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We examine the description of quantum beats in four-wave mixing with bulk semiconductors within the
framework of the Luttinger-Kohn model. An analytic expression for their dependence on the relative linear
polarization of pump and probe is derived, taking only the band structure and coherent interaction of the light
waves with the semiconductor medium into account. Herewith all features seen in experiments are very well
reproduced, e.g., the vanishing of the beats for an angle �0�76° between the polarizations of pump and probe.
Therefore, as opposed to general belief based on earlier theoretical work, no ad hoc exciton-exciton Coulomb
interaction has to be invoked to describe the observed phase and magnitude of the quantum beats for copolar-
ized or for cross-polarized test and pump pulses.
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I. INTRODUCTION

Polarization-dependent four-wave mixing �FWM� quan-
tum beats1–11 have been observed after simultaneous excita-
tions of two optical transitions, associated with heavy hole
and light hole. The signal magnitude and its beat phase were
found to depend on the relative linear polarization of the
pump and test pulses. This phenomenon has been analyzed
by applying semiconductor Bloch equations �SBE� for exci-
tations in a six-band model with broad spectrum pump-probe
pulses.1,2 These theoretical studies did not reproduce essen-
tial details of the observations. For instance, they predicted
identical FWM intensities for the two cases: pump and probe
having either parallel or perpendicular linear polarizations.
Subsequently, a successful explanation was claimed to be
given by the biexciton theory,3,5–11 invoking a phenomeno-
logical exciton-exciton coupling attributed to Coulombic in-
teractions. However, it has remained obscure why the SBE
would fail for the phenomenon in a semiconductor.

In the present work, we shall completely neglect the Cou-
lomb interaction between the charge carriers, which means
that no exciton-exciton Coulomb interaction is introduced.
We just solve the Heisenberg equations of motion for the
dipole to third order in the light-matter interaction only. This
is done within the framework of the Luttinger model in order
to correctly account for the structure of the band wave func-
tions. An analytic expression for the polarization dependence
of the quantum beats is then derived and shown to represent
surprisingly well all features seen in experiments. We shall
therefore conclude that FWM quantum beats can be ex-
plained as a purely coherent light-matter interaction effect,
without invoking a phenomenological exciton-exciton inter-
action.

In the Luttinger model for III-V semiconductors, one has,
ignoring split-off bands, for the lattice periodic functions of
the valence bands the degenerate heavy-hole states
�h1k�� , �h2k�� with energy Eh,k and the light-hole states
�l1k�� , �l2k�� with energy El,k. These are superpositions, de-
pending on the Bloch vector k�, of the p-like functions12

�3/2,3/2� = − �1/2��X↑� + i�Y↑�� ,

�3/2,1/2� = − �1/6��X↓� + i�Y↓�� + �2/3�Z↑� ,

�3/2,− 1/2� = �1/6��X↑� − i�Y↑�� + �2/3�Z↓� ,

�3/2,− 3/2� = �1/2��X↓� − i�Y↓�� , �1�

and can be written in a compact matrix multiplication form
as13

�
�h1k��

�h2k��

�l1k��

�l2k��
� =

1
�N�

− b R 0 − c*

− c 0 R b*

R b* c* 0

0 c − b R
��

�3/2,3/2�
�3/2,1/2�

�3/2,− 1/2�
�3/2,− 3/2�

� ,

�2�

with eigenenergies Ei, i=h , l, R=Hh−Eh=El−Hl, and N
=R2+ �c�2+ �b�2. Here, we use the conventional notations12

b = �3�̄�2�m0�−1�kx − iky�kz,

c = �3�̄�2�2m0�−1	�kx
2 − ky

2� − 2ikxky
 ,

Hh = − �2�2m0�−1	�1k2 − �2�2kz
2 − k�

2 �
 ,

Hl = − �2�2m0�−1	�1k2 + �2�2kz
2 − k�

2 �,
 , �3�

with �1, �2, and �̄ the empirical parameters of the Luttinger
model. The dependence of these wave functions �2� on the
Bloch vector k� makes the situation in a semiconductor essen-
tially different from that in atomic systems. The states of the
conduction band �c1k�� , �c2k�� are, for small momentum k�, ap-
proximated by the two spin-degenerate s-wave-like functions

�c1k�� = �S↑�, �c2k�� = �S↓� . �4�
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II. MODEL

The light-matter interaction is described in dipole ap-

proximation as −eE��t� ·r�. We consider linearly polarized laser
light in the x-y plane. The x component of the dipole opera-
tor that couples to x-polarized light is expressed as a super-
position of particle-hole operators for the band states with k�
dependent coefficients. Explicitly, omitting for a moment the
label k� on the operators �also, the coefficients are k� depen-
dent� and in units of M = �S�x�X�,

x = �
k�

	ac1
† ah1�− bu� + ac1

† ah2�wR − cu� + ac1
† al1�uR + wc*�

+ ac1
† al2�− wb� + ac2

† ah1�uc* − wR� + ac2
† ah2�− ub*�

+ ac2
† al1�− wb*� − ac2

† al2�wc + uR�
 + H.c., �5�

y = �
k�

i	ac1
† ah1�− bu� − ac1

† ah2�wRh + cu� + ac1
† al1�uRl − wc*�

+ ac1
† al2�wb� − ac2

† ah1�wRh + uc*� + ac2
† ah2�ub*�

+ ac2
† al1�− wb*� + ac2

† al2�− wc + uRl�
 + H.c., �6�

with u=−�1/2 and w=�1/6.
In four-wave mixing experiments, the incident light fields

are a pump field E�p and a much weaker probe �testing� field

E� t. We assume that the electric field strength is composed of

a �strong� pulse E�p�r� , t�, during a short time � around t=0,

and a test pulse E� t�r� , t�, preceding it, during a short time span
� around t=−�:

E��r�,t� = Êp	Ẽp�t�exp�iq�p · r� − �t� + c.c.


+ Êt	Ẽt�t�exp�iq� t · r� − �t� + c.c.
 . �7�

The envelop functions Ẽp and Ẽt are smoothly and slowly
varying in time and satisfy

�Ẽp�t�� � 0 for �t� � �, �Ẽt�t�� � 0 for �t + �� � � .

�8�

The pulse lengths must be long enough to justify the distinc-
tion between resonant and nonresonant terms, therefore, sev-
eral times the oscillation period of the fields:

2� 	
2


�

 TF. �9�

On the other hand, they should be short enough for the delay
time between the two pulses to be well defined on the time
scale of the beat time:

2� �
2


�h − �l

 TB. �10�

Otherwise, the whole beat phenomenon will be washed out
by the average over a too broad range of delay times. In the
experiments,2 one observed TB�1 ps, while TF is a few fem-
toseconds. So, pulses of roughly 100 fs are quite suitable.

We consider the case that the pump pulse E�p is linearly
polarized in x direction, while the linear polarization of the
test pulse makes an angle �0 with that of the pump pulse:

Êt= x̂ cos �0+ ŷ sin �0.
The detected intensity of the FWM signal is2

IFWM �� dt�P� FWM�t��2. �11�

Here, P� FWM is the component of the third order polarization

of second order in E�p and first order in E� t:

P� FWM � exp	i�2q�p − q� t� · r�
 . �12�

The Hamiltonian is the independent particle part,

H0 = �
i,k�

�Ecik�acik�
† acik� + Ehik�ahik�

† ahik� + Elik�alik�
† alik�� , �13�

plus the interaction of the carriers with the light field,

HI = − e	Ex�r�,t� · x + Ey�r�,t� · y
 , �14�

with x and y the operators of Eqs. �5� and �6�. The polariza-
tion is obtained by solving the Heisenberg equations of mo-
tion,

d

dt
P� =

1

i�
	P� ,H0 + HI
−, �15�

to third order in the light-matter interaction. For convenience
of the notation, we introduce

�hk = �Ecik� − Ehik��/� and �lk = �Ecik� − Elik��/� , �16�

which are independent of the band indices i due to the two-
fold degeneracy of the bands and independent of the direc-
tion of k� due to the assumed intrinsic isotropy of the bulk
semiconductor.

III. ANALYSIS

To illustrate some key features of the calculation, we first
consider the solution of a particle-hole operator at a time t�,

after the passage of the first �test� pulse E� t only. The inte-
grated equation of motion gives, for band indices r=1, 2 ,q
=1,2,

acrk�
† �t��ahqk��t�� =

e

i�
�

−


t�
dt�	Ẽt�t��ei�q� t·r�−�t�� + Ẽt

*�t��e−i�q� t·r�−�t��
ei�hk�t�−t���
s=1

2

	�hsk��Êt · r��crk��ahsk�
† �− 
�ahqk��− 
�

− �hqk��Êt · r��csk��acrk�
† �− 
�acsk��− 
�
 . �17�
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As the pulse is supposed to be sufficiently long, Eq. �9�, the
nonresonant term with rapidly oscillating integrand factor
exp�i��hk+��t�� is discarded. Without initial correlations,
the statistical expectation values of the operators are

�ahsk�
† �− 
�ahqk��− 
�� = �sqnhk� � 1,

�acrk�
† �− 
�acsk��− 
�� = �rsnck� � 0. �18�

We therefore obtain

acrk�
† �t��ahqk��t�� �

e

i�
e−iq� t·r��hqk��Êt · r��crk��ei�hkt�

��
−


t�
dt�Ẽt

��t��ei��−�hk�t�. �19�

Because of conditions �8� and �10�, we may also apply the
approximation

� dt�Ẽt
��t��ei��−�hk�t� � e−i��lk−�hk��� dt�Ẽt

��t��ei��−�lk�t�.

In the same fashion, the action of the pump pulse to second

order in E�p is treated as a twofold integral over times t� and
t� centered around t=0. We further introduce a relaxation or
dephasing constant � for the polarization, which simulates
the effect of Coulomb collisions. Treating all particle-hole
operators in Eqs. �5� and �6� in this way, we obtain, for the

FWM component of the polarization P� = x̂x+ ŷy,

P� FWM�t� �
e3

i�3ei�2q�p−q� t�·r��
�k�

ei��hk−����
t0

t

dt�Ẽp�t��

��
t0

t�
dt�Ẽp�t���

−


t�
dt�Ẽt

��t��e−��t+��

��e−i�hkt	A� + B� ei��hk−�lk��


+ e−i�lkt	B� + C� ei��hk−�lk��
� , �20�

with

A� = 2� d�k��
ijrq

�hi,k��r��cj,k���cj,k��x�hr,k���hr,k��Êt · r��cq,k��

��cq,k��x�hi,k�� ,

B� = 2� d�k��
ijrq

�hi,k��r��cj,k���cj,k��x�lr,k���lr,k��Êt · r��cq,k��

��cq,k��x�hi,k�� ,

C� = 2� d�k��
ijrq

�li,k��r��cj,k���cj,k��x�lr,k���lr,k��E� t · r��cq,k��

��cq,k��x�li,k�� .

Here, we split the summation over k� into a summation over
the modulus �k� and integration over its angles. The latter
determines the dependence of the FWM intensity on the

angle between the polarizations of the pulses represented by

the factor Êt ·r�. The matrix elements of the dipole compo-
nents are the coefficients in Eqs. �5� and �6� and the angle
integration can easily be done analytically. The detected in-
tensities of the FWM signal then become

I� = Fe−2�� 1

2�
�
�k�
�208 + 192 cos��hk − �lk��

+
4�2

4�2 + ��hk − �lk�2 	192 + 208 cos��hk − �lk��


+
2���hk − �lk�

4�2 + ��hk − �lk�240 sin��hk − �lk��� , �21�

I� = Fe−2�� 1

2�
�
�k�
�37 − 12 cos��hk − �lk��

+
4�2

4�2 + ��hk − �lk�2 	− 12 + 37 cos��hk − �lk��


−
2���hk − �lk�

4�2 + ��hk − �lk�217.5 sin��hk − �lk��� , �22�

in which the factor F contains the modulus squared of the
prefactor in Eq. �20� with integrals over the envelop func-
tions of the pulses. The summation �integration� extends over
the range of �k� values involved in the excitations that are in
experiments identified as heavy-hole and light-hole excitons.
As we do not describe excitons and their widths explicitly,
we adopt a summation over beat frequencies �hk−�lk in a
small range of �k� values. The value of the relaxation param-
eter � can also be clearly read off from the experimental
decay of the FWM signal as a function of the delay time �.
With this, one verifies that the first two terms in expressions
�21� and �22� dominate. For an angle �0 between both polar-
izations, we therefore find the approximation

I��0� � e−2���
�k�

�	208 + 192 cos��hk − �lk��
cos2 �0

+ 	37 − 12 cos��hk − �lk��
sin2 �0� . �23�

This is our main result. Due to the summation of �k� in a
small region, the beat frequency will not be completely
sharp, leading to some smoothing as a function of the delay
time �, resulting in Fig. 1. The figure and Eq. �23� show three
features that are also observed in experiment.2 Firstly, the
FWM signal is stronger in the case of parallel polarization
than in case of cross polarization by roughly a factor of 5, in
good agreement with the experiment of Bennhardt et al.2 and
in contrast to earlier theoretical expressions,1 which pre-
dicted equal strength in both cases. Secondly, we do indeed
find a beat behavior as a function of the delay time which has
a maximum at zero delay time for the case of parallel polar-
ization and an opposite oscillating behavior for orthogonal
polarization. Thirdly, we find that the beats are more pro-
nounced for parallel polarization than for orthogonal polar-
ization. The beats vanish for tan2��0�=16, that is, for �0

�76°. In view of the various approximations made, this is in
remarkable agreement with the observations in Ref. 2 All
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these features seen in experiments are reflected in Eq. �23�
without invoking other mechanisms than just the coupling of
the carrier �polarization� dynamics with the light fields. This
is in contrast to, for instance, Ref. 2, where the data were
interpreted by introducing a coupling parameter ascribed to
disorder.

One may remark that the analytic derivation given here
involves the Luttinger-Kohn model wave functions �2� for
isotropic semiconductor, whereas experiments were done
with quantum well material. In the latter, the wave functions
may be modified by strain13 and by a confining potential. The
similarity between our analytic result 	Eq. �23�
 and the ex-
perimental findings indicates, however, that the essentials of
the k� · p� Luttinger-Kohn model structure of heavy-hole and
light-hole wave functions still play an important role in
quantum wells with a thickness of a few tens of nanometers.

IV. CONCLUSION

We have examined the description of quantum beats in
four-wave mixing �FWM� with bulk semiconductors within
the framework of the Luttinger-Kohn model. An analytic ex-
pression for their dependence on the relative linear polariza-
tion of pump and probe is derived, taking only the band
structure and coherent interaction of the light waves with the
semiconductor medium into account. Herewith, all features
seen in experiments are very well reproduced. Therefore, as
opposed to general belief based on earlier theoretical work,
no ad hoc exciton-exciton Coulomb interaction has to be
invoked to describe the observed phase and magnitude of the
FWM quantum beats.
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FIG. 1. Dependence of quantum beats in four wave-mixing
�FWM� on the relative �linear� polarization angle �0 between pump
and probe pulses, within the Luttinger-Kohn model. Plotted is the
integrated FWM signal as a function of delay time � between probe
and pump, assuming a beat period of 1 ps. The �upper� dash-dotted
line for is for parallel polarization, �0=0, and the �lowest� dashed
line is for orthogonal polarization, �0=
 /2. The beats vanish for
�0=76° �dotted line�; the full lines are for intermediate angles
0.32
 �upper� and 0.45
 �lower�.
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