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The band-gap bowing in the Cu1−xAgxGaS2 chalcopyrite alloy is studied using the full-potential linearized
muffin-tin orbital method combined with various structural models, including so-called special quasirandom
structures. The calculations confirm a large band-gap bowing ��0.7 eV� in agreement with recent experimental
results. It is found that the large bowing in part arises from a nonlinear behavior of the c /a ratio with
concentration. Layered structures are found to have similar bowing to special quasirandom structures. The
nonlinear band-gap behavior also leads to a nonlinear behavior of the index of refraction and the second-order
nonlinear optical susceptibility with concentration. The maximum ��2� is found for a 50% alloy and is calcu-
lated to be about 27 pm/V.
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I. INTRODUCTION

Chalcopyrite semiconductors offer another versatility
compared to the standard III-V and II-VI semiconductors. In
particular, Cu�Ga,In��S,Se�2 have found applications in
thin-film photovoltaic solar energy conversion.1

AgGa�S,Se,Te�2 compounds, on the other hand, have found
applications in nonlinear optics as frequency converters.2

Crucial alternative features of these chalcopyrite structure
compounds are �1� their reduced symmetry �tetragonal in-
stead of cubic� which allows for birefringence and is impor-
tant for phase matching in the nonlinear optical applications;
�2� the presence of d bands of the group-I element which
modifies the nature of the states near the band gap. The latter
plays, for example, a role in the defect physics in these ma-
terials which is one of the reasons for their success in pho-
tovoltaic applications.3 As usual, to fine-tune the properties
of these semiconductors, it is of interest to make alloys
among them by substituting various cations or anions. In this
paper, we study the effect of substituting the group-I ele-
ment, Ag versus Cu. The Cu1−xAgxGaS2 alloy system is cho-
sen as an example because of the recent reports of a large
band-gap bowing in this system.4,5 The band-gap bowing de-
fines the deviation from linearity of the band gap as function
of concentration. Furthermore, the two experimental reports
gave somewhat different results on the band-gap bowing, or
more particularly on the concentration at which the mini-
mum band gap occurs. Whereas Choi et al.4 places this mini-
mum gap concentration at about 50%, Matsushita et al.5

place it at about 30%. Earlier work6 reported a smaller bow-
ing for this alloy system. Also, for the corresponding se-
lenide system, smaller bowing parameters were reported by
Park et al.7 The question arises how this band-gap bowing is
related to the underlying structural properties. A large bow-
ing offers the possibility to strongly modify the properties of
the alloy system. The indices of refraction are some of the
most important optical properties for designing frequency
conversion systems. The nonlinear optical coefficient is also
important. Often it is assumed that these parameters vary
simply linearly with concentration. An important purpose of
this paper is to test the validity of this assumption.

The paper is organized as follows. In Sec. II, we describe
our computational approach. In Sec. III, we define the struc-
tures investigated, in particular, how to deal with the problem
of simulating a random alloy. In Sec. IV, we first give our
results for the structural properties and band structures of the
end compounds CuGaS2 and AgGaS2 �Sec. IV A�. Next, we
discuss the behavior of the lattice constants and band-gap
bowing in the alloy system �Sec. IV B�. We will show, in
particular, that the bowing of the c /a ratio is in part respon-
sible for the large band-gap bowing. Finally, we discuss the
effects on the optical properties as function of concentration
in Sec. IV C. We summarize the results in Sec. V.

II. COMPUTATIONAL APPROACH

The underlying theoretical approach is density functional
theory in the local density approximation.8 To solve the
Kohn-Sham equations, we use the the full-potential linear-
ized muffin-tin orbital �FP-LMTO� method as implemented
by van Schilfgaarde and Methfessel.9 This approach is an
all-electron approach without shape approximation. It makes
use of an efficient minimal basis set of augmented smooth
Hankel functions.10 The parameters in the basis set include
the Hankel function decay lengths or �kinetic energies� �2

and the smoothing radii Rsm, which make the basis functions
curve over just outside the muffin-tin radius and help to give
the basis functions their optimum shape. These parameters
along with the angular momentum cutoffs are optimized at
the start of the calculations by minimizing the non-self-
consistent Harris-Foulkes functional.11,12 In the present cal-
culations, we employ a basis set consisting of a single spd
channel per atom. However, for Ga, the semicore 3d orbitals
are added as “local orbitals.”13 For Cu and Ag, of course, the
3d and 4d orbitals are treated as valence states. The various
quantities such as charge density, wave functions, and poten-
tial are separated in a smooth part, tabulated on a regular
mesh in real space, and their augmentation counterparts in-
side the spheres subtract a local expansion of the smooth
function and replace it by the actual quantities inside the
spheres. The fast Fourier transform technique is used to solve
Poisson’s equation for the smooth part. The regular mesh
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used is a 40�40�40 mesh for the primitive body centered
tetragonal cell. The mesh is correspondingly increased for
the supercells used. To sample the Brillouin zone for the
self-consistent calculations and atomic relaxation, a shifted
and symmetrized Monkhorst-Pack14 2�2�2 mesh is used
and was found to be sufficiently converged.

For the optical calculations, we used the atomic sphere
approximation �ASA� to the LMTO method because the cal-
culation of optical matrix elements has not yet been imple-
mented in the FP-LMTO code. In this method, slightly over-
lapping spheres are used instead of touching muffin-tin
spheres and the potential is spherically averaged inside the
sphere as well as the charge density. The latter approxima-
tion is insufficient to obtain structural energy differences but
is still quite accurate for the band structure. Empty spheres
are introduced to make the system close packed and avoid
too large overlaps of the space filling spheres. In any case,
since we have the FP-LMTO band structures available for
comparison, we can check explicitly that the ASA works fine
for the bands of these materials. We calculate the imaginary
part of the dielectric function in the long-wavelength limit
random-phase approximation,

�2
j ��� = �2�e

m�
�2

�
k

��vk�pj�ck	�2��Ec�k� − Ev�k� − ��� ,

�1�

with pj =−i�� j the momentum operator, using Gaussian
units. Local-field effects and excitonic effects are neglected.
The real part of the dielectric function is then obtained by
Kramers-Kronig transformation and the index of refraction is
calculated from the square root of the complex dielectric
function and taking the real part.

To calculate the nonlinear ��2�, we use the approach of
Sipe and co-workers15,16 as implemented in Rashkeev et al.17

The ��2� is separated in a pure interband contribution and a
mixed intraband interband contribution, which we will call
intraband for short. These usually have opposite signs and
similar magnitudes. In previous work on the I-III-VI2
compounds,18,19 we discussed in detail how these two con-
tributions play a role in establishing which materials have the
higher ��2�. Because of Kleinman symmetry in the static
limit, only one component of the third-order tensor needs to
be calculated, namely, the �x,yz

�2� =2d14.
Both linear and even more so nonlinear optics depend

crucially on the band gap. Since local density approximation
�LDA� usually underestimates the band gaps, we need to add
a band-gap correction. This is done in the linear optics case
simply by shifting the imaginary part of � up by a constant
before evaluating the real part. This procedure is equivalent
to inserting a so-called scissor operator, i.e., a shift with pro-
jection on the conduction bands. This should be accompa-
nied by a renormalization of the matrix elements as argued
by Levine et al.20 The scissor shift is implemented in this
manner for the nonlinear optical calculations. It should be
kept in mind that nonlinear optics is more sensitive to com-
putational details, such as the k-point sampling. The k-point
sampling for the linear and nonlinear optical calculations is
carried out using the tetrahedron method21 and with a large

number of k points than used for the self-consistency calcu-
lations, for instance, a 10�10�10 mesh for the standard
unit cell of chalcopyrite.

III. STRUCTURAL MODELS

The key question in modeling alloys is how to deal with
the randomness of the atomic substitutions. An efficient way
to deal with this question is to use the so-called special qua-
sirandom structures �SQSs�.22 These are relatively small or-
dered supercells designed such that their correlation func-
tions mimic the ensemble average of a random alloy, i.e.,

	̄k,m= �2x−1�k. Here, 	̄k,m is a correlation function, i.e., a
lattice sum over spin products �or figures� corresponding to a
certain order k and a certain neighbor distance m. The under-
lying idea is that the ensemble average of any quantity of
interest can be expanded in these correlation functions,

�P	 = �
k,m

�	̄k,m	Pk,m, �2�

where Pk,m are the so-called interaction parameters. The
number of terms needed in this expansion obviously depends
on the property studied and the size of the interaction param-
eters for the system at hand. The quality of a SQS is deter-
mined by the distance and order up to which the deviations
from the random correlation functions vanish and how small
the remaining deviations are. Equivalently, one defines the
Warren-Cowley23 short-range order parameter


 j = 1 −
PB�j�

xB
, �3�

in which PB�j� is the probability to find a B atom as jth
nearest neighbor site of an A atom at the origin. The relation
between this short-range order parameter and the spin corre-
lation function is24


 j =
�	̄2,j	 − q2

1 − q2 , �4�

with q=2x−1.
We used a 64 atom supercell, which is a 2�2�1 super-

lattice of the face centered tetragonal cell of chalcopyrite. It
thus contains 16 group-I sites which are populated with ei-
ther Ag or Cu atoms. The group-I atoms in the chalcopyrite
fct cell occur at reduced coordinate positions �0,0,0�,
�0,0.5,0.25�, �0.5,0.5,0.5�, and �0.5,0,0.75�. The remaining
Ga and S atoms are merely spectator atoms in terms of the
alloy disorder. A computer code25–28 is used for generating
the SQS. It uses iterative switching of atomic pairs in a
Metropolis-type algorithm until the deviations from the ran-
dom correlation functions are minimized. The structures ob-
tained are specified by giving the positions of the Ag and Cu
atoms, respectively, as given in Table I. We constructed 25%
and 50% alloys, and then simply reversed the Cu and Ag
atoms to obtain a 75% alloy model.

The quality of the SQS is given by the deviations of the
correlation functions from the random one, or for the pair
correlation functions by the Warren-Cowley parameters.
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These are given in Table II. Since no first neighbor triplets
occur in this sublattice, unlike in fcc, we do not consider
triplet and higher correlation functions. The strongest devia-
tion from random behavior occurs for the fourth neighbor
shell in the 25% SQS. The quality of the SQS could be
further improved by taking a 128 atom 2�2�2 cell. In that
case, we can make all 
 j =0 up to sixth neighbors for the
25% case. However, as we will see below, the disorder of the
structure appears to affect the band-gap bowing only slightly,
so we have not pursued these large cells yet.

To further check the influence of the structural disorder,
we also studied simple layered structures in the c direction.
Here, we used simple 16 atom �face centered tetragonal or
fct� cells containing four group-I cations. For the 25% and
75% cases, there is obviously only one way to this. For the
50% composition, we can either have AgCuAgCu or a
AgAgCuCu arrangement. We investigate both.

IV. RESULTS

A. CuGaS2 and AgGaS2

First, we present our results for the end compounds of the
alloy series to establish the accuracy of our calculations.
Structural relaxation of the internal parameter u, which

specifies essentially the relative bond lengths of the Cu–S or
Ag–S and Ga–S bond lengths as well as the �=c / �2a� and a
lattice constants were carried out. The bond lengths in the
ABC2 compound are related to the u parameter as follows:

dAC = a
�1

4
�2

+ u2 +
�2

4
,

dBC = a
�1

4
�2

+ �1

2
− u�2

+
�2

4
. �5�

Table III gives the calculated lattice structural parameters
and the bulk moduli compared with experiment. Excellent
agreement is obtained. We note, in particular, that the c /a
ratio in the Ag compound is significantly lower than in the
Cu compound. As we will see below, the c /a ratio is an
important parameter in these materials. The band gaps are
underestimated because of the LDA and are found to be di-
rect at the � point in both cases.

In Figs. 1 and 2, the band structures are plotted for
CuGaS2 and AgGaS2, respectively. The k points shown are
Z= �0,0 , 4�

c
�, �= �0,0 ,0�, and X= �

a �1,1 ,0� In this figure, we
have highlighted the group-I d bands by coloring the bands
as a mixture of red and blue with the red contribution pro-
portional to the d-orbital contribution to the Bloch state at

TABLE I. Reduced coordinates of the A and B atoms in a 25%
and 50% 2�2�1 SQS of the chalcopyrite group-I sublattice.

x=1/4 x=1/2

A1 0 1 0 A1 0 3/2 1/4

A2 0 3/2 1/4 A2 1/2 0 3/4

A3 3/2 0 3/4 A3 1/2 1/2 1/2

A4 3/2 1 3/4 A4 1/2 1 3/4

B1 0 0 0 A5 1/2 3/2 1/2

B2 0 1/2 1/4 A6 1 1 0

B3 1/2 0 3/4 A7 3/2 1/2 1/2

B4 1/2 1/2 1/2 A8 3/2 1 3/4

B5 1/2 1 3/4 B1 0 0 0

B6 1/2 3/2 1/2 B2 0 1/2 1/4

B7 1 0 0 B3 0 1 0

B8 1 1/2 1/4 B4 1 0 0

B9 1 1 0 B5 1 1/2 1/4

B10 1 3/2 1/4 B6 1 3/2 1/4

B11 3/2 1/2 1/2 B7 3/2 0 3/4

B12 3/2 3/2 1/2 B8 3/2 3/2 1/2

TABLE II. Short-range order Warren-Cowley parameters 
 j for
the SQS defined in Table I.

x Neighbor shell j

1 2 3 4 5 6

1/4 0 0 −1/12 −1/3 0 −1/12

1/2 0 0 −1/8 0 0 −1/8

TABLE III. Lattice parameters, bulk modulus, and band gap of
CuGaS2 and AgGaS2.

CuGaS2 AgGaS2

Theor. Expt. Theor. Expt.

a �Å� 5.345 5.35 5.747 5.75

�=c / �2a� 0.9795 0.98 0.892 0.895

u 0.2489 0.2539 0.284 0.2908

dI-S 3.23 3.24 3.37 3.387

dGa-S 3.234 3.226 3.19 3.18

B �GPa� 85.2 95.8a 68.6 77.6a

Eg �eV� 0.8 2.47 1.01 2.72

aReference 29.
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FIG. 1. �Color online� The band structure of CuGaS2 highlight-
ing the Cu d bands in red.
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that each k point. Thus pure d bands are red, bands with zero
d contribution are blue and band with a mixed d and other
orbital character are purple. The purple bands near the va-
lence band maximum are a mixture of Cu-d and S-p,
whereas some almost purely d bands occur at lower energy.
In CuGaS2, a gap occurs just below these bands, whereas in
AgGaS2, no such gap is present. We can clearly see that the
Ag-d bands are significantly lower in energy than in Cu. This
means that they push up the valence band S-p states less in
Ag than in Cu and this results in a higher band gap for the
Ag than the Cu compound. This is a somewhat unusual cir-
cumstance because usually materials with heavier atoms and
hence larger lattice constants tend to have lower band gaps.
Ultimately, this is related to the stronger relativistic effects
on the Ag-d bands.

Using a similar color coding approach, we can analyze the
nature of the conduction band minimum. We find that it is
primarily composed of Ga-s, S-s, and S-p, but not Cu-s. The
latter appears to be more dominant a few eV higher in the
conduction bands. Hence, the conduction band minimum is
little influenced by the choice of group-I cation.

B. Alloy properties

With the above established background on the end com-
pounds, we now proceed to the alloy system. First, we ex-
amine the results of the 16 atom layered structures. In Fig. 3,
we show the lattice constants a and c and their ratio �
=c /2a as function of concentration, compared to the experi-
mental data of Matsushita et al.5 For the 50% case, the re-
sults of the two different structural models, switching every
layer or every two layers, agree to within the precision of the
calculations, so they are not shown separately. We notice that
while a follows linear Vegard’s law30, the c lattice constant
behaves nonlinear and has an upward bowing. In fact, c ini-
tially increases. This is, in part, due to the fact that � de-
creases and a increases with x. Thus, even if both would
behave linear, there would already be a quadratic term. This
is insufficient, however, to explain the behavior, as is shown
by the dashed-dotted line in the upper panel. A significant
fraction of the upward bowing of c is due to an upward
bowing of �.

The reason for the � behavior is presently not clear. While
the trends of lattice constants a and internal parameter u in
chalcopyrites can be nicely rationalized in terms of the idea
of conservation of tetrahedral bonds,31 the trends in c /a ratio
are less clear. One idea that was proposed in the past is that
it is related to conservation of tetrahedral bond angles.33

However, one cannot preserve all bond angles to stay tetra-
hedral and thus, the relation between u and � depends some-
what arbitrary on which bond angles are chosen to be con-
served. Also, Jaffe and Zunger31 showed that including a
relation like this gives only mediocre predictions for the
trends in �. This indicates that long-range forces rather than
local bond considerations influence c /a.

In Fig. 4, we show that this has an important effect on the
band-gap bowing. The band band-gap bowing is significantly
larger if we include the nonlinear c /a than when we assume
a linear c /a behavior. The bowing coefficient is as usual
defined as b in the expression

Eg�x� = xEA + �1 − x�EB − bx�1 − x� . �6�

Quadratic fits to the data points are included in the figure and
lead to a band-gap bowing coefficient of about 0.5 for the
linear c /a case and 0.7 for the relaxed nonlinear c /a case.
Again, in these figures, the two possible 50% layered struc-
ture gave identical results to within the precision of the cal-
culation.

Next, we examine the effects of randomness. In this case,
we maintain the c /a ratios as established from the layered
compounds but now use the 64 atom SQS structures in
which the group-I cations are intermixed in each layer. The
resulting band gap as function of concentration is shown in
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FIG. 2. �Color online� The band structure of AgGaS2 highlight-
ing the Ag d bands in red.
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FIG. 3. Variation of the lattice constants a and c and their ratio
�=c / �2a� with Ag concentration x. Circles represent calculated
points, squares represent experimental points from Ref. 5. The con-
tinuous lines are linear �for a� or quadratic fits �for � and c� to the
calculated data, and the dashed-dotted line in the top figure is what
would be obtained with linear � and a.
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Fig. 5 and compared with the previous results. Both calcula-
tions use the same c /a ratios. Although the individual points
differ slightly, the fitted quadratic curves are rather close to
each other and thus the band-gap bowing coefficient is found
to be almost the same as obtained from the layered systems.
This is somewhat surprising and indicates that there is little
room for band-gap engineering by structuring the materials
in segregate layers as opposed to a random alloy.

In both Figs. 4 and 5 we added a gap correction to the
LDA gaps which is taken to vary linear between the end
compounds. Thus, it does not contribute to the bowing pa-
rameter. Finally, we note that we find a minimum band gap at
x=0.33, closer to the results of Matsushita et al.5 than to
Choi et al.4 We note that within the quadratic approximation,
xmin=0.5 will only occur for infinite bowing parameter or
equal gaps on both ends, but of course the bowing could be
stronger than quadratic.

The origins of band-gap bowing have been studied previ-
ously by, e.g., Zunger and Jaffe.32 They found it useful to
decompose the band-gap bowing in a volume deformation
contribution, i.e., arising from the compression and expan-
sion of the two end compounds to the average lattice con-
stant of the alloy, a chemical substitution contribution at

fixed equilibrium lattice constant of the alloy, and a relax-
ation contribution. The volume deformation contribution can
be written as

bVD =
Eg�A,aeq

A � − Eg�A,aav�
x

+
Eg�B,aeq

B � − Eg�B,aav�
�1 − x�

,

�7�

with aeq
A,B the equilibrium lattice constant of each compound

A=AgGaS2 B=CuGaS2, and aav the average one for the al-
loy composition x. In the present case, this amounts to bVD
�0.2 eV.

The pure chemical mixing contribution could be defined
as

bCM =
Eg�A,aav�

x
+

Eg�B,aav�
�1 − x�

−
Eg�A1−xBx,aav,�av,uav�

x�1 − x�
,

�8�

in which the structural parameters are all linearly averaged
between the end compounds. Instead, we have calculated
bCM +brel including the relaxation contribution by replacing
� and u by their relaxed values in the final term. This term
then amounts to about 0.5 eV. This accounts for the total
bowing of about 0.7 eV. The relaxation contribution could
be split further in a contribution due to the relaxation of the
internal coordinate u and due to the c /a relaxation. We have
already seen here that the u relaxation gives rise to a change
in bowing parameter of about 0.2 eV.

C. Optical properties

In this section, we address the question of the variation of
the optical properties with concentration. First, we examine
the indices of refraction �at zero frequency�, i.e., well below
the band gap, but not including the lattice vibrational contri-
butions, as function of Ag concentration �Fig. 6�.

They are clearly seen to have an upward bowing. This is
not surprising since the dielectric function contains terms
inversely proportional to the interband transitions or the gap.
Nevertheless, the index of refraction is a somewhat more
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FIG. 4. Variation of the band gap with Ag concentration x, using
the layered structures. Squares, calculated points with linear c /a;
circles, calculated points with optimized nonlinear c /a. The solid
and dashed lines are quadratic fits.
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derived and averaged quantity, not affected only by the mini-
mal gap but by various interband transitions and one might
have expected some averaging out of this nonlinear effect.
Clearly, however, this is not the case in this strongly bowing
system. We also notice that the alloys stay negative birefrin-
gent over the whole concentration range, in agreement with
experiment. The birefringence in this case does not vary
much with concentration.

As far as the nonlinear optics is concerned, we first point
out that there is some anomaly here to begin with. Usually,
lower gap materials give higher ��2�; however, in this case,
the Cu compound has a lower ��2� in spite of having the
lower gap. As was pointed out in earlier papers,18,19 this is to
some extent related to a larger compensation between the
intra- and interband contributions in the Cu compound. The
origin of this is too complex to trace back all the way to the
band structures but since one of the major differences be-
tween the two materials is the position of the d bands, one
may expect this to play a role. It is, thus, rather difficult to
anticipate what will happen in the alloy system where both d
bands will be present.

The results for ��2� are shown in Table IV and in Fig. 7.
As previously pointed out,19 the reason for the lower ��2� in
CuGaS2 compared to AgGaS2 is that there is a larger com-
pensation between the inter- and intraband contributions.
Consistent with the larger gap in AgGaS2, both the interband
and intraband contributions in AgGaS2 are somewhat smaller
but their cancellation is less severe. The positive intraband
contribution and total ��2� show an upward bowing, while the
negative interband contributions shows a downward bowing.
Apparently, the maximum ��2� occurs for about 50%. It is
interesting to note that by alloying the system, one can
achieve a value of ��2� as high as 27, compared to 15 and 19
for the end compounds. This amounts to an improvement by

a factor of �1.5 compared to the highest value of the two
end compounds. Thus, alloying of these chalcopyrite crystals
could be useful to obtain higher values of ��2�.

V. CONCLUSIONS

Calculations were performed for Cu1−xAgxGaS2 alloys
based on the chalcopyrite structure with random and layered
structures in the group-I sublattice. A large band-gap bowing,
with bowing parameter b=0.7 eV, was obtained both for lay-
ered and special quasirandom structures. It was found, how-
ever, that the c /a ratio has an important contribution to the
bowing. The c /a ratio varies nonlinearly with concentration
itself and this apparently increases the bowing parameter
from about 0.5–0.7 eV. The pure volume deformation con-
tribution to the bowing was found to be only 0.2 eV. Thus,
the chemical mixing and relaxation contributions are the
dominant contributions to the band-gap bowing. The strong
band-gap bowing coefficient also leads to a nonlinear behav-
ior of the indices of refraction, which are found to exhibit an
upward bowing but with little change in birefringence. The
second-order optical susceptibility ��2� is also found to have
an upward bowing and reaches a maximum for a concentra-
tion near 50%.
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