lett. 78, 4613 �1997�.
33 M. Lakrimi, S. Khym, R. J. Nicholas, D. M. Symons, F. M.

Peeters, N. J. Mason, and P. J. Walker, Phys. Rev. Lett. 79, 3034
�1997�.

34 K. Nilsson, A. Zakharova, I. Lapushkin, S. T. Yen, and K. A.
Chao, Phys. Rev. B 74, 075308 �2006�.

35 I. Lapushkin, A. Zakharova, S. T. Yen, and K. A. Chao, J. Phys.:
Condens. Matter 16, 4677 �2004�.

36 M. P. C. M. Krijn, Semicond. Sci. Technol. 6, 27 �1991�.
37 R. Winkler, M. Merkler, T. Darnhofer, and U. Rössler, Phys. Rev.

B 53, 10858 �1996�.
38 F. Fuchs, J. Schmitz, J. D. Rultson, P. Koidl, R. Heintz, and A.

Hoffmann, Superlattices Microstruct. 16, 35 �1994�.
39 Bradley A. Foreman, Phys. Rev. Lett. 81, 425 �1998�.
40 H.-R. Trebin, U. Rössler, and R. Ranvaud, Phys. Rev. B 20, 686

�1979�.

SEMENIKHIN et al. PHYSICAL REVIEW B 76, 035335 �2007�

035335-10


