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The Ge-Ge, Si-Si, and Si-Ge Raman frequencies in Ge1−x−ySixSny alloys were measured for x�0.2 and y
�0.1. The Ge-Ge and Si-Si mode frequencies are found to be linear functions of composition over the
measured range. The coefficients obtained from linear fits to the experimental data are similar to those mea-
sured in binary alloys incorporating Si, Ge, or Sn, suggesting that the linear behavior extends over the entire
range of possible compositions �x ,y� to include the binary alloys as special cases. The linear coefficients are
shown to follow a universal behavior that results from the scaling of phonon dispersion curves in Si, Ge, and
�-Sn.
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I. INTRODUCTION

Semiconductor alloys have traditionally attracted great in-
terest as intermediate systems between crystalline com-
pounds and fully disordered amorphous semiconductors. Ex-
perimental research has demonstrated that for these alloys it
is possible to provide meaningful operational definitions of
fundamental quantities that are first introduced in the context
of perfectly crystalline semiconductors. These include the
lattice constant, band gap, and Raman phonon frequencies,
which are found to be smooth functions of the alloy compo-
sition. In the simplest case, the compositional dependence
reduces to a linear interpolation between the crystalline com-
pounds that are being alloyed. This linear behavior is most
commonly found for the lattice constant, as first pointed out
by Vegard.1 In the case of the band gap and the Raman
frequencies, deviations from the linear behavior are found in
many alloy systems, but—except for a few anomalous
cases—the compositional dependence can be quantitatively
reproduced by adding a single quadratic term.2,3

Advances in epitaxial growth techniques over the past
three decades have made it possible to grow semiconductor
heterostructures with defect-free interfaces. Semiconductor
alloys play a crucial role in this technology, since—except
for a few fortuitous cases—the lattice mismatch between
crystalline elemental and compound semiconductors is too
large for defect-free growth. In binary AxB1−x or pseudobin-
ary AxB1−xC alloys with a one-dimensional compositional
space, the composition can be adjusted to match the lattice
constant of the substrate, but this leaves no freedom to adjust
the band gap of the alloy. The independent adjustment of
band gap and lattice constant can be achieved with ternary
AxByC1−x−y, pseudoternary �AxByC1−x−yD�, or quaternary
�AxB1−xCyD1−y� materials, and this flexibility explains the
great technological interest in two-dimensional alloys. Qua-
ternary systems such as InGaAsSb,4 InGaAsP,5 AlGaAsSb,6

ZnMgSSe, ZnMgBeSe,7 ZnMgSeTe,8 GaInNAs,9 and In-
GaAlN �Ref. 10� are important in optoelectronics. CdMg-
MnTe has been proposed as a spin injector for spintronic
devices.11

The two-dimensional compositional space of ternary,
pseudoternary, and quaternary alloys makes it extremely dif-

ficult and tedious to map the x, y dependence of the proper-
ties of interest. Thus an effort has been under way for many
years to understand to what extent this dependence can be
predicted from the known compositional dependence of the
underlying one-dimensional alloy systems. In a recent
paper,12 we have argued that the recently developed ternary
system Ge1−x−ySixSny is ideally suited for the investigation of
the relationship between “one-dimensional” and “two-
dimensional” alloy semiconductors, and we have presented
strong evidence that at least some of the interband optical
transitions have a compositional dependence that can be ex-
plained in terms of the compositional dependence of the
same transition in Ge1−xSix, Ge1−xSnx, and Si1−xSnx alloys. In
this paper, we extend this work to the vibrational properties
by focusing on the compositional dependence of Raman fre-
quencies in Ge1−x−ySixSny alloys.

Earlier studies of the compositional dependence of Raman
modes in two-dimensional semiconductor alloys �here, we
use the standard language that associates each Raman feature
with a vibrational “mode,” although—strictly speaking—
alloy disorder causes a continuum of vibrational eigenmodes
to become Raman active and contribute to the observed sig-
nal� show that random element isodisplacement �REI� mod-
els with parameters fit to the underlying one-dimensional
alloy systems13,14 provide a reasonable explanation of the
experimental results. This establishes a correlation between
one-dimensional and two-dimensional alloy systems, al-
though the physical validity of the REI models themselves is
questionable. For example, REI fits to AlxGa1−xAs alloys re-
quire a 14% change in the cation-anion force constants as a
function of composition to explain a �10% change in Ra-
man peak frequencies over the entire compositional range,15

whereas first-principles calculations show that the force con-
stants for GaAs, AlAs, and their alloys are virtually
identical.16 Thus REI models may not fully capture the phys-
ics of the compositional dependence of phonon frequencies.
Ramam and Chua studied the Raman spectrum of
In1−x−yGaxAlyAs alloys and concluded that the compositional
dependence of the Raman modes in this pseudoternary ma-
terial cannot be expressed in terms of the compositional de-
pendence of the same modes in the three underlying pseudo-
binary alloys.17 Polar semiconductors, however, are
complicated from this perspective due to the fact that the
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compositional dependence of their vibrational modes is de-
termined not only by mass and short-range force perturba-
tions but also by the ionic charges that induce a splitting
between longitudinal optic �LO� and transverse optic �TO�
modes.3 Therefore, isoelectronic group-IV alloys are, in prin-
ciple, more attractive for a comparison of the properties of
one-dimensional and two-dimensional systems. In addition,
the compositional dependence of the Ge-Ge and Si-Si modes
is linear for the binary alloys Ge1−xSix and Ge1−ySny.

18,19

Therefore, these modes represent the simplest case to test the
correlation between one-dimensional and two-dimensional
alloy systems, since for linear dependencies the two-
dimensional linear coefficients must be the same as those
found in the underlying one-dimensional systems.

The first two-dimensional group-IV alloy whose vibra-
tional properties were studied in detail is the Ge1−x−ySixCy
system.20 Unfortunately, carbon-containing alloys are com-
plicated due to the limited solubility of carbon and the pos-
sibility that it might occupy interstitial sites in the lattice.
Moreover, there is a substantial LO-TO splitting in SiC, and
therefore, ionic effects are also expected in ternary group-IV
alloys containing C. By contrast, Ge1−x−ySixSny alloys repre-
sent an ideal test system for a comparative study of the com-
positional dependence of Raman modes because the amount
of Sn that can be substitutionally incorporated in the lattice is
much larger, Sn does not occupy interstitial sites, and the
ionic effective charges are very small, so that the LO-TO
splittings are negligible.

II. EXPERIMENT

A. Sample growth

The Ge1−x−ySixSny alloys are grown on Ge1−ySny-buffered
Si via reactions of SnD4 and the SiH3GeH3, �GeH3�2SiH2,
�GeH3�3SiH, and GeH3SiH2SiH2GeH3 hydrides as the
sources of the Si and Ge atoms. This class of compounds
furnishes building blocks of tailored elemental contents that
possess the necessary reactivity to readily form the desired
metastable structures and compositions at low temperatures
of 300–350 °C. The film growth is conducted by ultrahigh
vacuum chemical vapor deposition with a base pressure of
1�10−9 Torr. The Ge1−ySny buffer layers are grown first on
hydrogen-passivated Si�100� wafers at 330–350 °C using
well established procedures described previously.21 The sub-
sequent growth of Ge1−x−ySixSny is conducted in situ at reac-
tor deposition pressure of 0.300 Torr, yielding layers with
40–80 nm thickness at a nominal growth rate of
�2 nm/min. We produced a host of Ge1−x−ySixSny samples
with compositions ranging from 13 to 20 at. % Si and from
1.0 to 10.0 at.% Sn. The specific compositions in our experi-
ments were adjusted by varying the concentration of the gas-
eous reactants in the deposition mixture. Resultant films dis-
played a mirrorlike appearance similar to that of the
underlying Si substrate.

B. Structural characterization

Extensive analyses of the films were carried out to char-
acterize the crystal structure, elemental distribution, and

morphological properties by cross sectional transmission
electron microscopy �XTEM� �see Fig. 1�, electron energy
loss nanospectroscopy, Rutherford backscattering �RBS�,
high resolution x-ray diffraction �XRD�, and atomic force
microscopy. These techniques collectively demonstrate per-
fectly epitaxial, uniform, and highly aligned
Ge1−x−ySixSny /Ge1−ySny layers with atomically smooth sur-
faces and monocrystalline microstructures exhibiting few
threading defects. The XTEM data of highly mismatched
heterostructures showed that a significant concentration of
threading defects originating at the Ge1−x−ySixSny /Ge1−ySny
heterointerface propagates downward and is absorbed by the
buffer, thereby yielding in all cases a virtually defect-free
epilayer. The RBS studies were particularly useful in deter-
mining the atomic compositions �via the RUMP simulation
program�, the epitaxial registry of the layers, and the phase
purity of the samples. The ratio of the channeled vs random
RBS peak heights was measured and found to be identical
for all constituent elements. This indicates a single-phase
material in which the Si, Ge, and Sn atoms occupy random
substitutional sites in the same average diamond-cubic lattice
as shown in Fig. 2�a� for a Si0.18Ge0.75Sn0.07/Ge0.97Sn0.03
sample. High resolution XRD �HR-XRD� measurements of
the on-axis �004� and asymmetric �224� Bragg reflections
were utilized to determine the strain properties of the films.
The analyses, in general, reveal that the bilayers adopt strain
states which minimize their combined elastic energy, as if the

FIG. 1. �a� XTEM diffraction contrast image of
Ge0.98Sn0.02/Ge0.72Si0.18Sn0.10 showing smooth, continuous surface
morphology and low defect densities. The arrow marks the location
of the interface between the layers. �b� High resolution micrograph
of the interface �arrows�, indicating perfect epitaxial alignment.
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films were decoupled from the substrate. Figure 2�b� shows
the �224� reciprocal space maps for a representative
Si0.20Ge0.78Sn0.02/Ge0.97Sn0.03/Si�100� sample. These data
show that the Ge1−x−ySixSny epilayer is highly aligned and
tensile strained with respect to Ge1−ySny buffer, which pos-
sesses a slight compressive strain. In Table I, we show all
relevant structural parameters for our ternary alloys, obtained
from RBS and x-ray diffraction. The relaxed lattice constant
a is computed from the measured a� and a� by assuming a
tetragonal distortion and using an elastic constant ratio
C12/C11 that is interpolated between those of Si, Ge, and
�-Sn. As seen in Table I, the results are in excellent agree-
ment with a calculation of the ternary lattice constant based
on Vegard’s law, except at the lowest Sn concentrations, for
which the analysis of the RBS data is more complicated due
to the similar Sn concentrations in the buffer and the epil-
ayer. It is interesting to note that the deviations from Veg-
ard’s law in Ge1−xSix and Ge1−ySiy alloys are small and of
opposite signs,22 so that they might tend to cancel out in the
case of the ternary Ge1−x−ySixSny alloy.

C. Raman studies

Micro-Raman experiments were performed at room tem-
perature in the backscattering z �x ,y� z̄ and z �x ,x� z̄ configu-
rations, where x, y, and z correspond to the 100, 010, and
001 crystal directions, respectively. The light was focused
onto the sample with a microscope objective with a magni-
fication of 100�. The total laser power was 2.5 mW, and the
laser wavelength was 514.5 nm. A single-stage 0.25 m
monochromator equipped with a 2400 lines/mm grating and
a charge coupled device detector was employed to analyze
the scattered light. Figure 3 shows a typical Raman spectrum
for a Ge0.75Si0.18Sn0.07 alloy. The ternary Raman spectrum is
dominated by three peaks, which are assigned to Ge-Ge, Si-
Ge, and Si-Si vibrations. No separate Ge-Sn or Si-Sn peaks
are observed, although the latter, if present, are likely to be
too close to the Si-Ge peak to be observable as a separate
feature. This is discussed in more detail below.

The peak positions are extracted from the data following a
methodology similar to the one developed by Lockwood and

TABLE I. Summary of structural and Raman data for our samples. Compositions are obtained from RBS,
and the lattice constants are obtained from HR-XRD. The relaxed lattice constant is calculated by assuming
that the films are under tetragonal distortion and using a linear interpolation of elastic constant ratios. The
Vegard lattice constant corresponds to a linear interpolation between Si, Ge, and �-Sn. The Raman frequen-
cies correspond to strain-relaxed films.

x
�%�

y
�%�

a�

�Å�
a�

�Å�
a

�Å�
aVegard

�Å�
�Si-Si

�cm−1�
�Si-Ge

�cm−1�
�Ge-Ge

�cm−1�

0 0 5.6575 5.6575 5.6575 5.6575 301

18 10 5.6620 5.7280 5.7008 5.7000 446.1 389.8 288.8

20 8 5.6779 5.6779 5.6779 5.6787 451.8 393.4 289.9

18 7 5.6730 5.6753 5.6744 5.6750 452.9 394.9 290.9

13 3 5.6761 5.6524 5.6620 5.6530 454.8 395.7 296.7

20 2 5.6654 5.6352 5.6476 5.6288 458.3 400.6 295.6

FIG. 2. �Color online� �a� RBS random and channeled spectra of
a Si0.18Ge0.75Sn0.07/Ge0.97Sn0.03/Si�100� structure showing the
buffer layer and epilayer Si/Ge/Sn peaks labeled as �1� and �2�,
respectively. �b� Reciprocal space maps showing the �224� reflec-
tions of a Ge0.97Sn0.03 buffer layer and the Si0.20Ge0.78Sn0.02 epil-
ayer relative to that of the Si substrate. Note that the relaxation line
connecting the Si peak to the plot origin passes near the center of
GeSn peak and slightly below the SiGeSn peak, indicating that the
buffer is nearly stress-free while the epilayer is tensile strained. The
data also indicated that the in plane lattice dimensions of the two
layers are virtually identical.
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Wasilewski for AlxGa1−xAs alloys.23 The peaks are fitted
with an expression of the form I���= Iback���+ IEMG���. The
background intensity Iback��� is taken as b1+b2�−m, and the
exponentially modified Gaussian �EMG� function IEMG��� is
defined as

IEMG��� =
a

2s
exp� w2

2s2 +
�0 − �

s
�

��erf�� − �0

�2w
−

w
�2s

� +
s

	s	
 , �1�

where a is the peak area, �0 the mode frequency, w is the
width, and s is the asymmetry parameter. The agreement
between model and data is apparent in Fig. 3. The four pa-
rameters of the EMG function as well as the parameters b1,
b2, and m from the background function are obtained from
the fit. Notice that if the profile is asymmetric, the frequency
�max at which the IEMG function for a single peak has its
maximum is not equal to the mode frequency parameter �0.
We follow the customary approach for alloy semiconductors
and use �max as the peak position to be compared with
theory.

Since our alloys possess a small amount of strain,
we calculate the strain-induced shifts by assuming a
tetragonal distortion, and subtract them from the observed
Raman shifts to obtain the Raman frequencies corresponding
to relaxed alloys. Phonon strain coefficients for ternary
Ge1−x−ySixSny alloys have not been measured experimentally,
so that we use values for pure Ge or Ge1−xSix alloys. We
take �in cm−1� ��Ge-Ge

GeSiSn�x ,y�=−415���x ,y�,24 ��Si-Ge
GeSiSn�x ,y�

=−575���x ,y�,25 and ��Si-Si
GeSiSn�x ,y�=−984���x ,y�.26 Here, ��

is defined as �� = �a� −a� /a, where a� is the lattice constant in

a direction parallel to the growth plane, and a is the relaxed
lattice constant.

III. DISCUSSION

A. Mode identification

The Raman spectrum of our ternary Ge1−x−ySixSny alloys
is very similar to the Raman spectrum of binary Ge1−xSix
alloys with comparable Ge contents, and therefore, the three
dominant structures have been assigned to Ge-Ge, Si-Ge,
and Si-Si modes. In the ternary alloy, however, we might
expect to see evidence for Sn-Sn, Ge-Sn, and Si-Sn vibra-
tions. The first two have been observed in binary Ge1−ySny
alloys, although they are weak at the compositions that are
experimentally accessible. Evidence for a Raman signal be-
low 200 cm−1, indicative of Sn-Sn vibrations, is also found
in our ternary samples. As in the binary alloy, however, the
polarization selection rules are unusual �the signal is stronger
for the z�x ,x�z̄ configuration�, suggesting that the feature is
not entirely opticlike. Therefore we postpone the analysis of
this feature until more detailed modeling sheds light on the
nature of the vibrations that give rise to the observed Raman
activity below 200 cm−1. As to the Ge-Sn mode, we have
recently observed it in Ge1−ySny alloys excited with 647 nm
light, probably because this wavelength is close to resonance
with the material’s E1 gap. Unfortunately, the penetration
depth of 647 nm in our ternary alloy is long enough to excite
the Ge1−ySny buffer layer, so that it is very difficult to sepa-
rate the Ge-Sn signal arising from the buffer layer from a
possible Ge-Sn signal originating in the ternary alloy. Fur-
thermore, we believe that the possible presence of a Si-Sn
feature is hidden by its close proximity to the Si-Ge modes.
Very recently we have confirmed this in measurements of
Si1−ySny alloys.27 The proximity of the two modes can be
understood from the observation that phonon frequencies in
group-IV semiconductors scale with the ionic plasma
frequency;28 that is, ��a−3/2	−1/2, where a is the lattice con-
stant and 	 the reduced mass of the unit cell. Since Si is
much lighter than Ge or Sn, the reduced mass is close to the
Si mass, and therefore, the frequencies of optical Si-Ge and
Si-Sn vibrations should be similar. Therefore, the Raman fea-
ture near 400 cm−1 is probably a mixture of Si-Ge and Si-Sn
vibrations, but given the higher number of Si-Ge bonds in
our samples and the weakness of the Ge-Sn features in
Ge1−ySny alloys, we will continue to refer to it as the Si-Ge
mode.

B. Compositional dependence of Ge-Ge and Si-Si modes

The Ge-Ge and Si-Si mode frequencies in binary Ge1−xSix
alloys are given by

�Ge-Ge
GeSi �x� = �0

Ge − �Ge-Ge
GeSi x , �2a�

�Si-Si
GeSi�x� = �0

Si − �Si-Si
GeSi�1 − x� , �2b�

where �0
Ge=301 cm−1 and �0

Si=520 cm−1 are the bulk Ge
and Si Raman frequencies, respectively, and the linear
coefficients are found to be �Ge-Ge

GeSi =19.4 cm−1 and �Si-Si
GeSi

=67.9 cm−1.18 These dependencies have been quantitatively

FIG. 3. Room temperature Raman spectrum of a
Ge0.75Si0.18Sn0.07 alloy obtained in the z�x ,y�z̄ scattering configura-
tion with x= �100� and z= �001�. The excitation wavelength is
514.5 nm. The solid line represents the model fit, from which the
peak frequencies were extracted. The peaks associated with Ge-Ge,
Si-Si, and Si-Ge vibrations were fitted separately. The peak at
435 cm−1 is a well-known feature attributed to isolated pairs of Si
atoms.
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reproduced via first-principles calculations.29 More
recently,19 results for Ge1−ySny alloys became available, and
it was shown that, at least over the measured range of con-
centrations y
0.15, the data can also be fitted with an ex-
pression of the form

�Ge-Ge
GeSn = �0

Ge − �Ge-Ge
GeSn y , �3�

with �Ge-Ge
GeSn =68±5 cm−1. More recent studies30 that correct

for epitaxial strain shifts give �Ge-Ge
GeSn =75.4±4.5 cm−1.

In view of the results for binary compounds, we might
expect the compositional dependence of the Ge-Ge and Si-Si
modes in ternary Ge1−x−ySixSny alloys to be linear in compo-
sition. We thus investigate expressions of the form

�Ge-Ge
GeSiSn�x,y� = �0

Ge − �Ge-Ge
GeSi x − �Ge-Ge

GeSn y , �4a�

�Si-Si
GeSiSn�x,y� = �0

Si − �Si-Si
GeSi�1 − x − y� − �Si-Si

SiSny . �4b�

Here, Eq. �4a� reduces to Eq. �2a� for y=0 and to Eq. �3� for
x=0. Similarly, Eq. �4b� reduces to Eq. �2b� for y=0. For the
case of vanishing Ge concentration �x+y=1�, Eq. �4b� im-
plies a linear dependence for the Si-Si mode frequency in the
binary alloy Si1−ySny:

�Si-Si
SiSn = �0

Si − �Si-Si
SiSny , �5�

Preliminary Raman results from thin films of Si-rich Si1−ySny
alloys have been published recently.27 In analogy with results
from other group-IV alloys, these experiments show clear
evidence for Si-Si and Si-Sn vibrations. A detailed composi-
tional dependence of these modes was not reported in Ref.
27 due to the difficulties in determining composition and
strain in very thin films.

We fitted our experimental data using the expressions in
Eqs. �4a� and �4b�, with �Ge-Ge

GeSi , �Si-Si
GeSi, �Ge-Ge

GeSn , and �Si-Si
SiSn as

adjustable parameters. The results from these two-
dimensional fits are shown in Table II and Figs. 4 and 5. The
fit coefficients �Ge-Ge

GeSi , �Si-Si
GeSi are virtually identical to their

counterparts in binary Ge1−xSix alloys, and the coefficient
�Ge-Ge

GeSn is also close to its value in binary Ge1−ySny alloys.
This suggests that the linear dependence proposed in Eqs.
�4a� and �4b� extends over a much broader �x-y� range of
compositions than actually measured, including the binary
alloys as special cases. It is interesting to point out that
Meléndez-Lira et al. used similar linear dependence expres-

sions to analyze the compositional dependence of Raman
modes in ternary Ge1−x−ySixCy alloys. However, since the
carbon concentrations were much lower, a two-dimensional
fit was not possible, and the authors assumed that they could
use the linear coefficients from Ge1−xSix alloys to extract the
carbon dependence of the mode frequencies.

We have examined published experimental data for II-VI
and III-V alloys to ascertain the generality of the above
ideas. The compositional dependence of Raman mode fre-
quencies in these systems is more complicated due to the
sizable LO-TO splitting. This usually leads to quadratic
terms in the compositional dependencies, which requires
three additional coefficients when generalized to a two-
dimensional semiconductor system. A possible way to avoid

TABLE II. Linear coefficients for the compositional dependence
of Raman frequencies in binary and ternary Ge-Si-Sn alloys �in
cm−1�.

Binary alloys Ternary alloy

�Ge-Ge
GeSi 19.4a 17.1±2.6

�Ge-Ge
GeSn 75.4±4.5b 94.0±7.1

�Si-Si
GeSi 67.9a 71.2±1.7

�Si-Si
SiSn N/A 213±12

aReference 18.
bReference 30.

FIG. 4. The y dependence of the Ge-Ge mode frequency in
Ge1−x−ySixSny alloys. The data points are obtained by subtracting

�0
Ge−�Ge-Ge

GeSi x from the strain-corrected Ge-Ge mode frequency

��0
Ge=301 cm−1, �Ge-Ge

GeSi =17.1 cm−1�. The line corresponds to the

function −�Ge-Ge
GeSn y ��Ge-Ge

GeSn =94 cm−1�. The coefficients �Ge-Ge
GeSn and

�Ge-Ge
GeSi were obtained from a two-dimensional fit to the �x ,y� depen-

dence of the mode frequency according to Eq. �4a�.

FIG. 5. The y dependence of the Si-Si mode frequency in
Ge1−x−ySixSny alloys. The data points are obtained by subtracting

�0
Si−�Si-Si

GeSi�1−x� from the strain-corrected Si-Si mode frequency

��0
Si=520 cm−1, �Si-Si

GeSi=71.2 cm−1�. The line corresponds to the

function ��Si-Si
GeSi−�Si-Si

SiSn�y ��Si-Si
SiSn =213 cm−1�. The coefficients �Si-Si

GeSi

and �Si-Si
SiSn were obtained from a two-dimensional fit to the �x ,y�

dependence of the mode frequency according to Eq. �4b�.
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these complications is to study the compositional depen-
dence of the average mode frequency �̄A-B

=����A-B
LO �2+2��A-B

TO �2) /3, which is independent of the ionic
effective charges. Unfortunately, detailed Raman data for
both the LO and TO modes as a function of composition are
not always available due to the different selection rules for
these modes, but in the few cases in which the analysis can
be performed, we find that the average frequency is indeed
linear in composition and can be expressed in terms of the
compositional dependence of the corresponding average in
the underlying pseudobinary alloys. As an example, we show
in Fig. 6 results from Ramdas and co-workers31,32 for
pseudoternary Cd1−x−yMgxMnyTe alloys and their related
pseudobinaries. For the Mn dependence, the linear term ob-
tained from the pseudoternary data provides an excellent fit
of the corresponding pseudobinary Cd1−yMnyTe alloys,
whereas for the Mg dependence, the discrepancy is within
one standard deviation. This is similar to our findings for
group-IV systems.

C. Scaling of linear coefficients for Si-Si and Ge-Ge modes in
group-IV alloys

The compositional dependence of the M –M Raman fre-
quencies in M1−xNx group-IV alloys can be understood by
considering the formation of the alloy as a two-step
process.3,33 In the first step, the atomic masses of a fraction x
of M atoms are replaced with N-atom masses. All atoms
remain at their original diamond-structure positions. This
produces a frequency shift of the Raman-active modes akin
to the confinement shifts observed in superlattices. An addi-
tional shift results from the bond deformations as the system
relaxes to equilibrium when the imaginary M-type atoms
with N-type masses are replaced by real N atoms. Thus we
can write

���x� = ��mass�x� + ��bond�x� �6�

�strictly speaking, the additivity of the two steps applies to
the shifts of the squared frequencies, but since the total shifts

are a small fraction of the bulk frequencies, a linearized ver-
sion as in Eq. �6� is a good approximation�. The mass term
can be easily modeled using the well-known bulk ab initio
force constants, and it has been found to be proportional to
the alloy fraction x.20 The bond term can also be obtained
from first principles using an interatomic potential expansion
that includes third-order �anharmonic� derivatives of the total
energy with respect to displacements from the diamond-
structure positions.29 Explicit calculations show that only
terms that involve near neighbors are needed to obtain good
agreement with experiment. Based on these ideas, Eq. �6�
was written in Ref. 19 as

��M–M�x� = − A�0
Mx − B�0

M �RM–M�x�
R0

M

= − A�0
Mx − B�0

M�1 − aM–M
** �

�a�x�
a0

M , �7�

where the first term gives the mass contribution and the sec-
ond term corresponds to the bond contribution. Here, �0

M is
the Raman mode frequency of the elemental semiconductor
M �i.e., the Raman frequency for x=0�. The second term,
first proposed by Carles et al.,34 is the simplest possible ex-
pression consistent with the results of de Gironcoli.29 Here,
�RM–M�x�=RM–M�x�−R0

M, where RM–M�x� is the M –M bond
length in the alloy, and R0

M is the M –M bond length in the
elemental semiconductor M. The change in bond length is
related to �a�x�=aMN�x�−a0

M, the change in cubic lattice
constant, via the bond rigidity parameter a** defined by Cai
and Thorpe.35 For group-IV alloys, it has been shown that
a**=0.6–0.7, indicating a considerable degree of rigidity in
the nearest-neighbor bonds.35–37 Since group-IV alloys fol-
low Vegard’s law quite closely, �a�x�= �a0

N−a0
M�x. Therefore,

the bond contribution should also be proportional to x, and
this gives an overall compositional dependence that is linear
in x, as found experimentally.

From ab initio supercell calculations, one obtains A
=0.094 �0.111� for the Si-Si �Ge-Ge� mode in Ge1−xSix
alloys.20 Combining this result with a**=0.6 and the experi-

FIG. 6. The weighted average ���LO
2 +2�TO

2 � /3 of the CdTe-like LO and TO Raman frequencies in �a� Cd1−xMgxTe and �b� Cd1−yMnyTe
alloys �squares�. The solid lines represent the x and y dependencies, respectively, obtained from a two-dimensional linear fit of the CdTe-like
average frequency in Cd1−x−yMgxMnyTe quaternary alloys. The light dotted lines indicate the error in the bilinear fit. The original LO and
TO Raman data are from Refs. 31 and 32.
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mental compositional dependence of the Raman frequencies,
one finds B=2.45 �2.60� for the Si-Si �Ge-Ge� modes. The
similarity of the A and B parameters for both modes suggests
that they are approximately mode and material independent,
and this was explained in Ref. 19 by invoking the similarity
of the phonon dispersion relations in group-IV elemental
semiconductors. For example, it was argued that in the limit
x→1 the mass perturbation in Eq. �6� should shift the Raman
frequency to a value close to the strongest peak in the optical
phonon density of states, which occurs at �max; 0.9�0 in Si,
Ge, and �-Sn.38 This yields A=0.1, in good agreement with
the numerical simulations. Similarly, the simplest model for
the parameter B is to assume that it has the same value as for
a uniform volume deformation in the bulk,34 so that B=3�,
where � is the Gruneisen parameter for the Raman mode.
The Gruneisen parameter for the zone-center optical mode in
diamond-structure semiconductors is very close to unity, so
that we predict B3, independent of mode and material.
This is also close to the fit values.

A first test of the above ideas was carried out in Ref. 19
by using the A and B parameters for the Si-Si mode in
Ge1−xSix alloys to predict the compositional dependence of
the Ge-Ge mode in Ge1−ySny alloys. The predicted value was
found to be in very good agreement with the measured com-
positional dependence. Under the assumption of Vegard’s
law for the lattice constants, which is a very good approxi-
mation for our alloys, a generalization of the model of Eq.
�7� to ternary alloys leads to an expression that corresponds
to the sum of the compositional dependencies for the under-
lying binary alloys. Thus the experimental results reported
here are consistent with this model. Moreover, since the pa-
rameter a**—which, in principle, is bond and material
dependent—turns out to be nearly the same for all bonds
within a given M1−xNx alloy35 and very similar for all alloys
involving Si, Ge, and Sn, as indicated above, Eq. �7� sug-
gests that the linear coefficients in the compositional depen-
dence of M –M mode frequencies should scale as

−
�M–M

MN

�0
M = A + C�MN, �8�

where �MN= �a0
N−a0

M� /a0
M, and A and C are “universal” con-

stants. The normalized coefficients −�M–M
MN /�0

M are plotted in
Fig. 7 against the mismatch parameter �MN, and it is seen that
they are indeed approximately linear in this parameter. We
have included in the figure a data point for the Si-Si mode in
Si1−yCy alloys as deduced from measurements in ternary
Si1−x−yGexCy alloys.20 Even though this system deviates from
Vegard’s law and the mass term for the Si-Si mode in Si1−yCy
alloys is not the same as in Ge1−xSix alloys �as implied by
Eq. �8��, we see that the agreement with the overall linear
dependence is quite satisfactory. By contrast, the Ge-Ge
mode in Ge1−yCy, as deduced from the same measurements
in Si1−x−yGexCy alloys, deviates substantially from the linear
correlation in Fig. 7, and was not included in this figure. It
should be noted, however, that there is a large uncertainty as
to the experimental compositional dependence of this mode,
since measurements in binary Ge1−yCy appear to be in

complete disagreement with measurements in ternary
alloys.39 Thus more work is needed to ascertain to what ex-
tent carbon-containing alloys can be included in any explo-
ration of scaling behaviors in the compositional dependence
of group-IV alloy Raman frequencies. It is worth stressing
here that the aforementioned scaling of phonon dispersion
curves between �-Sn, Ge, and Si does not extend to
diamond,38 so that any vibrational mode involving C atoms
should probably be excluded from the scaling analysis.

D. Compositional dependence of the Si-Ge mode

The compositional dependence of the Si-Ge Raman mode
in SixGe1−x alloys has been explained qualitatively in terms
of the same ideas discussed in Sec. III C.33 The Raman peak
can be seen as derived from the zone-center optical mode in
a hypothetical zinc blende SiGe structure, and therefore, the
mass perturbation should lead to a maximum frequency at
x=0.5. The bond perturbation corresponds to a compressive
strain for x�0.5 and a tensile strain for x
0.5, and this
reversal has been invoked to explain the steeper composi-
tional dependence of the frequency for x
0.5. In spite of
this insight, a quantitative model equivalent to the one devel-
oped in Sec. III C has been elusive. The complexities be-
come apparent when one compares the experimental Raman
frequency at x=0.5, �Si-Ge �0.5�=407 cm−1 with the ex-
pected Raman frequency from a perfectly ordered zinc
blende SiGe crystal, which, following the scaling of phonon

FIG. 7. Normalized linear coefficients for the compositional de-
pendence of M –M Raman frequencies in group-IV M1−xNx alloy
systems as function of the lattice mismatch �MN= �a0

N−a0
M� /a0

M be-
tween the two elemental semiconductors M and N. The triangles
correspond to data obtained from binary alloys, circles to data from
ternary alloys. The solid line represents a linear fit as in Eq. �8�,
with A=0.11 and C=1.40.
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dispersion curves with the ionic plasma frequency, can be
predicted to be �ZB=420 cm−1. Therefore, even though the
composition is the same, there is a downshift of 13 cm−1 in
the alloy due to the randomization of the atomic distribution.
For the Ge-Ge and Si-Si modes, on the other hand, one au-
tomatically obtains the ordered parent semiconductors in the
limits x→0 and x→1. Not surprisingly, the compositional
dependence of the Si-Ge mode frequency requires more
complex expressions �terms up to x4� than the simple linear
dependencies found for the Ge-Ge and Si-Si modes.

The generalization of the compositional dependence of
the Si-Ge mode to a two-dimensional compositional space
introduces at least ten additional coefficients. Consequently,
these parameters can only be determined with a much larger
set of samples spanning the entire compositional space.
Aside from these numerical considerations, the underlying
physics is more complicated due to the similarity of the re-
duced Si-Ge and Si-Sn masses. In order to compare our ex-
perimental data with the simplest possible predictions in the
spirit of the model used above for Si-Si and Ge-Ge modes,
we consider two extreme limits: if we neglect the difference
in the reduced masses, the quantity ��Si-Ge=�Si-Ge�x ,y�
−�Si-Ge�x� should reflect the additional bond distortion con-
tribution introduced by the Sn atoms. If we compute this
using the model of Eq. �7� and averaging the values of the B
parameters for the Si-Si and Ge-Ge modes, we obtain �using
a**=0.6� ��Si-Ge=−70y �in cm−1�. In Fig. 8�a�, we show this
quantity computed by subtracting �Si-Ge�x� from the experi-
mental data in Table I. The values of �Si-Ge�x� were com-
puted from the proposed fourth-order polynomial expression
in Ref. 18. A linear fit to the data �with a constant term to
account for a possible error in the published Si-Ge mode
frequencies� gives ��Si-Ge=−109y �in cm−1�. This could be
considered acceptable given the crudeness of the model. A
somewhat better agreement can be obtained by taking the
point of view that the mass difference between Ge and Sn is
sufficient to confine the Si-Ge mode eigenvectors to Si-Ge
bonds, so that the presence of a y fraction of Sn would add a
mass and bond shift to the Si-Ge mode frequency in a
Ge1−x�Six� alloy with x�=x / �1−y�. If we plot the quantity
��Si-Ge� =�Si-Ge�x ,y�−�Si-Ge�x�� and fit it with a linear func-
tion of y �see Fig. 8�b��, we obtain ��Si-Ge� =−112y. Using an
expression equivalent to Eq. �7�, and averaging the values of
the A and B parameters for the Si-Si and Ge-Ge modes, we
now predict �again using a**=0.6� ��Si-Ge� =−110y. Thus it
appears that the model described in Eq. �7� can be used to
understand the y dependence of the Si-Ge mode in, at least, a
semiquantitative way.

IV. CONCLUSION

The analysis of the Raman spectra of Ge1−x−ySixSny alloys
presented here yields a comprehensive picture of Ge-Ge and
Si-Si type vibrations in group-IV alloys made of Si, Ge, and
Sn. The compositional dependence of these modes is found
to be linear, and therefore, it appears that the ternary compo-
sitional dependence can be predicted from studies of binary
alloys. The linear coefficients for the compositional depen-
dence of Ge-Ge and Si-Si modes are found to follow a scal-

ing behavior that can be traced back to the scaling of the
phonon dispersion relations in Si, Ge, and �-Sn. It is worth
noting that ab initio calculations have revealed a similarity
of vibrational force constants for all tetrahedral
semiconductors.16 Consequently, as suggested by our analy-
sis of a II-VI alloy system, the compositional dependence of
Raman modes in tetrahedral semiconductors should display
scaling correlations similar to the ones discussed here.

It is important to point out that our studies have focused
on mode frequencies, but the Raman spectra provide a
wealth of additional information on the microscopic structure
of the alloy systems. For example, a clear correlation be-
tween the width of the Raman spectra and the width of the
bond length distribution function has been noted in Ref. 27.
We believe that the combination of first-principles calcula-
tions and Raman spectroscopy can provide unique insights
into the microscospic structure of semiconductor alloys that
are impossible to obtain with any other experimental tech-
nique. Surprisingly, little progress has been made in ab initio
simulations of the Raman spectra of semiconductor alloys
since the pioneering work of de Gironcoli.29

FIG. 8. The y dependence of the Si-Ge mode frequency in
Ge1−x−ySixSny alloys. �a� The data points are the difference between
the strain-corrected Si-Ge mode frequency in the ternary alloy and
the known frequency �Si-Ge

GeSi �x� of the same mode in Ge1−xSix alloys,
as quoted in Ref. 18. The line represents a linear fit to the data. �b�
The data points are the difference between the strain-corrected
Si-Ge mode frequency in the ternary alloy and the frequency
�Si-Ge

GeSi �x�� of the same mode in Ge1−x�Six� alloys, where x�=x / �1
−y�. The line represents a linear fit to the data. The motivation for
these two alternative ways of displaying the results is discussed in
the text.
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