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We investigate adiabatic charge pumping in the disordered system in one dimension with open and closed
boundary conditions. In contrast to the Thouless charge pumping, the system has no gap even though all the
states are localized, i.e., strong localization. Charge pumping can be achieved by making a loop adiabatically
in the two-dimensional parameter space of the Hamiltonian. It is because there are many �-function-like fluxes
distributed over the parameter space with random strength, in sharp contrast to the single �-function in the pure
case. This provides a more efficient way of charge pumping and polarization.
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I. INTRODUCTION

The quantum dynamics of the charge in insulators is a
rich and nontrivial issue. In the dc limit, the conductivity
vanishes, but it does not imply that the charge motion is
frozen in the insulators. One example is the ferroelectricity
and electric polarization in the insulators. The classical defi-

nition of the electric polarization P� =�dr�r���r�� ���r��: charge
density� fails for the extended Bloch wave functions since
the r� is unbounded. This difficulty is avoided by considering
instead the different definition for the difference of the
polarization,1–5

�P� = �
0

T

d�
dP�

d�
, �1�

where the change of the polarization between the initial and
final states is given by the integral of the polarization current

during the adiabatic change of the parameters Q�

= �Q1 ,Q2 , . . . ,Qn� such as the atomic displacements. One can
usually choose the initial state with the inversion symmetry
without electric polarization, and Eq. �1� determines the po-
larization of the final state of our interest. Here, by using
dP�

d� = dP�

dQi

dQi

d� , the � component of �P� is expressed as

�P� = �
C

dQ� ·
dP�

dQ�
, �2�

with the path C specified by Q� =Q� ���. What is found by

Resta3 and King-Smith and Vanderbilt4 is that
dP�

dQ�
can be

represented by the Berry phase, which fits to the first-
principles band calculation. Then, the question arises: “Is
there any path �C� dependence of the polarization?” It is
clear that there is no parametrization dependence since we
consider the adiabatic change, but the different paths C1 and

C2 in the Q� space might lead to the different values of �P� .
This is related to the single valueness and the Chern number
of the Bloch wave function. Onoda and co-workers ad-
dressed this problem as follows by analyzing the one-
dimensional two-band models characterized by the three-
dimensional Q� .6,7 There appears a singular line, i.e., a string,
in the Q� space corresponding to the trajectory of the mono-
pole �band-crossing point� as the momentum k moves, which
acts as the “current circuit” to produce the “magnetic field”
dP

dQ�
via the Biot-Savart law. Away from the string, the system

is always gapped and insulating. When the adiabatic change
of the parameter Q� makes a loop enclosing the string, the
charge is pumped during this process, which is quantized to
be an integer multiple of e since the strength of the current is
quantized. This is a realization of the quantum charge pump-
ing proposed by Thouless.8 The analogy to the magnetostat-
ics says that the polarization is path independent as long as
the loop C=C1+ �−C2� does not enclose the string. This is

usually the case because the change of the parameter Q� is

rather small and we need the huge variation of Q� to enclose
the string, i.e., gapless states. In other words, the ferroelec-
tricity can be regarded as “a fraction of the quantum charge
pumping.”

This type of charge pumping can be regarded as the rigid
shift of the wave function due to the change in the external
parameters such as the atomic positions. It is natural when
the wave function consists of the Bloch states extending over
the whole sample, and then the quantum interference pattern
is modified by the external parameters. One can estimate
roughly how much the charge is pumped as below. Let the
dimension of the parameters be the energy. Then, the dis-
tance between the physically realized set of parameters and
that of gapless states, i.e., string, is the energy gap EG. Let �
be the change of the parameters in units of energy. The angle
subtended by this segment in parameter space is roughly es-
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timated as 2�� /EG. Since the 2� winding corresponds to
unit charge e shifting by one lattice constant a, i.e., P0=ea,
the polarization is roughly given by P=ea� /EG.6 Therefore,
to enhance the dielectric response, one can reduce EG or
enlarge �. A possible method to reduce EG is to introduce a
substrate disorder, by which even the gapless insulator can
be realized. However, the electron wave functions are no
longer the extended Bloch states in the presence of the dis-
order, and one needs to worry about the localization, i.e., the
Anderson localization. When all the states are strongly local-
ized, one cannot transmit the phase information through the
sample and hence cannot expect the charge pumping either.
On the other hand, as emphasized, the charge pumping is
closely related to the topological nature of the wave func-
tions in the parameter space, which is robust against the dis-
order to some degree. For example, in the two-dimensional
electron systems under the strong magnetic field, there occur
discrete extended states protected by the topology. Namely,
the Chern number is carried by the extended states only,
which is not destroyed by the weak disorder. Nevertheless, a
similar situation arises even in the one-dimensional systems,
which will be extensively studied in the following sections.
Niu and Thouless9 studied the stability of the charge pump-
ing against the weak disorder by a topological argument.
Even though all the states are localized, the charge pumping
was shown to be unchanged as long as the gap remains finite.
However, questions still remain, such as what is the physical
mechanism of the charge pumping through the localized
states and what happens when the gap collapses.

In this paper, we study the effect of the disorder on the
charge pumping and dielectric response in a one-dimensional
model for the insulators. Combining the numerical simula-
tion and analytic considerations, we reveal the physical pic-
ture of the charge pumping by the localized states both in the
case of the open boundary condition and the periodic/twisted
boundary condition. The former one is more relevant to the
experimental situation such as the ferroelectric random ac-
cess memory �FeRAM� where the leads are attached to the
thin film of the insulators, while the latter is more appropri-
ate to see the role of topology. We have published a Letter
summarizing the results on the open boundary condition.10

This paper provides the full details of the formulation, cal-
culations, and the additional results on the open system, as
well as results on the periodic/twisted boundary condition.

The plan of this paper is as follows. In Sec. II, a model for
the disordered insulator showing the charge pumping is in-
troduced. Its analysis with the open boundary condition is
given in Sec. III, including a detailed description of the reso-
nant tunneling mechanism. In Sec. IV, we analyze the model
by using the three-dimensional parameter space, including
the phase angle � for the twisted boundary condition, and
introduce the role of the magnetic monopoles in this space.
Section V is devoted to the conclusions.

II. MODEL FOR A DISORDERED INSULATOR

The minimal model for ferroelectrics is given by the fol-
lowing ionic dimer model:

Hpure = −
1

2�
i=1

L

�tnn − �− �iQ2��ci+1
† ci + H.c.� + �

i=1

L

�− �iQ1ci
†ci.

�3�

Here, ci and ci
† are the annihilation and creation operators of

the electron at the site i=1, . . . ,L, where L is the number of
sites. For the open system attached to the leads, cL+1 and cL+1

†

represents the operators in one of the leads, while for the
closed system, they are understood as c1 and c1

†. tnn is the
transfer integral. Q1 and Q2 represent the alternations of the
local ionic level and the bond dimerization, respectively. The
spin degree of freedom is omitted for simplicity. We consider
the half-filling case which is the most relevant to the ferro-
electrics. Although this model might look special, it illus-
trates the two essential features of the ferroelectrics, i.e., �i�
the two species of the ions characterized by the level alter-
nation Q1 and �ii� the relative shift of the atomic positions
described by the dimerization Q2. Therefore, it is able to
describe the ferroelectricity in BaTiO3, where Ti and O are
dimerized to produce the polarization.11 It can be also ap-
plied to the quasi-one-dimensional ferroelectric materials
such as organic charge transfer compounds TTF-chloranil12

and �TMTTF�2X �X=PF6, AsF6, S6F6, SCN�.13

The Hamiltonian Hpure with the periodic boundary condi-
tion has two bands,6

	±�k� = ± �tnn
2 cos2 k + Q1

2 + Q2
2 sin2 k . �4�

Experimentally, the parameters Q� 	�Q1 ,Q2� can be con-
trolled by applying the electric field E along the polarization
direction and the pressure p. The procedure may go as fol-
lows: Electrons at high and low deinsity sites shift relatively
in the opposite directions, as shown in open arrows of Fig.
1�b�. Change the dimerization Q2 by �Q2
eEQ1. Simulta-
neously, within each dimer, a level difference Q1 changes by
�Q1
−eEQ2, as illustrated by black arrows in Fig. 1�b�.
Therefore, the electric field E mainly controls the angle

� = arctan�Q2/Q1� . �5�

Applying the pressure, one can increase the hybridization
and reduce the ratio Q / tnn with

Q = �Q1
2 + Q2

2. �6�

n.n.

n.n.

n.n.

ε

Applied electric field E

δQ −eEQ

δQ eEQ

2

1 2

1

FIG. 1. �Color online� Ionic dimer system sandwiched by the
leads.
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To discuss the quantum relaxor behavior, we introduce the
on-site random potential vi to the Hamiltonian given by Eq.
�3�,

H = Hpure + �
i=1

L

vici
†ci. �7�

The type of the random distribution takes either a uniform
distribution or an alloy model, which are shown in Fig. 2. In
the following, we study effects of an on-site disorder on
dielectric properties in both open and closed systems, par-
ticularly focusing on the topological aspects.

III. OPEN BOUNDARY CONDITION

In this section, we solve Eq. �3� numerically with two
different situations: a single-channel problem with a uni-
formly distributed random potential and a multichannel prob-
lem in an alloy model for an on-site random potential. The
latter corresponds to the realistic situation in the FeRAM
devices, where the polarization is measured by the integrated
current flowing in the leads. When the size of the sample
becomes nanoscale, the quantum nature of the polarization is
expected to play essential roles via an unusual quantum
interference.6,8 Namely, the quantum coherence is main-
tained throughout the sample. From the application point of
view, it is required to achieve �i� a magnitude of the polar-
ization larger than 10 �C/cm2, �ii� a leak current smaller
than 0.1–1 �A/cm2, and �iii� a dielectric constant larger
than 300.14 By introducing a disorder, one can suppress the
dissipation from the leak current because of the strong local-
ization effect.9,15 In addition, the reduction of the energy gap
takes place to enhance the dielectric properties. Actually, a
similar idea has been realized in the relaxor
ferroelectrics16–18 and the pinned charge-density-wave
systems,19 though their mechanism is due to a classical me-
soscopic cluster formation analogous to spin glass systems.

In the strong disordered case, the charge transfer can oc-
cur due to the resonant tunneling, which has an interesting
counterpart for the adiabatic charge pumping through the
quantum dot.20 Theoretically, it is possible to achieve as the
control parameters are chosen to be the function of the
sample size and disorder strength.21–23 Here, we propose the
possibility of the enhancement of the dielectric response in
the insulators by a disorder in nanoscopic/mesoscopic multi-
channel systems and estimate the operational time for the
dissipationless adiabatic charge displacement. The applica-
tion to the memory devices, for example, FeRAM,14 shall be
also discussed.

A. Single-channel problem for a uniformly distributed random
potential

Let us consider an insulating electronic system sand-
wiched by two leads �electrodes�, as shown in Fig. 1�a�. For
simplicity, we take a one-dimensional �single-channel�
model, but the extension to higher dimensional �multichan-
nel� cases is straightforward, as discussed in the later section.

We take the total Hamiltonian

Htot = H + Hlead, �8�

where H and Hlead are given by Eq. �7� and

Hlead = −
tnn

2

�

i=0

−�

+ �
i=L

� ��ci+1
† ci + H.c.� , �9�

respectively. This model is schematically shown in Fig. 1�b�.
The Green’s function Gi,i��	� for the above model is readily
obtained from the recursion formula in the form of the con-
tinued fraction.24 Here, we concentrate on the case where the
chemical potential is located at the zero energy.

We adopt the Landauer-Büttiker formalism,24,25 where the
sample is regarded as a scatterer characterized by the scat-
tering S matrix

S = 
 r t

t� r�
� , �10�

where r and r� are the reflection coefficients and t and t� are
the transmission coefficient �see Fig. 1� The transmittance
through the sample and the reflectance for both ends satisfy
the following unitary relations:

T = �t�2, �11�

R = �r�2 = 1 − T , �12�

T� = �t��2, �13�

R� = �r��2 = 1 − T�, �14�

r*t� + r�t* = 0. �15�

In the steady state, T=T� and R=R�. Then, we employ Brou-
wer’s formula,26,27 which is originally discussed in quantum
dot systems. The pumping charge �q from the left to the

right through the adiabatic change of parameters Q� along a
path C is given by26

�q = e�
C

dQ�

2�
· Im�r*�� Qr + t�� Qt*� . �16�

Therefore, even in the perfectly reflecting case where t=0
and �r�=1, the charge can be pumped by controlling the
phase  of r=ei.28

Let us start with the pure case �vi=0�. Without the ran-
dom potential vi, the bulk system has an energy gap

EG0 = 2�Q1
2 + Mintnn

2 ,Q2
2� . �17�

This gap closes at Q� =0� , where the finite conduction occurs.

vi

Probability

vi

Probability

v-v -v v

δvδv

0 0

(a) (b)

FIG. 2. �a� Uniform distribution of the on-site random potential.
�b� Alloy model for the on-site random potential, which mimics
effects of substitution in alloys.
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This defines the vortex center of the reflective coefficients r
and r�. By means of the continued-fraction expansion of the
Green’s function, the analytic form of r in the thermody-
namic limit L→� is obtained as

r = −
Q1

2 + tnnQ2 + Q�tnn
2 + Q1

2 + 2itnnQ1

Q1
2 + tnnQ2 + Q�tnn

2 + Q1
2 − 2itnnQ1

, �18�

where Q	�Q1
2+Q2

2. The panels �a1� and �b1� of Fig. 3 show

the reflectivity R= �r�2 for L=10 001 and the phase  of r for

L→� without disorder. The phase winds by 2� around Q�

= �0,0� and the “vortex core” can be clearly seen represent-
ing r=0 and �t � =1. In the thermodynamic limit L→�, R
=1 and T=0 hold, except at the vortex core. For the finite-
size systems, the transmittance T behaves as e−L/�0, with �0

= tnn/EG0. Therefore, the size of the region in the Q� space
with a large T is of the order of tnn/L for a large L. In other

ϕ/2πR

v/t =0v/t =0

v/t = 0.25
L = 101

(a1) (b1)

(a2) (b2)

vortex center
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n.
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FIG. 3. �Color online� Reflectance R= �r�2 and
the phase =arg r. ��a1� and �b1�� Clean bulk
system. ��a2� and �b2�� Disordered system of fi-
nite size L=401 with the random potential of the
strength v / tnn=0.5. The color code given in �a1�/
�b1� also applies to �a2�,�a3�/�b2�,�b3�. In the
white region in �a1�–�a3�, R is the unity within
the accuracy of 10−4.
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words, the vortex is the gapless point and leads to the perfect
transmittance.

Remarkably, this perfect-transmission point Q� =0� has a
nonlocal effect on the system. When we adiabatically change
the parameters Q� along a cycle around Q� =0� , where the
transmittance T vanishes, one unit of charge e can be
pumped and leads to the polarization change by ±2ea ac-
cording to Brouwer’s formula �a is the lattice constant and
2a is the size of the unit cell� �Eq. �16��. In this unit, the total
vorticity Nv corresponding to the polarization is defined to be
1. The vortex is almost isotropic, at least in the vicinity of its
core. Then, a pumped charge due to a small change �� of Q� is
expressed as q��� /2��e����� � /EG�e, where � is the

change in the polar angle of the vector Q� . This quantized
charge pumping8 through the adiabatic cyclic change of Q� is
consistent with the results previously found in the periodic
system6 by using the Berry-curvature formulation of the
electric polarization.1

Now, we introduce the disorder. In the Q� plane, the region
of �Q� � �v becomes gapless, while the Anderson localization
dominates the transport properties.15,29 Especially in one di-
mension, the effect is pronounced and all the states are
localized.30–32 On the other hand, the total vorticity Nv is an
integer topological number, which is robust under a continu-
ous change of parameters including the disorder strength
when the gap does not collapse. Therefore, even with disor-
der, Nv remains unity. Namely, there exists at least one vor-
tex �r=0� in the Q� plane. The perfect transmittance �t�=1
occurs even when all the states are strongly localized. This is
a remarkable consequence from the quantum and topological
property, which is in sharp contrast to the usual classical
tunneling through disordered insulators.

In Figs. 3�a2� and 3�b2�, we show our numerical results of
R and  for L=101, with the uniform random distribution
vi� �−v ,v� for the disorder strength v=0.25tnn. We observe
that the vortex center of the perfect transmittance T=1 and

R=0 shifts in the Q� space. In addition, an anisotropy devel-
ops in the shape of the region of relatively high transmittance
T. We further calculate R and  for larger systems, which are
shown in Figs. 3�a3� and 3�b3� for L=201 and in Figs. 3�a4�
and 3�b4� for L=401. It is clear that the vortex core, which is
almost isotropic without the disorder, rapidly evolves into the
highly anisotropic one. This is associated with an increase of
the ratio L /� by increasing the system size. Figure 4 shows
the local density of states Di of site i�=1, . . . ,L�, which has

been calculated when Q� is located at the vortex center Q� c
corresponding to each case of L=101, 201, and 401 for v / t
=0.25. When L is equal to 101 or smaller, the state at this
energy is extended over the sample. However, with increas-
ing L, the state is almost localized in the middle of the
sample. The spatial extension of the wave function, i.e., the
localization length �, can be explicitly evaluated from the
second moment of Di as the inverse participation ratio,

�IPR = 
�
i

Di�2��
i

Di
2. �19�

We obtain �IPR=51.4, 80.8, 76.4, and 84.7 for L=101, 201,
401, and 501, respectively, around the vortex center, indicat-

ing that �IPR almost saturates about 80 sites for v / t=0.25.
Furthermore, in this anisotropic “wing,”  changes rapidly.
The width QW of the anisotropic wing decays exponentially
as exp�−L /�� with increasing L, as shown in Fig. 5.

Let us briefly comment on the relation of the charge dis-
placement discussed above to the charge pumping through
the quantum dot20 connected by two leads. When the system
has a finite conductance, the main source of the pumping is
contributed both from the transmission and from the reflec-
tion coefficients. Therefore, it is not topologically quantized.
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FIG. 4. Local probability Di of the state at the vortex for �a� L
=101, �b� L=201, and �c� L=401 in the presence of uniformly
distributed random potential vi� �−v ,v�, with v=0.25tnn.
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However, by increasing the system size, it may cross over to
the insulating regime, especially in the presence of the dis-
order. We will show that in this case the charge pumping
topologically comes from the vortex of the reflection coeffi-
cient. Namely, the vortex is topologically protected against
the disorder. The topological constraint guarantees the charge
pumping, which can be understood by the resonance
tunneling33 near the vortex.

B. Resonance tunneling

In order to understand transport properties of such one-
dimensional disordered systems, it is sometimes useful to
consider an effective model, with the potential having high
double peaks. In this model, well-defined localized eigen-
states exist between the two potential peaks, and any trans-
port between two ends of the system occurs via the localized
states through tunneling. While such tunneling has an expo-
nentially small probability, it occurs when the Fermi energy
of the leads is equal to one of the eigenenergies of the local-
ized states, namely, when the resonance takes place. This
picture of transport in disordered systems is called “reso-
nance tunneling.33”

Following Ref. 33, we develop the resonance-tunneling
theory for our case. We define an effective model of reso-
nance tunneling, as described by the Schrödinger equation
���x�+ �k2−V�x����x�=0, where �2k2 /2m is the kinetic en-
ergy, and the effective potential V�x� has two peaks, as
shown in Fig. 6. Although it is not trivial to derive the effec-
tive potential from the on-site randomness, our numerical
results can be fitted well using the effective potential when
the localization length � is much shorter than the system size.
The tunneling is guaranteed by the perfect-transmittance
point protected by the topology; i.e., the resonant tunneling
in the two-dimensional parameter space �Q1 ,Q2� takes place
in spite of the complexity of the potential shape in the model.

First, let us consider an open system attached to two ideal
leads, which are connected to reservoirs. The Fermi energy
EF is tuned at one’s disposal, and we assume that the poten-
tial peaks are much higher than EF. An effective wave num-
ber k�x�	�k2−V�x� becomes imaginary inside the potential
peaks, and the particle tunnels through the peaks. One of the

eigenstates in the left lead �x�x1� is given by �1�x�
�exp�ik1�x−x1��, where k1=k�x1�. The time-reversal sym-
metry of the system requires that the complex conjugate
�1

*�x� is also an eigenstate. At the potential valley around
x=x2, we can also consider eigenstates with �2�x�
�exp�ik2�x−x2�� and �2

*�x�, where k2=k�x2�. Thus, general
eigenstates around x=x1 and around x=x2 are given as
��x�=A1�1�x�+B1�1

*�x� and ��x�=A2�2�x�+B2�2
*�x�, re-

spectively. Next, we introduce the transfer matrix �1 from x2
to x1,


A1

B1
� = �1
A2

B2
� , �20�

where �1 is a 2�2 matrix. The time-reversal symmetry re-
quires the transfer matrix � to be of the form

�1 = 
 k2

k1
�1/2
 cosh�S1�ei�1 sinh�S1�ei�1

sinh�S1�e−i�1 cosh�S1�e−i�1
� . �21�

In a semiclassical theory, we have

�1 = − �
x1

x1�
k�x�dx − �

x1�

x2

k�x�dx , �22�

�1 =
�

2
− �

x1

x1�
k�x�dx + �

x1�

x2

k�x�dx . �23�

S1 characterizes the height of the potential, as the transmis-
sion coefficient t1 is given by t1=ei� sech S1. Since we have
assumed that the peak is high, which means S1�1, the trans-
mission probability �t1�2 is then approximated as �t1�2
�4e−2S1 �1.

Similarly, we introduce the transfer matrix for the second
peak as


A2

B2
� = �2
A3

B3
� , �24�

and we have

�2 = 
 k3

k2
�1/2
 cosh�S2�ei�2 sinh�S2�ei�2

sinh�S2�e−i�2 cosh�S2�e−i�2
� . �25�

The phases �2 and �2 can be written similarly to �1 and �1,
where S2�1. We assume that Si, �i, and �i �i=1,2� are
smooth functions of the parameters Q1, Q2, and EF. A trans-

FIG. 5. �Color online� The minimum width �Q for R determined
at R=0.3 as a function of L.

FIG. 6. Potential profile for the effective model of resonance
tunneling. Heights of the two potential peaks are characterized by
S1 and S2.
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fer matrix � for the entire system is given by

� = �1�2 = 
 k3

k1
�1/2
�11 �21

*

�21 �11
* � , �26�

�11 = ei��1+�2��cosh S1 cosh S2 + sinh S1 sinh S2ei�� ,

�27�

�21 = ei��2−�1��sinh S1 cosh S2 + cosh S1 sinh S2ei�� ,

�28�

� = �1 − �2 − �1 − �2 � 2�
x1�

x2�
k�x�dx . �29�

From the unitarity, it follows that ��11�2− ��21�2=1. We also
assume that the Fermi energies of the two leads are identical,
which means k3=k1. For a plane wave incident from the left
lead, we denote r and t as the reflection and transmission
coefficients, respectively. Similarly, for a plane wave from
the right lead, we define r� and t� as well. We then obtain

r = �21/�11, t = t� = 1/�11, r� = − �21
* /�11. �30�

It implies the unitarity �r�2= �r��2=1− �t�2. It also satisfies t
= t� and rt*+r�*t=0, as required by the time-reversal symme-
try.

We now apply this framework to fit our numerical results.
Because r is written as

r = ei� tanh S1 + tanh S2ei�

1 + tanh S1 tanh S2ei� , �31�

a condition for a total transmission, r=0, is given by

S1 = S2, �32�

� = 2�
x1�

x2�
k�x�dx = �2n + 1�� , �33�

where n is an integer. The latter condition is equivalent to the
Bohr quantization condition that the state localized around x2
be an eigenstate with its eigenenergy equal to EF. In other
words, the total transmission occurs at resonance. For the
fixed EF, the two conditions �32� and �33� define the isolated
points in the Q1-Q2 plane. Let P denote one of such points of
total transmission: r=0. One can easily see that around point
P, the phase of r and that of r� wind by ±2�, as schemati-
cally shown in Figs. 7�a1� and 7�a2�. From the Brouwer
formula �16�, the phase windings of r and r� correspond to �
2� times� the amount of charge pumped into the system
through the left and right ends, respectively. Thus, by going
around point P, one unit charge is pumped from the left lead
to the right. For illustration, let us consider a clockwise cycle
around point P in Figs. 7�a1� and 7�a2�. This pumping from
left to right is analogous to the “bicycle pump.”28 The two
potential peaks correspond to two gates to control the pump-
ing. If the system crosses the line �= �2n+1�� at the S1

�S2 side, r undergoes 2� phase changes. It means that tun-
neling occurs through the left potential peak due to the reso-
nance, corresponding to the opening of a “left gate,” and a

FIG. 7. Schematic contour mapping of the
phases of the reflection coefficients r and r� in the
Q1-Q2 plane. �a1� and �a2� correspond to small S1

and S2, and �b1� and �b2� to large S1 and S2. The
phases of r and r� wind by 2� during the cycle
around the “vortex” P. When we go along the
arrows indicated in �a1� and �a2�, the phase of
r �r�� increase by 2� �−2��. �a3� illustrates the
motion of the charge in the cycle. Note that the
2� phase change of r �r�� is associated with
pumping one unit charge into the system through
the left �right� end of the system.
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unit charge flows in. After that, the left gate closes, and the
right gate opens in turn, when the system crosses the line
�= �2n+1�� at the S1�S2 side, and r� undergoes a −2�
phase change. The charge is pumped to the right lead after
one cycle. Thus, the overall motion of the charge is as shown
in Fig. 7�a3�. For the pumped charge to be quantized, the
cyclic process should be sufficiently slow to be regarded as
“adiabatic.” Otherwise, the particle cannot tunnel through the
potential barriers. Below, let us make this physical picture
more explicit in relation to our numerical results.

In our numerical results in Figs. 3�b2�–�b4�, the phase-
winding point P corresponds to the perfect transmission.
When we go from Fig. 3�b2� to Fig. 3�b4�, L /� increases. In
the resonance-tunneling picture, it means that Si increases
and that the “resonance-tunneling wing” narrows, as seen by
comparing Figs. 7�a1� and 7�b1�. It is exactly observed in
our numerical results.

For large L /�, the transmission probability �t�2 is typically
�e−2�S1+S2��e−2L/�. Because we have S1�S2 near the reso-
nance, we estimate S1�S2��L /2��. In that case, the change
of the phases of r and r� occurs abruptly at around ��− �2n
+1����e−L/�. Along the line �= �2n+1��, �r� is given by
�r�=tanh�S1−S2�, which becomes appreciable only when �S1

−S2��1. This is found only in a small region � / tnn�� /L.
When L /��1, because the tunneling rate QW is exponen-
tially small �QW� tnne

−L/��, charge pumping requires an ex-
ponentially long time ���� / tnn�eL/�. This is the time scale
which gives a criterion for adiabatic charge pumping in this
system. If one changes the parameters faster than this time
scale, the pumped charge is reduced by an exponential factor
e−�/EG as a nonadiabatic correction, where � is a frequency
of the change of the external parameters.34

Generally, there occurs no perfect-transmittance point by
tuning only two parameters since the effective two-barrier
model for the resonant tunneling applies only to a limited
region of the random system and not through a whole
sample. In the present case, it is guaranteed by the topologi-
cal constraint that the phase of r�r�� should wind by �−�2�

for a large cycle far from Q� =0, well within the gapped

region.9 When �Q� � is larger than the energy scale of the dis-

order, a finite gap ���Q� �� opens. The wing will then become

as wide as QW��Q� �. Correspondingly, the typical time scale

��� /QW�� / �Q� � becomes smaller, and the adiabaticity con-
dition is easily satisfied. In such case, however, the dielectric
response is not enhanced. The localization length becomes as
long as the system size, and the pumping is accomplished
through extended states, not by resonance tunneling. Re-
markably, this charge pumping in the gapped region is gov-
erned by the vortex which is located deep in the disordered
regime ���L�. In other words, the charge pumping in the
gapped regime ���L� is smoothly connected to that via
resonance tunneling in the disordered regime ���L�. We
note that S1 and S2 are regarded as effective parameters, al-
though the real potential is much more complicated than the
two-barrier structure.

C. Multichannel problem in an alloy model for an on-site
random potential

In the rest of this section, we consider a stronger random-
ness by employing the alloy model �Fig. 2�b�� with vi=si�v
+�vi�, with si= ±1 being a random sign and �vi /v� �
−0.025,0.025� a uniform random distribution, instead of the
uniformly distributed random potential �Fig. 2�a��.

Let us start with the single-channel case. Then, for a fixed
disorder strength v, the shape of the vortex core of the re-
flection coefficient rapidly evolves from isotropic to aniso-
tropic with the increasing system size L, as in the case of the
uniformly distributed random potential discussed in Sec.
III A. This tendency is generic and also realized for a fixed
system size L with the increasing disorder strength v. In Figs.
8�a� and 8�b�, we show the reflectance R and the phase  in

the Q� space for v / tnn=1.0 and a small sample size L=25.

Here, the region in the Q� plane where the gap collapses and
vortices distribute expands because of the stronger disorder
and thus the much shorter localization length ��3 or 4. The
transmittance T is typically obtained as �10−9, which is
practically negligible except at the vortex core.

Now, we consider a system that consists of many chan-
nels, each of which is described by the present disordered
alloy model, but with a different profile of random potentials.
Such configuration can be realized in thin films of ferroelec-

trics. Then, we can design the pattern of the phase  in the Q�

plane by tuning the disorder. For the alloy model with the

v/t = 1.0
L = 25

(a) (b)

v/t = 1.0
L = 25

n.n. n.n.

n.
n.

n.
n.

1.0
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0.0

−0.5

−1.0

1.0

0.5

0.0

−0.5

−1.0

n.n.

0.0 0.5 1.0 1.5 2.0
n.n.
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ϕ/2πR

FIG. 8. �Color online� �a� Re-
flectance and �b� the phase  of r
in a disordered system with L
=25 and v / tnn=1.0 for the alloy
model with the on-site random po-
tential given in Fig. 2.

CHERN et al. PHYSICAL REVIEW B 76, 035334 �2007�

035334-8



random on-site potentials, vortices are mostly located around
Q1= ±v /2, with the wing almost along the Q2 axis. There-
fore, we can enhance the dielectric response if we can tune

the disorder strength and choose a sample where the Q� point
of the system is located inside the wing. In particular, when
the transmittance T is negligibly small, the enhancement fac-
tor of the dielectric response is given by
�� /���disorder / �� /���pure from Eq. �16� since the electric
field is proportional to �=arctan�Q1 /Q2�. We calculate this
enhancement factor for this multichannel system, increasing
the number N of channels. Figures 9�a� and 9�b� represent

the Q� dependence of the enhancement factor in the case of
v / tnn=1.6 and 2.4, respectively, for L=25 with N=102. The
main structure in this map is almost saturated up to N=102.
These results reveal that around Q1� ±v /2, the dielectric
response is significantly enhanced by a factor of 30–40 com-
pared with the pure case. Even for the thin film with a square
shape of a linear dimension larger than 50 Å, which corre-
sponds to N=102, the disorder-induced enhancement of the
charge transfer rate should be robust. Then, the applied elec-
tric field necessary for switching the polarization is reduced
by this enhancement factor. If we require the response time
��eL/� / tnn of the order of 10−9 s, we obtain eL/��106 with
the assumption of tnn�1015 s−1. This also assures a negligi-
bly small transmittance T�e−L/��10−6 and, thus a small
leak current and low dissipation.

Possible experimental realization of this quantum-
mechanical disorder-induced enhancement of the dielectric
response, namely, the quantum relaxor, has also been
proposed10 for thin films of solid solution systems such as
Pb�Fe0.5Nb0.5�O3 and Pb�Sc0.5Nb0.5�O3 prepared with an ad-
equate slow-annealing process.35,36

IV. PERIODIC/TWISTED BOUNDARY CONDITION

The adiabatic charge pumping in the presence of the sub-
strate disorder was considered by Niu and Thouless.9 They
showed that the adiabatic charge transport is still quantized
as long as the excitation gap between the highest occupied
molecular orbital �HOMO� and the lowest unoccupied mo-
lecular orbital �LUMO� does not vanish with respect to the
substrate disorder and the many-body interaction in the ther-

modynamic limit. In the case of an open boundary condition,
it is easy to imagine the meaning of charge pumping: the
charge transport from one end to the other. In the case of the
periodic boundary condition, the charge pumping after one
cycle refers to the electronic wave function to shift by one
unit cell. A cartoon picture of this process is given in Fig. 10.
We note that in the absence of the disorder, the adiabatic
charge transport has been related to the field-theoretical
model of the one-dimensional chiral anomaly.37

A. Formalism

In contrast to the open system with two leads, we solve
the closed system in a ring geometry. Moreover, we intro-
duce a twisted boundary condition by applying a magnetic
flux through the one-dimensional ring. In the pure case, the
lattice momentum k is a good quantum number, and the pa-
rameter space is three-dimensionally spanned by �Q1 ,Q2 ,k�.
However, in the disordered case, k is no longer a good quan-
tum number. The parameter space becomes �Q1 ,Q2 ,��, with
�� �0,2��. The Hamiltonian is given by

H��� = −
tnn

2 �
j=1

N

�ei�/Ncj
†cj+1 + H.c.� + Q1�

j=1

N

�− 1� jcj
†cj

+
Q2

2 �
j=1

N

�− 1� j�ei�/Ncj
†cj+1 + H.c.� + V , �34�

where cN+1	c1 and V=� jv jcj
†cj is the uniformly distributed

disorder potential.
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FIG. 9. �Color online� Relative
dielectric response in the presence
of the disorder compared with the
pure case. The disorder strength is
v / tnn=0.8 for �a� and 1.2 for �b�.
Averages are taken over 102 ran-
dom disorder configurations. In-
side white bands, there occurs a
gradual sign change in the dielec-
tric response.

FIG. 10. �Color online� A cartoon picture of the charge transport
on the one-dimensional ring.
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In the tight binding model, the polarization operator P� has
the following form:

P� = �
j

R� jcj
†cj , �35�

where R� j is the position vector at site j and cj
†cj is the elec-

tron density operator. The current is defined by the time de-
rivative of the polarization operator given by

J� =
�P�

�t
=

1

i
�P� ,H� . �36�

In the pure case, the current is given by �H
�k , whereas in the

present case with disorder, the current operator given by �H
��

has the following form:

J = ie−i�/N�
j

�t + Q2�− 1� j�cj+1
† cj + H.c. �37�

When the flux � is equal to 0 or �, the system is time-
reversal symmetric, and there is no persistent current. In such
cases, we can consider a change of the electric polarization
by an adiabatic change of parameters Q1 and Q2. In the linear
response theory, the change of the electric polarization is
given by

�P = F1�Q2 − F2�Q1, �38�

with

F1 = −
i

L
�

m�0
� ��0�J��m���m� �H

�Q2
��0�

�Em − E0�2 − c.c.� ,

�39�

F2 =
i

L
�

m�0
� ��0�J��m���m� �H

�Q1
��0�

�Em − E0�2 − c.c.� , �40�

where L=Na is the circumference of the ring �where a is the
lattice spacing� and

�H

�Q1
= �

j

�− 1� jcj
†cj , �41�

�H

�Q2
=

1

2�
j

�− 1� j�ei�/Ncj
†cj+1 + e−i�/Ncj+1

† cj� . �42�

We note that the change of the polarization �P is generally

dependent on the path in the parameter �Q� � space. The ��0�
in Eqs. �39� and �40� is the many-body ground state, and
��m� denote the excited states. E0 and Em are the energy for
the ground and excited states, respectively. In the pure case,
when the chemical potential lies in the gap, the system is a
band insulator. The magnitude of the energy gap is given by
the magnitude of the charge-density-wave order parameter
�Q1 ,Q2�. In the presence of the disorder, the gap closes when
the magnitude of the disorder potential becomes the order of

O��Q1
2+Q2

2�. The system remains insulating because each
state is localized, i.e., Anderson localization.

Although we defined Eqs. �38�–�40� only for �=0 and
�=�, it can be generalized to any � easily. We should note
that except for �=0 and �, �P��� does not mean a change of
polarization. With the extension to arbitrary �, let us suc-

cinctly abbreviate �Q1 ,Q2 ,�� as Q� = �Q1 ,Q2 ,Q3� and define
the gauge potential as

A� = i��0� �

�Q�
��0� . �43�

This gauge field is defined so that the corresponding field

strength F� =��A� has the components given in Eqs. �40� and
�39�. Furthermore, when the parameters �Q1 ,Q2� are
changed along a cycle, the pumped charge can be written as

�P��� = �
S

dQ� � �̂ · F� �Q� � , �44�

where S is a loop on the Q1−Q2 plane. Using the Stoke’s
theorem, Eq. �44� becomes

�P��� =� d2QD�Q� � , �45�

where D�Q� �=�1F1+�2F2 is defined as the distribution func-
tion of the polarization. This pumped charge is not necessar-
ily an integer. However, in a strongly disordered system it
becomes an integer, with an exponentially small correction
of the order of e−L/�. To see this, we note that the wave
functions in a strongly localized case are almost insensible to
the twisted boundary condition � within an accuracy of e−L/�.
Hence, �P��� is equal to an average �P��� over �, namely,

�P = �
0

2� d�

2�
�P��� = �

�T

d�� · F� , �46�

where �T is the torus surface and d�� is the surface element.
This average �P represents the total flux over a torus sur-
face, and it is an integer, which follows from topological

properties of the gauge field A� . As the field strength is de-

fined as F� =��A� , it satisfies � ·F� =0 if there is no singular-
ity, i.e., there is no energy crossing. Thus, when there are no
energy degeneracies inside the torus V� �0,2��, the aver-
aged pumped charge �P becomes zero due to the Gauss

theorem. If there is an energy crossing, the gauge field A� has
a U�1� monopole there, and the averaged charge �P becomes
a total strength of the monopoles inside the torus, again by
using the Gauss theorem. As the monopole strength is quan-
tized to be an integer, �P is always an integer. This discus-
sion for Eq. �46� corresponds to that for Eq. �2.23� in Ref. 9,
in which they claimed that the charge transport is quantized
in the presence of a gap which does not vanish in the ther-
modynamic limit. On the other hand, the aim of this paper
has another target: we are interested in the strong disorder
case, in which the energy gap closes in the thermodynamic
limit and all wave functions are localized and characterized
by the localization length � defined by �−1=�dx���x��4,
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where � is the single particle wave function. Nevertheless,
for the finite-size system, a gap always exists, which is the
order of the band width divided by the size of the system.
Therefore, it validates the above topological argument even
in the strongly disordered cases. In such disordered systems,

the field strength F� is highly anisotropic around the mono-
poles, which is closely related to a resonance tunneling pic-
ture in Sec. III B.

The adiabatic charge transfer is based on the occurrence
of the singularity in the parameter space,6 which happens
when LUMO and HOMO are degenerate. By making a close
contour enclosing the singularity, the wave function shifts, as
shown in Fig. 10. Since the disorder potential is random, we
expect that the proliferation of the singularities may occur.
Furthermore, there could be a singularity string rather than a
point in the strong disorder limit. The reason is given as
follows. In the strong disorder limit, all wave functions are
localized. There could be a situation that the wave functions
of the LUMO and the HOMO are well separated so that the
overlap integral of the two wave functions are exponentially
small as the parameters change. Thus, even when the change
of parameters in numerics or in experiments is very slow, its
time scale might still be shorter than the inverse of the �ex-
ponentially small� overlap integral of the LUMO and
HOMO. Therefore, within this variation of parameters, the
LUMO and HOMO can be regarded as a degenerate. Once
they are degenerate at a certain point in the parameter space,
they will keep the near degeneracy as the parameters change
until their wave functions have an appreciable overlap and
open a gap. As long as they remain nearly degenerate as the
parameters change, the singularity string is created in the
parameter space. Moreover, because the wave functions are
highly localized on the singularity string, they are insensitive
to the boundary condition, in other words, � independent.
Therefore, they have a sheetlike structure extending along
the � direction in the parameter space. Even though it is
sheetlike, we call it a string, referring to its projection on the
�Q1 ,Q2� plane. From this observation, we conclude that the
singularity in the parameter space projected on Q1 and Q2
subspaces has two kinds, points and strings, in the strong
disorder limit. The former contribute to the charge transfer,
while the latter do not. The charge transfer for the former is
explained within the resonance tunneling �Sec. IV C�.

B. Numerical results

In this section, we solve numerically the eigenvalue prob-
lem for slowly varying parameters �Q1 ,Q2� and calculate the
contour integral in Eq. �44�. We introduce the small segment

�Q� for the contour integral and demand that F1 ,F2 are con-

tinuous. Therefore, the size ��Q� � determines the energy scale
and time scale of our simulation. In an actual calculation, we

take ��Q� �=10−6tnn as the finest one. Then, the discussion
below applies when we observe the system within the time

scale T�� / ��Q� � �106� / tnn. Also, we average over � to see
the quantization of the charge transfer in Eq. �46�.

We solve Eq. �34� by a direct numerical calculation. Our
goal is to compute the distribution function from Eq. �45�,

which is � dependent. We will also demonstrate the quanti-
zation of the charge transfer by averaging over � by Eq. �46�.

We consider a ring with N=50 and take vi / tnn to distribute
uniformly in �−7.0,7.0�. To obtain the distribution function,
we divide the �Q1 ,Q2� plane into small pieces of grids and
calculate Eq. �45� for each grid. Let us remind the readers
that the distribution function for the pure case is the
�-function at the origin.6 In that case, we do not need to
integrate over � to obtain the quantization of the charge
transfer because the singularity lives in the �Q1 ,Q2 ,k� space,
and the integration over k is already included implicitly in
Eq. �45�.

Our result can be summarized by the cartoon in Fig. 11.
First, we found that �P=1.0 if we take loop A, which is the

outer dash one ��Q� � �10�, and average over �. It corre-
sponds to the weak disorder case where the strength of the

disorder is much smaller than �Q� �, so the potential strength is
not large enough to close the gap. According to Niu and
Thouless,9 the polarization is quantized, and we reproduce
their result here. Secondly, the singularity strings appear in

the region �Q� ��4.5. In this region, the disorder potential is
strong enough to close the gap. As we pointed out in Sec.
IV A, there are two kinds of singularities, points, and strings.
In the “stringful” region, it is rather difficult to locate the
singularity point. It is because the operation of the adiabatic
process changes when making the contour across a string. In
Fig. 12, we illustrate two different adiabatic processes re-
garding making contours enclosing the singularity points and
across the singularity string. Figure 12�a� shows the usual
definition of the adiabatic process. In the presence of the gap,
the adiabatic process has to follow the lower energy state,
which is indicated by the square dots in Fig. 12�a�. Figure
12�b� shows the adiabatic process of the contour across the
string. In this case, because the wave functions of the HOMO
and the LUMO do not overlap, the adiabatic process needs to
keep ramping up to the higher energy state at the first degen-
erate point and to keep ramping down to the lower energy

FIG. 11. A cartoon picture of the distribution of singularities at
�=0. The singularity has two kinds: strings and points. Calculating
Eq. �44� from the outer big dash loop gives the polarization +1.0
and −1.0 from the loop B. If we stay far away from the origin, one
would think that there is only one monopole with �P=1.0 at the
center, like in the pure case. However, when the disorder strength is
strong enough, there are some subtle structures inside the big mono-
pole. There are the monopole-antimonopole pairs and the singular-
ity strings.
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state at the second degenerate point, which completes a close
loop. Note that the energy of the HOMO is larger than that of
the LUMO after the first degenerate point and becomes
smaller again after the second degenerate point. In other
words, the system stays in the same state, and thus the charge
does not transfer at all after a close contour. Therefore, even
if we make a close loop which encloses a whole singularity
string, the charge does not transfer. It should be noted that
even though the system is at a higher energy state, it takes
�eL/� to relax, where L is the size of the system and � is the
typical localization length which is around three sites in our
case.

In Fig. 12�c�, we demonstrate a real process across a sin-
gularity string indicated by loop C in Fig. 11. Usually, we
refer the singularity string to the degenerate manifold be-
tween the HOMO and LUMO. In a real process, we may
have to consider the degeneracy between the HOMO and the
second LUMO. For example, after the degenerate point be-

tween the LUMO and HOMO, the descending order in en-
ergy is the second LUMO, the HOMO, and the LUMO.
There is the possibility, for example, the boundary � in Fig.
12�c�, that the energy of the second LUMO and that of
HOMO can be the same along the contour before meeting
the next degenerate point between the HOMO and LUMO. If
it happens, the system still stays in the original HOMO state
by ramping further up to the higher energy state. After that,
the descending order in energy becomes the HOMO, the sec-
ond LUMO, and the LUMO. Figure 12�c� shows the com-
plete process, and the system has to go back to its original
state after completing a close loop. As a result, HOMO,
LUMO, and other states can be viewed as the Riemann
sheets. Singularity strings are like the branch cuts which con-
nect different Riemann sheets. Contours on the �Q1 ,Q2�
plane are very similar to the one in the complex plane.

As the string just corresponds to the degenerate states,
which does not penetrate through the whole sample, the only
topological object which contributes to the polarization is the
isolated singularity point. We found one at �Q1 ,Q2 ,��= �
−0.3885,−4.80415,0�. If we calculate Eq. �46� around that
point, for example, loop B in Fig. 11, we obtain �P=−1.0.
We identify the singularity point which carries �P=−1.0
with the antimonopole in contrast to the monopole which
carries �P=1.0. Considering the total flux calculated from
loop A in Fig. 11 to be 1.0, there must be at least two mono-
poles and one antimonopole in our system, which demon-
strates the proliferation of the monopole-antimonopole pairs
in the strong disorder limit. Unfortunately, we are not able to
monopoles exactly locate but to obtain a rough position,
since they merge in the stringful soup. The integral in Eq.
�44� converges very slowly as the counters are close to the
singularity string �or points�. The integral step is equivalent
to the rate of the adiabatic process, which has to be less than
the typical energy spacing 2�t+vi

max� /N. When approaching
the singularity, the energy gap becomes very small, so the
process rate has to be smaller to have convergent results.
Therefore, it is very difficult to locate the monopole position
if they are in the stringful soup.

The appearance of the antimonopoles in the strong disor-
der limit is very appealing. It contributes to the polarization
in the opposite way that a monopole does. The polarization
comes from the charge transportation through the whole
sample from one end to the other. Therefore, Eq. �45� for the
antimonopole must be highly � dependent shown in the Fig.
13�a�. The peak value of �P��� happens at �=0. After inte-
grating over � by Eq. �46�, we obtained �P=−1.0. This re-
sult indicates that the antimonopole may be located at �=0.
In Fig. 13�b�, we found that the energy gap closes at �=0,
supporting this observation. In Figs. 13�c� and 13�d�, we
show the energy gap at �=0 along Q1 and Q2 directions,
respectively. In fact, the structure of the antimonopole is
highly anisotropic. The energy gap has a valleylike structure
at �=0. Figure 13�e� shows the energy gap along the valley.
The slope of the energy gap function along the valley is
roughly ten times smaller than other directions. In other
words, the antimonopole looks like a football more than a
round ball. This anisotropy can be understood in terms of the
resonance tunneling, as we will see in the next section.

(a)

(b)

(c)

FIG. 12. The adiabatic process in the gapless case is different
from the gap case. �a� shows the process with a gap. �b� shows the
process without a gap. �c� shows a real process from loop C in Fig.
11.

CHERN et al. PHYSICAL REVIEW B 76, 035334 �2007�

035334-12



Another quantity to measure the extendedness of a state is
the Thouless number defined by

NT =
E�� = �� − E�� = 0�

�E
, �47�

where E��� is the energy of the state and �E is the typical
energy spacing. We plot the Thouless number of the HOMO
in Fig. 14. We found a ridge distribution that coincides with
the valley in the energy gap function. The antimonopole is
located at the ridge but is not necessarily the highest one.
The Thouless number at the ridge is one order of magnitude
larger than the other points in the vicinity in the parameter
space. It suggests that the high boundary condition sensitiv-
ity must dominate the physics at the antimonopole. It leads to
the resonance tunneling in the Anderson insulator.33

C. Resonance tunneling

We now compare the numerical results with the picture of
resonance tunneling discussed in Sec. III B. In the
resonance-tunneling scenario, we can deal with the periodic
system by identifying x3 with x1. It leads to k3=k1. In such a

periodic system, as is apart from an open system, EF is no
longer a tunable parameter, but corresponds to discrete en-
ergy levels of the system. Thus, Si, �i, and �i are smooth
functions of Q1, Q2, and an energy E. Because the periodic
system is threaded by a flux of ��0, we require that

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 13. �Color online� Some
properties of antimonopole. �a�
the � dependence of Eq. �45�
around the antimonopole. �b�–�d�
The energy gap functions of the
antimonopole along the �, Q1, and
Q2 directions. �d� The gap func-
tion along the valley. The anti-
monopole is not spherically sym-
metric. The gap function at �=0
has a deep valley because the
slopes along the valley is ten
times smaller than other direc-
tions. �f� The wave functions of
the HOMO and LUMO at the an-
timonopole. In �b�–�e�, the axes
are in the unit of tnn.

FIG. 14. �Color online� The Thouless number in the vicinity of
the antimonopole. The Thouless number has a ridge structure which
exactly coincides with the valley in the gap function.
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�
A3

B3
� = 
A1

B1
� = ei�
A3

B3
� . �48�

It yields det��−ei��=0, i.e., Re �11=cos �. Because �11 is a
function of Q1, Q2, and E, this defines an �discrete� energy
level of the system as a function of Q1 and Q2.

We study the monopoles in the framework of resonance
tunneling. As the monopoles appear at band-crossing points,
we have to look for degenerate solutions of Eq. �48�.
Namely, we look for cases with two �degenerate� states for
fixed Q1, Q2 and E. This happens if and only if the matrix �
is equal to ei�. This condition reduces to

S1 = S2, �49�

� � 2�
x1�

x2�
k�x�dx = �2n + 1�� , �50�

�� � 2�
x2�

x3

k�x�dx + 2�
x1

x1�
k�x�dx = �2n� + 1�� , �51�

� = − �n + n� + 1�� , �52�

where n and n� are integers. Because S1, S2, and � and ��
are functions of Q1, Q2, and E, the three conditions �49�–�51�
determine a set of isolated points in the Q1−Q2−E space.
Combining with Eq. �52�, we get isolated points in the Q1
−Q2−� space, corresponding to the
monopoles/antimonopoles.38 Except for the vicinity of the

monopoles/antimonopoles, the field F� is almost � indepen-
dent because the system is almost intact with the change of

�. Thus, the distribution of the field F� is as shown in Fig.
15�a�. In contrast to a small-sized model ��L in Ref. 38, in
our disordered model ���L� the “near-field” region where
the flux density is � dependent is limited only in the very
close vicinity of the monopoles/antimonopoles.

Equations �50� and �51� are the Bohr quantization condi-
tions, meaning that there are two localized states around x2
and x3 �	x1� having the same energy. In general, when there

are two localized states with the same energy, displacing
each other by a high potential peak, there is a small tunneling
matrix element between them. It gives a small energy split-
ting between bonding and antibonding states. As a result, the
degeneracy is lifted. Nevertheless, when equality �49� holds,
it guarantees that the hybridization between them cancels
exactly, and the degeneracy is not lifted even after one takes
the tunneling into account. Thus, the two localized states are
in resonance with each other. Equation �52� means that such
exact degeneracy occurs only when � is equal to � or 0,
confirming our numerical result.

If we change Q1 and Q2 to make S1�S2 with conditions
�50� and �51� preserved, there occurs a small splitting �
�O�e−2Si�� to the otherwise degenerate states due to a small
unbalance between S1 and S2. Conditions �50� and �51�
specify one direction in the Q1−Q2 plane from the mono-
pole. Along this direction, the gap remains nonzero but very

small, thereby the field F� becomes large, as schematically
shown in Fig. 15�b�. In our numerical results, this direction
corresponds to the valley direction in the energy gap, and the
ridge in the Thouless number in Fig. 14. Thus, the anisotropy
of the energy gap in the Q1−Q2 plane is of the order e2Si

�eL/�. Because in our numerical calculation L=50 and �
�7, the anisotropy of the monopole is e2Si �eL/��e7�103,
which should be compared with the numerical value �10 in
the previous subsection. Their difference can be attributed to
finiteness of the mesh size in the numerical calculation; the
mesh may not be fine enough to reproduce the anisotropy
�103. We also note that the strings observed in the numerical
calculation can be regarded as the curve of �= �2n+1�� and
��= �2n�+1��, with S1 and S2 unrestricted.

D. Discussion

In Fig. 13�f�, we show the wave functions of the HOMO
and LUMO, which support the resonance tunneling scheme.
At the resonance, the energy of HOMO and LUMO are de-
generate. If HOMO sits at x1, LUMO can be viewed as the
resonance state at the potential valley x2. Therefore, by
means of LUMO, HOMO can tunnel through the whole
sample. We must emphasize that this mechanism is topologi-
cal as that in the pure case.

The adiabatic rate depends on the energy gap. At the reso-
nance, the wave functions of the HOMO and the LUMO do
not overlap. By tuning the parameters, the overlapping inte-
gral between these two states are not zero, and thus the gap
opens up. Again, the rates at which the gap opens with the
parameters are not necessarily the same. Therefore, the
monopole �antimonopole� structure is not necessarily isotro-
pic. In fact, it can be highly anisotropic, as shown in our
calculation. Then, the adiabatic rate is restricted by the mini-
mal gap along the contour. It can be roughly estimated as
e−L/�R, where �R is the localization length at the resonance.

The current results for the periodic/twisted boundary con-
dition is consistent with those for the open boundary condi-
tion. The topological structure in the open boundary condi-
tion, namely, the vortices, can be regarded as a projection of
the monopoles to a two-dimensional plane. The anisotropic
flux distribution and the anisotropic phase gradient are two

FIG. 15. Distribution of the vector field F� around the monopole.

�a� The field F� is mostly uniform in the � direction because ��L,
except for the vicinity of the monopole. �b� The field is anisotropic
in the Q1−Q2 plane.
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facets of the resonance tunneling. While the results for the
open boundary condition is more applicable to the real ma-
terials and design, the nontrivial generation of the monopole-
antimonopole shown in the periodic/twisted boundary condi-
tion case illustrates the deep topological structure in the
strong disordered systems.

V. CONCLUSION

In this paper, we have studied the charge pumping and
dielectric response in a disordered insulator for both the open
boundary condition and periodic/twisted boundary condition.
As for the open system coupled to the leads, we have found
the quantum mechanically enhanced dielectric response in
nanoscopic/mesoscopic disordered insulators, which give a
guide for fast and low-dissipation ferroelectric thin films of
the FeRAM. The phase of the reflection coefficient r is a key
parameter for pumping and has the rich structure in the pa-
rameter plane. The topological nature of the insulator dic-
tates the phase winding of r around the vortex where r=0
and �t�=1. In a pure insulator, this corresponds to the gapless
point. In the disordered case, it corresponds to the resonance
tunneling through the sample, whose position varies with the
chemical potential.

With the periodic closed system, we can consider the

three dimensional parameter space Q� = �Q1 ,Q2 ,��, where Q1

is the site energy alternation, Q2 is the bond dimerization,
and � is the phase twist for the boundary condition. In this
three-dimensional space, one can discuss the monopoles and
their associated gauge field distribution, which are again in-
terpreted in terms of the resonant tunneling.

The existence of the resonant tunneling in the parameter
space is guaranteed by the topological properties of the
charge pumping, and only two parameters such as Q1 and Q2
need to be tuned to realize it. These parameters can be con-
trolled experimentally by the external electric field and pres-
sure. Therefore, the present theory offers a way to design the
enhanced dielectric response in realistic systems by control-
ling the disorder.
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