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Exciton dynamics, eigenstates, and eigenenergies of nanochains consisting of closely spaced nanocrystals
�NC’s� are studied with a simple resonant energy transfer model. The simple NC chains considered are a linear
chain, a circular chain, and a chain with a ring. The eigen-wave-functions and eigenenergies are obtained for
the NC chains, and the exciton population dynamics in each system is analyzed by obtaining the diagonal
elements of the density matrix for a specified initial excitation of an NC. The correlation between opposite
NC’s in the ring of the NC chain with a ring is considered, as well. In the NC nanochains with the resonant
energy transfer model, the energy transfer via resonance dipole-dipole interaction generates propagating exci-
ton waves which interfere with each other.
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I. INTRODUCTION

Exciton dynamics, eigenstates, and eigenenergies have
been studied enormously in the field of molecular aggregates
and molecular crystals, especially in the field of
photosynthesis.1 Along with the development of the nano-
technology, artificial molecular aggregates which are com-
posed of nanocrystals �NC’s� or nanoparticles �NP’s� are
considered to be constructed.2 Thus even though the exciton
hopping in photosynthetic systems and molecular aggregates
has been studied enormously, the phenomena of the energy
transport in nanostructures have been revived due to the in-
crease of the controlling skill of the nanostructure. Among
lots of geometric structures of NC or NP aggregates, the
simplest systems have been studied by many research
groups.3–7 Maier et al. have studied the quantum devices
such as NP chain arrays for the control of the excitation in
quantum nanostructures.3 In such systems, recently much at-
tention has been aroused especially on the study of quantum
transport in an NP array.4 That is, the electronic transport
through a quantum dot array containing an arbitrary number
of quantum dots connected in a series by tunnel coupling has
been well studied.5–8 In addition to the real charge transport
by tunnel coupling, the electromagnetic energy transfer in a
NP array has been also studied for nanodevices of near field
wave guide.3,9 In their study, the excitation hopping in a
linear array of NP aggregate was considered to be resulted
from the energy transfer via resonance dipole-dipole interac-
tion �RDDI�.

We are interested in the question of how to understand the
wave properties of the excitation transport in a simple NC or
NP array, where NC’s or NP’s are considered to be coupled
by RDDI.1,10 Then, in this study, the general feature of the
exciton statics and dynamics in three simple nanochain sys-
tems consisting of closely spaced semiconductor nanocrys-
tals is considered. In order to obtain the excitation energy
transfer probability, a simple dipole-dipole coupling model is
employed.11 The simple NC chain systems considered are a
linear chain, a circular chain, and a chain with a ring. In the
chain, the energy transfer via RDDI generates propagating

exciton waves which reflect from ends or nodes, split at
nodes in the chains, and interfere with themselves. A simple
linear NC chain �LNC� is considered to observe the effect of
open ends in the chain. In comparison, a circular NC chain
�CNC� is considered to observe the effect of the structure
without ends. That means, in the case of CNC, the effect of
the reflection from open ends in an LNC is removed. Finally
an NC chain with a ring �NCR� is considered for observing
the effect of the interference between the linear chain part
and the ring part, where the ring can be considered as the
part of two arms in a Mach-Zehnder interferometer, in some
aspects. In order to analyze exciton statics in the simple sys-
tems, first of all, the eigen-wave-functions and eigenenergies
are obtained for the three NC chains in the next section. The
simple model of the exciton hopping is also briefly described
in the next section. Based on the eigen-wave-functions and
eigenenergies obtained in Sec. II, the analysis of the dynamic
properties, i.e., the excitation propagation follows in Sec. III.
We discuss the results obtained in Secs. II and III, and sum-
marize briefly in Sec. IV.

II. EIGENSTATES AND EIGENENERGIES

In a nanocrystal aggregate when real charge transport be-
tween NC’s by surface passivation of NC’s is inhibited, an
excited NC interacts with other NC’s via both longitudinal
field and transverse field. Through interacting with the field,
the excitation energy of the NC is transported by the resonant
dipole-dipole interaction between the virtual electromagnetic
field generated by the transition dipole in an excited donor
NC and the polarization of a ground-state acceptor NC. We
employ a simple model for several NC chains consisting of
NC arrays as shown in Fig. 1, where each dot represents NC
and each line indicates dipole-dipole coupling. The Hamil-
tonian of the NC aggregate is given by

Ĥ =
1

2�
i

�i�i
z + �

i�j

Jij�i
†� j , �1�

where �i is the excitonic energy of the ith NC and Jij is the
Coulomb dipole-dipole coupling between ith and jth NC’s.
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Here �i
z, �i

†, and �i are the Pauli operators which describe
inversion, excitation, and deexcitation of the ith NC, respec-
tively. In this study, we consider an NC aggregate with
inter-NC separation R to be much shorter than the wave-
length of the excitonic transition energy, where the main
channel of the exciton hopping is RDDI and retarded inter-
action is ignored. For simplicity we also consider the single
excitation in an NC, as well. The dipole-dipole coupling en-
ergy without the orientational factor is

Jij = �ij
�i� j

�Rij
3 , �2�

where �i is the transition dipole moment of the ith NC, Rij is
the inter-NC distance, � is the dielectric constant of the sur-
rounding medium, and �ij is an angular dipole orientation
factor.

For simplicity we consider the single excitation in which
only one NC is initially excited and all other NCs are ini-
tially unexcited. There are N states which span the subspace
of interest for the aggregate of N nanocrystals. The basis
state represented by �j� is defined as only the jth NC is ex-
cited and all other NC’s are unexcited. Then the wave func-

tion of the Hamiltonian Ĥ can be written as

���t�� = �
j=1

N

cj�t��j� . �3�

First let us consider the eigenstates and eigenenergies of a
simple LNC shown in Fig. 1�a� for the Hamiltonian of Eq.
�1� with only nearest-neighbor interactions. When all NC’s
are identical with equi-interdistance and Jij is equal to J for
all NC pairs, the Hamiltonian of the LNC is expressed as

Ĥ =�
� J 0 0 0 0

J � J 0 0 0

0 J � J 0 0

0 0 J � J 0

0 0 0 J � J

0 0 0 0 J �

� , �4�

from which the stationary exciton state ��m� of the chain is
given by

��1� =
1

�	1�
1


1


1
2 − 1


1
2 − 1


1

1

� , ��2� =
1

�	2�
1
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1

� ,

��3� =
1

�	3�
1
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3

1

� , ��4� =
1

�	4�
− 1
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4
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4
2 + 1


4
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4

1

� ,

��5� =
1

�	5�
− 1


5
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5
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5
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1

� , ��6� =
1

�	6�
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6
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6
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6
2 − 1
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6

1

� , �5�

with the energy eigenvalues �m,

�m = � + 
mJ, m = 1, . . . ,6, �6�

where


1 =
7 + � + �2

3�
,


2 =
7 − 2� + �2 + �7 − �2��3i

6�
,


3 =
7 − 2� + �2 − �7 − �2��3i

6�
,


4 =
7 − 
 + 
2

3

,


5 =
7 + 2
 + 
2 + �7 − 
2��3i

6

,


6 =
7 + 2
 + 
2 − �7 − 
2��3i

6

,

	 j = 4 − 2
 j
2 + 2
 j

4, j = 1, . . . ,6, �7�

and

� = � 7
2�1/3�− 1 + 3�3i�1/3,

2 3 4 51 6

L 1

b

3

a

R

5

2

3

46

1

(a)

(b)
(c)

FIG. 1. Nanocrystal chains. �a� Linear NC chain �LNC�, �b�
circular NC chain �CNC�, �c� NC chain with a nanoring �NCR�.

HONG, NAM, AND YEON PHYSICAL REVIEW B 76, 035321 �2007�

035321-2




 = � 7
2�1/3�1 + 3�3i�1/3. �8�

The above eigenvectors and eigenenergies are obtained from

the eigenvalue equation Ĥ��m�=�m��m�. The eigenvectors of
Eq. �5� are shown in Fig. 2�a�, where the eigenenergy of each
eigenvector decreases from the upper leftmost to the lower
rightmost of the six eigenfunctions. Each plot of Fig. 2�b� is
the excitation population probability corresponding to each
eigen-wave-function of Fig. 2�a�.

For an LNC of Fig. 1�a�, when both ends of the chain are
connected via RDDI coupling with J, a nanochain ring of
Fig. 1�b� is obtained. Then the Hamiltonian of a CNC of
identical NC’s with equi-interdistance is expressed as

Ĥ =�
� J 0 0 0 J

J � J 0 0 0

0 J � J 0 0

0 0 J � J 0

0 0 0 J � J

J 0 0 0 J �

� . �9�

With the Hamiltonian, the eigenstates of the circular aggre-
gate of NC’s with only nearest-neighbor interactions are ex-
pressed as

��1� =
1
�6�
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�10�

that is,1,12

��m� =
1

�N
�
n=1

N

ei2nm�/N�n� , �11�

which results from the property of the N-fold rotational sym-
metry of the Hamiltonian Equation �9�. This property re-
quires periodicity, ��m�= ��m+N�, i.e., the periodic boundary
condition. Whereas, due to the absence of the rotational sym-
metry, periodic boundary condition is not implemented in
obtaining eigenfunctions of the Hamiltonian equations �4�
and �14�, where the eigenfunctions are chosen to form on an
orthonormal basis. The corresponding eigenvalues �m are

�m = 	� − 2J,� − J,� − J,� + J,� + J,� + 2J
 , �12�

in mathematical form,

�m = � + 2J cos
2�m

N
, m = 1,2, . . . ,N . �13�

For the CNC of six identical two-level NC’s with equidis-
tance, there are two degeneracies as shown in Eqs. �10� and
�12�. The degeneracy comes from the rotational symmetry of
the ring. The eigenvectors of Eq. �10� are shown in Fig. 3,
where �a� is for the amplitude of each eigen-wave-function
and �b� is for the excitation population probability of each
eigen-wave-function in �a�.

Now let us consider a short NCR, i.e., an NC chain with
two arms as shown in Fig. 1�c�. In the figure, sites a and b
are considered as two paths of the chain ring at nodes 1 and
3. Only the interactions between the nearest neighbors are
considered, and no interaction between different paths is as-
sumed, that is, Jab=0. In this case, the Hamiltonian is simply
expressed as

Ĥ =�
� JR 0 0 0 0

JR � Ja Jb 0 0

0 Ja � 0 Ja 0

0 Jb 0 � Jb 0

0 0 Ja Jb � JR

0 0 0 0 JR �

� , �14�

where i in Eq. �1� is i=L ,1 ,a ,b ,3 ,R. When NC’s are iden-
tical and RDDI couplings are given by JL1=J3R=JR, J1a
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FIG. 2. Eigenstates for the linear NC chain. �a� Eigen-wave-
functions and �b� their corresponding population probabilities.

Site Number

A
m

plitude
P

robability

(b)

(a)

-0.3
0
0.3

2 4 6
-0.3
0
0.3

1 3 5 2 4 61 3 52 4 61 3 5

2 4 61 3 5 2 4 61 3 52 4 61 3 5

0.2
0.1
0

0.3

0.2
0.1
0

0.3

FIG. 3. Eigenstates for the circular NC chain. �a� Eigen-wave-
functions and �b� their corresponding population probabilities.
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=Ja3=Ja, and J1b=Jb3=Jb, the eigenvectors of the NC chain
with a nanoring are given by

��1� =
Jb
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� , �15�

with eigenvalues

�m = 	� − L,� − JR,�,�,� + JR,� + L
 , �16�

where

L = �2Ja
2 + 2Jb

2 + JR
2�1/2. �17�

The eigenvectors Eq. �15� are shown in Fig. 4�a� when JR
=Jb=Ja=J. Figure 4�b� shows the corresponding exciton
population probability to each eigenvector in Fig. 4�a�.

III. EXCITON DYNAMICS

Let us now consider the exciton dynamics in three simple
NC chain systems of Fig. 1. For a given Hamiltonian, the
density operator �̂�t� in Heisenberg representation is written
as

�̂�t� = exp�iĤt��̂�0�exp�− iĤt� , �18�

where �̂�0� is the initial density matrix. The diagonal ele-
ments of the density matrix �̂�t� show the dynamics of the
exciton population, and the off-diagonal matrix elements of
�̂�t� carry the information of the dynamical correlation of the

excitations between two NC’s. When Ĥ is diagonalizable,
i.e., if it is possible to find U such that H=UDU−1 and to
define

exp�H� � U exp�D�U−1, �19�

where D is a diagonalized matrix and

U = �ê1, . . . , ê6� . �20�

Here êj is j th eigenvector �=�� j � � of the Hamiltonian Ĥ,
then the density matrix Eq. �18� is expressed as

�̂�t� = �
�,�

ei���−���tU�������U������U−1, �21�

where � j is j th eigenvalue of the Hamiltonian Ĥ correspond-
ing to the j th eigenstate �� j�, and �U=U−1�̂�0�U. Then the
matrix element of the density matrix is given by

�mn�t� = �
�,�

ei���−���tUm���U����U−1��n. �22�

Here since the diagonal elements �nn�t� for CNC come from
the property of the N-fold rotational symmetry of the
Hamiltonian Eq. �9� they satisfy the periodicity, �nn�t�
=��n+N��n+N��t�, i.e., the periodic boundary condition.
Whereas, due to the absence of the rotational symmetry of
the Hamiltonians Eqs. �4� and �14�, periodic boundary con-
dition is not implemented in obtaining the diagonal elements
�nn�t� for LNC and NCR, where they are determined to sat-
isfy the Dirichlet boundary condition for a given initial con-
dition ��0�.

Now for a specially prepared initial excitation �̂�0�, sub-
stituting eigenvectors and eigenenergies obtained in Sec. II
into Eq. �22�, we can get the dynamics of the excitation
population of n th NC, i.e., �nn�t� for three simple nanochains
of Fig. 1. First, for a linear nanochain of Fig. 1�a�, when the
first NC of the chain is initially excited, i.e., �kl�0�=�kl�k1,
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FIG. 4. Eigenstates for the NC chain with a nanoring. �a� Eigen-
wave-functions and �b� their corresponding population
probabilities.
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the diagonal matrix elements �nn�t� are obtained by substitu-
tion of eigenvectors and eigenenergies of Eqs. �5� and �6�
into Eq. �22�, and they are shown as the upper picture in Fig.
5. In the figures, vertical axis indicates the site label of NC’s
in Fig. 1, horizontal axis is scaled time Jt, and the contour
represents the exciton population, where the contour line
with hotter color indicates higher population than the line
with colder color. In case of the linear nanochain, the matrix
elements �nn�t� are not given mathematically in simple ana-
lytical form, thus the plots of exciton populations were given
by numerical evaluation of Eq. �22�. Similarly, from Eqs.
�10�, �12�, and �22� the exciton populations are obtained for
a CNC of Fig. 1�b� and they are shown as the lower picture
in Fig. 5.

For an NCR of Fig. 1�c�, the matrix elements of �̂�t�
which represent the excitation dynamics in the NCR are ex-
pressed in simple mathematical forms on simplified condi-
tions. When NC’s are identical, JL1=J3R=JR, J12a=J2a3=Ja,
and J12b=J2b3=Jb on the initial excitation of �kl�0�=�kl�kL,
from Eqs. �15�, �16�, and �22�, the diagonal elements of the
density matrix are expressed as follows:

�LL�t� =
1

L4
L2 cos2 JRt

2
− JR

2 sin2 Lt

2
�2

, �23�

�11�t� =
1

4L2 �L sin JRt + JR sin Lt�2, �24�

�aa�t� =
4Ja

2JR
2

L4 sin4 Lt

2
, �25�

�bb�t� =
4Jb

2JR
2

L4 sin4 Lt

2
, �26�

�33�t� =
1

4L2 �L sin JRt − JR sin Lt�2, �27�

�RR�t� =
1

L4
L2 sin2 JRt

2
− JR

2 sin2 Lt

2
�2

. �28�

They are shown in Fig. 6. The upper and lower are plots of
the propagations of the excitation through arm a for Ja=1
and Ja=2, respectively. The excitation population in the ring
part only is also shown in Fig. 7. The upper is for Ja=1 and
the lower is for Ja=2.

In order to analyze the correlation effect of the excitation
between NC’s in the ring part of Fig. 1�c�, we consider the
off-diagonal elements of the density matrix. The off-diagonal
element between site a and b in the ring, �ab�t�, is given by

�ab�t� =
4JaJbJR

2

L4 sin4 Lt

2
, �29�

which couples to the diagonal elements �aa�t�, �bb�t� and
shows the feature of the interference between two arms and
its period is a function of the variable L. Whereas, the off-
diagonal element between site 1 and 3 in the ring, �13�t�, is
obtained as
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FIG. 5. �Color online� Contour plot of the probability of exciton
population for �a� LNC and �b� CNC when �kl�0�=�kl�kL. Vertical
axis indicates the site label, horizontal axis is scaled time Jt, and the
contour represents the exciton population, where the contour line
with warmer color indicates higher population than the line with
colder color.
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FIG. 6. �Color online� Contour plot of the probability of exciton
population for the initial excitation of NC at L. They show the
propagation of the exciton hopping through the arm a. The upper is
for Ja=J and the lower is for Ja=2J.
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FIG. 7. �Color online� Contour plot of the probability of exciton
population of the ring part only in NCR for Ja=J and Ja=2J when
the NC at L is initially excited.
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�13�t� =
1

4L2 �L2 cos2 JRt − JR
2 cos2 Lt� , �30�

in which the effect of both ends in the chain are included as
the variables JR and L. They are shown in Fig. 8�a�. The solid
line is for �ab�t� and the dashed line is for �13�t�. As a refer-
ence, for the initial excitation �kl�0�=�kl�k1, the off-diagonal
elements �ab�t� and �13�t� are given by

�ab�t� =
JaJb

L2 sin2 Lt

2
�31�

and

�13�t� = 1
8 �cos 2Lt − cos 2JRt� , �32�

respectively, and they are plotted in Fig. 8�b�. The solid line
and dashed line are for �ab�t� and �13�t�, respectively, as well.

IV. DISCUSSION AND CONCLUSION

In order to study the wave properties of the excitation
transport in a simple NC chain where NCs are coupled by
RDDI, exciton eigen-wave-functions and exciton dynamics
for three simple NC chains �a linear chain, a circular chain,
and a chain with a ring� were obtained. In the chain, the
energy transfer from an initially excited NC to other NCs via
RDDI generates propagating exciton waves which reflect
from ends or nodes, split at nodes in the chains, and interfere
with themselves. A simple linear NC chain was considered to
observe the effect of open ends. In comparison, a circular NC
chain was considered to see the effect without ends, i.e., the
effect of the reflection from the open end in a simple linear
NC chain is removed. Finally an NC chain with a ring was
considered for observing the effect of the interference be-
tween the linear chain part and the ring part.

The time evolution of each exciton state ��t� after an ini-
tial excitation of the first NC in each chain has been analyzed
in Sec. III. The initial excitation of an NC in a chain could be
obtained via optical pumping through a nanoscale tip of an
optical fiber. The time evolution of the excitation of an NC in
the chain after an initial excitation of the first NC shows a
specific feature of coherent oscillations due to dipole-dipole
coupling with neighboring identical NCs. Since the typical

coupling energy between close NCs is J�0.1 meV for the
transition dipole moment ��10 Debye and the inter-NC
distance R�100 Å, the oscillation period is �10 ps which is
much faster than radiative decay.13–15 The time evolution
could be probed optically through the irreversible Förster
energy transfer from the excited probed smaller NC whose
low-lying exciton state is resonant to a high-lying exciton
state of the probing NC attached at the end of a nanoscale tip
of an optical fiber. The existence of the probing NC would
affect the coherent oscillations in each chain, but may do so
only weakly.

The described eigenstates, eigenenergies, and exciton dy-
namics of the three NC chains in Secs. II and III assumed
perfect structure and neglected any kind of disorder. One-
dimensional quantum-mechanical hopping, however, is ex-
tremely sensitive to the disorder.16–18 Since the one-
dimensional localization length is of the order of the lattice
spacing, it is crucial to consider the disorder effects for the
NC chains. In general, the disorder broadens the energy
spectrum and shortens the effective exciton delocalization
length. The disorder can be classified into two types; the
diagonal disorder and the off-diagonal disorder which are
consequences of structural inhomogeneities of the NC chains
and the local excitation energies of each NC. The robustness
of the results obtained in Secs. II and III with respect to the
randomness in the site energies �� j and in the hopping ele-
ments �Jij has been considered by numerical modeling of
the randomness for three NC chains.

A. Eigenstates and eigenenergies

In the figures of eigenfunctions, Figs. 2–4 �a�’s are eigen-
wave-functions and �b�’s are their corresponding exciton
population probabilities. In each set of eigenvectors, the
eigenenergy of each eigenvector decreases from the upper
leftmost to the lower rightmost. In the plots of eigenvectors,
it is seen that the lower the spatial variation of the eigen-
wave-function is, the higher the eigenenergy is. For the same
single exciton energy � for all NC’s, the eigenenergies of
LNC measured from � are �−1.80,−1.25,−0.45,
0.45,1.25,1.80� in units of J. In the same units, those for
CNC and NCR are �−2,−1,−1,1 ,1 ,2� and �−2.24,−1,0 ,
0 ,1 ,2.24�, respectively. It is seen that the more the number
of coupling is, the broader the shift is, as expected. We see
also that there is no degeneracy in case of LNC due to the
absence of symmetry. Whereas there are two degeneracies in
the eigenstates of CNC, which come from the rotational
symmetry of the chain ring. The �second-third� and the
�fourth-fifth� pairs from the upper leftmost have the same
eigenenergy in Fig. 4. In the case of NCR, there is one de-
generacy with eigenenergy � due to the symmetry of the two
sites a and b �the indistinguishability of the arm a and b for
the propagation of the excitation�. The third and the fourth
from the upper leftmost has the same eigenenergy in Fig. 4.

Now for the analysis of the effects of the ring in the chain
of Fig. 1�c�, we reexpress the eigen-wave-functions of the
ring part only as
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FIG. 8. The off-diagonal elements �ab�t� �solid line� and �13�t�
�dashed line� for NCR. �a� is for the initial excitation of NC at L and
�b� is for the initial excitation of NC at 1.
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For comparison, a circular NC chain ring composed of four
NC’s is considered. In that case, the eigenstates and their
eigenenergies are given by
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1

− 1

1

− 1
� , �34�

and

� = 	� + 2J,�,�,� − 2J
 , �35�

respectively. As required when JR=0 and Ja=Jb=J, i.e.,
when the ring in NCR is separated from the main chain,
eigenstates of the ring of Eq. �33� for NCR correspond to
those of Eq. �34� for a circular ring with four NC’s. Now
when JR�0, two modes ��2� and ��5� in Eq. �33� remain
the same as ��3� or ��2� in Eq. �34�, whereas three modes
��1�, ��4�, and ��6� in Eq. �33� are modified. And a new
mode ��3� in Eq. �33� appears. Thus from comparing Fig.
4�a� with Fig. 3�a� we can see that the shape of the wave
function for the ring part 1-a-3-b of each wave function in
Fig. 4�a� is very similar to that of the corresponding wave
function in Fig. 3�a�. Moreover since NCR has a linear part,
we see that the shape of the wavefunction for the linear part
L-1-a�or b�-3-R of each wave function in Fig. 4�a� is very
similar to that of the corresponding wave function in Fig.
2�a�, as expected.

B. Exciton dynamics

In an NC chain, the energy transfer via RDDI between
nearly identical NCs generates propagating exciton waves

which interfere with themselves. Our study has focused on
the excitonic state in an NCR of Fig. 1�c�. For comparison,
an LNC of Fig. 1�a� and a CNC of Fig. 1�b� were considered
to observe the effect of open ends and the effect of the struc-
ture without open ends, respectively. In the case of CNC,
there is no effect of the reflection from ends due to the ab-
sence of open ends compared to the case of LNC. Whereas
since an NCR has the character of both LNC and CNC, it is
expected to observe the effect of the interference between the
linear part and the ring part of the chain.

First in the case of the LNC of Fig. 1�a�, the excitonic
wave propagates from the initially excited NC at site 1 to the
other NCs as shown in the upper picture of Fig. 5. In the
figures, vertical axis indicates the site label of NC’s in Fig. 1,
horizontal axis is scaled time Jt, and the contour represents
the exciton population, where the contour line with hotter
color indicates higher population than the line with colder
color. The propagation of the excitation from the initially
excited first NC to the NC at the opposite end in the linear
chain is shown as a ridge from 1 to 6 in the figure. During
the propagation, the partially reflected excitonic wave from
each lattice point interferes with each other and the form of a
bulge around the central part �site 3� of the chain at time
around Jt�4 appears in the figure. The reflected excitonic
wave from 6 interferes with the incoming excitonic wave
�mainly from 3� to 6, and its propagation from 6 to 3 slows
down a bit. However its propagation time from 6 back to 1 is
shorter than that from the initially excited NC 1 to 6 due to
the constructive interference with the excitonic wave
�mainly� from 3. A ridge starting from 6 to 1 is divided at
time around Jt�7.5 �at 2� into two, one from 3 to 6, the
other from 1 to 4, which comes from the interference of the
excitonic wave propagating from 6 to 1 with both re-
reflected from 6 and reflected from 1. We can see clearly the
effect of open end, i.e., reflections of excitonic waves from 1
and 6, and interferences between them.

Next, in case of CNC of Fig. 1�b� the excitonic wave
propagation from the initially excited NC at site 1 to other
NC’s is shown in the lower picture in Fig. 5. Considering
that sites 1 and 6 are connected via RDDI with coupling
strength J, there is no such end effect as reflections in the
case of LNC. The excitation population mainly oscillates be-
tween sites 1 and 4. And due to the destructive interference,
the excitation population at sites around 2 and 6 is relatively
rare. The oscillation of the exciton population in CNC comes
from the fact that there are two rotational paths for the exci-
tation transport. Two exciton waves traveling in opposite di-
rection which are separated from the initially excited NC at 1
interfere with each other. In CNC the initially excited energy
at 1 moves to 2, 6, and partially back to 1 symmetrically,
next transfers to 3, 5, and partially back to 2, 6, and eventu-
ally moves to 4, where the propagation from 1 through 2, 3
constructively interferes with the propagation from 1 through
6, 5. The initial energy in the NC at 1 is not completely
transferred to 4 as seen from the crest around time Jt�2.
The energy transferred to 4 moves back completely to 1 at
around time Jt�6. Due to the interference of two excitonic
waves propagating clockwise and counterclockwise, the ini-
tially excited energy of the NC at 1 is not completely trans-
ferred to the NC at 4 compared to the case of LNC.

COHERENT EXCITON DYNAMICS IN NANOCRYSTAL… PHYSICAL REVIEW B 76, 035321 �2007�

035321-7



Finally, the exciton dynamics of NCR is shown in Fig. 6.
The upper and the lower are the excitonic wave propagations
through arm a of Fig. 1�c�, for Ja=J and Ja=2J, respectively.
In Fig. 1�c�, sites a and b are two possible paths for the
propagation of an excitonic wave from L to R �or from R to
L�, and the wave can rotate in the ring-part �1-a-3-b� in a
clockwise way or in a counterclockwise way. From Figs. 6
and 7 it is seen that the propagation of the excitation trans-
port in the case with Ja=2J is a little bit faster than that in
the case with Ja=J, as expected. When we consider only the
linear part of NCR, compared to the case of LNC �the upper
plot in Fig. 5�, the speed of the propagation is much faster
due to the existence of two paths. On the other hand, in order
to compare with the case of CNC, time dependence of the
exciton populations in the ring part only of NCR is plotted in
Fig. 7. The upper one is for Ja=J and the lower one is for
Ja=2J. In this figure, there is the effect of the interference of
the ring part with the outer part �L and R� of the NCR com-
pared to the case of CNC �the lower plot in Fig. 5�. In NCR
when we consider the propagation of an exciton from the NC
at L to the NC at R through the NC at a, the pattern of the
propagation of the exciton is qualitatively similar to that in
LNC with a slight difference due to the presence of the NC at
b. And in the upper part of Fig. 7 which is for the ring-part
only in NCR, the excitation energy at 1 �which is from the
initially excited NC at L� is transferred to 3 through a, b
�after reflection from R�, next moves to a, b and eventually
moves back to 1, and so on. Comparing the upper part of Fig.
7 with the lower part of Fig. 5 we see that the general feature
of the exciton dynamics is qualitatively similar to that in the
case of CNC, but the height of the peak of the excitation
population at 1 and 3 as a function of time oscillates due to
the existence of the outer-part �L and R�, whereas the height
of the peak of the excitation population at a and b are con-
stant. Here we notify that the existence of the outer part
enforces the complete energy transfer from NC at 1 to NC at
3 compare to the case of CNC where the initial energy is not
transferred completely to the NC at the opposite side.

The off-diagonal elements �mn�t� which stand for the cor-
relation between two NC’s at sites m and n in NCR is shown
in Fig. 8. The solid line and dashed line are for �ab�t� and
�13�t�, respectively. In the figure, �a� is for the initial excita-
tion �mn�0�=�mn�mL, and �b� is for the initial condition
�mn�0�=�mn�m1. The maxima of the off-diagonal elements
�ab�t� and �13�t� which are for two NC’s between sites oppo-
site each other in the ring are not 1. The correlation between
sites a and b, �ab�t�, and sites 1 and 3, �13�t�, are out of phase
until nearly Jt�6 for initial excitation �mn�0�=�mn�mL. For
the initial excitation of �mn�0�=�mn�m1, the oscillation fre-
quency of �13�t� is faster than that of �ab�t�. Compared to the
case with �mn�0�=�mn�mL, the off-diagonal terms �ab�t� and
�13�t� do not depend on JR directly which show the effect of
the reflection of the exciton. They depend on JR through L, of
course. �ab�t� is proportional to both Ja and Jb, and has the
same time dependence as those of both �aa�t� and �bb�t�, as
expected.

C. Effect of disorder

For a highly dipole-aligned, perfectly ordered, and highly
monodispered NC aggregate, the eigenstates of the excited

electronic excitation extend over the entire array, as ex-
pressed in Eqs. �5�, �10�, and �15�. The driving force for
delocalization of the electronic eigenstates over the entire
array is the dipole-dipole interaction between NCs. In
strongly coupled NC aggregates, electronic excitations can,
in principle, be delocalized across multiple NCs. Any NC
chain, however, in practice contains some amount of disorder
due to the randomness in the site energies or in the hopping
elements, which may severely affect the delocalization be-
havior of the excitonic states. In disordered NC chains, at a
certain degree of disorder, a transition occurs from delocal-
ized excitonic states to coexisting delocalized and localized
states. With increasing the disorder, delocalization occurs
only with respect to nearest-neighbor NCs, resulting in small
clusters involving several NCs. Moreover a severe size dif-
ference between nearest neighbor NCs causes irreversible
energy transfer to a larger NC �trapping� which is the so-
called Förster energy transfer. The robustness of the results
obtained above with respect to the diagonal disorder and the
off-diagonal disorder has been considered by numerical
modeling of the randomness for three NC chains. The imple-
mentation of the numerical model for a closely packed real
one-dimensional NC chain was established by introducing
random distributions of NC sizes and coupling energies �in
which the coupling energy is given as a function of inter-NC
distances, transition dipole orientations, and so on�. The dis-
order will show inhomogeneous broadening and shift, but the
spectral variation caused by the disorder was not considered
here.

In order to simulate the diagonal disorder for the transi-
tion energy � j of the jth NC, we employed Gaussian random
variables with zero mean values as the energy shift �� j from
the average transition energy � due to NC size disparity and
the environmental difference of each NC. In addition the
simulation of the off-diagonal disorder was implemented by
employing Gaussian random variables with zero mean value
as the fluctuation �Jij from the average coupling energy J
due to the randomness of both the inter-NC separations and
the direction of the dipole vectors with respect to a fixed
angle. The detail of the numerical simulation is explained as
follows. A fluctuational average has been taken over a large
number �2�103� of sets of the random variables �� j and
�Jij. For a small diagonal fluctuation, the excitation hopping
from the initially excited NC to other NCs are shown to be
highly coherent. When the fluctuation increases, the popula-
tion drop of the first NC decreases, which means the increase
of the degree of the localization of the excitonic state. For
the fluctuation of �� j whose variance is larger than or equal
to the order of magnitude of the coupling energy J, disorder
becomes important. In that case, even without fluctuations in
Jij, the large discrepancy of the transition energies between
two NCs alone causes relatively weak but not negligible lo-
calization of the excitonic wave. Moreover, when the fluc-
tuation is much larger than J, the first NC hardly transfers its
energy to other NCs. This also means that, besides the NC
size disparity, the homogeneous line broadening due to envi-
ronmental temperature is an important factor to the coherent
delocalization of the exciton. From the numerical simulation
of the randomness of the off-diagonal disorder, we found that
the off-diagonal disorder �Jij causes relatively weaker local-
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ization of the excitonic wave than that with the same amount
of the diagonal disorder. As a typical example, Fig. 9 is given
to show this feature. Thus in order to observe the coherent
feature of the dynamic excitonic states, smaller fluctuations
of �Jij and �� j than J are desired, which is more stringent
for the diagonal fluctuation.

V. SUMMARY

In summary, the eigenstates and eigenenergies of three
short NC chain systems consisting of closely spaced semi-
conductor nanocrystals were evaluated and the exciton dy-

namics of the NC chains were analyzed to understand the
wave properties of the excitation transport in a simple NC
chain. In this study we focused on the coherent coupling
between NCs which was shown in a low temperature regime.
In the three NC chains, the interference of exciton hopping
via resonant dipole-dipole interaction was analyzed. The
simple NC chain systems considered were a linear chain, a
circular chain, and a chain with a ring. In the NC chains, the
energy transfer via RDDI generates propagating exciton-
waves which reflect from ends or nodes, split at nodes in the
chains, and interfere with themselves. From the analysis of
the excitonic wave propagation in an LNC, the effect of open
ends is observed. In comparison, a CNC shows the effect of
the periodic structure of the traveling excitonic wave due to
the absence of the open ends. Whereas since an NCR has
both the character of the LNC and the CNC, the effect of the
interference between the linear part and the ring part of the
chain is seen. In practice, however, real NC chains contain
some amount of disorder due to the randomness in the site
energies or in the hopping elements and the disorder severely
affects the delocalization behavior of the excitonic states.
Thus in order to observe the coherent feature of the dynamic
excitonic states, smaller fluctuations of �Jij and �� j than J
are desired. That is, to support the coherent exciton dynam-
ics, the excitation hopping should be monitored at low tem-
perature in an NC chain which has nearly identical NCs. In
practice, the initially excited energy of an NC in a chain
could hop among nearly identical NCs at low temperature
before a photoemission occurs from a larger probing NC to
which the excitation transfers irreversibly from a probed NC
in the chain.
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FIG. 9. The excitation population probabilities of the NCs at �a�
L and R �b� in NCR when the NC at L is initially excited. Solid line
is for �� j =�Jij =0. Dotted and dashed lines are for �Jij /J=0.5
and �� j /J=0.5, respectively. In �b�, the dashed line is for
100��RR�t�.
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