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We present dynamical mean-field theory �DMFT� results for the local spectral densities of the one- and
two-particle response functions for the infinite-dimensional Hubbard model in a magnetic field. We look at the
different regimes corresponding to half-filling, near half-filling, and well away from half-filling, for interme-
diate and strong values of the local interaction U. The low energy results are analyzed in terms of quasiparticles
with field-dependent parameters. These renormalized parameters are determined by two different methods,
both based on numerical renormalization group �NRG� calculations, and we find good agreement. Away from
half-filling, the quasiparticle weights, z��H�, differ according to the spin type �=↑ or �=↓. Using the renor-
malized parameters, we show that DMFT-NRG results for the local longitudinal and transverse dynamic spin
susceptibilities in an arbitrary field can be understood in terms of repeated scattering of these quasiparticles.
We also check Luttinger’s theorem for the Hubbard model and find it to be satisfied in all parameter regimes
and for all values of the magnetic field.

DOI: 10.1103/PhysRevB.76.035118 PACS number�s�: 71.10.Fd, 71.27.�a

I. INTRODUCTION

A feature of strongly correlated electron systems, such as
heavy fermions, is their sensitivity to an applied magnetic
field, which makes a magnetic field a useful experimental
probe of strong correlation behavior. A manifestation of this
sensitivity is the very large paramagnetic susceptibility ob-
served in these systems. In terms of Fermi liquid theory, the
large paramagnetic susceptibility can be interpreted as due to
quasiparticles with exceptionally large effective masses.
These large effective masses arise from the scattering of the
electrons with the enhanced spin fluctuations induced by the
strong local Coulomb interactions. An applied magnetic field
suppresses the spin fluctuations causing a reduction in the
effective masses, which can be seen experimentally in de
Haas–van Alphen measurements.1,2 Not only do the effective
masses depend on the magnetic field, they may also differ for
the spin up and spin down electrons.3,4 Another feature that
reflects the enhanced sensitivity to an applied field is the
metamagnetic behavior, where the spin susceptibility ��H� in
a finite field H increases with the field strength such that
d��H� /dH�0, which has been observed in some heavy fer-
mion compounds.5 This can be understood in terms of an
increase in the effective mass for larger fields opposite to the
effect described above. It is related to the fact that strong
magnetic fields can induce localization in narrow conduction
bands as predicted theoretically.6–8 This has been observed
experimentally, for instance, in quasi-two-dimensional or-
ganic conductors.9

A lattice model which can mimic many of these effects is
the single band Hubbard model. It has played a similar role
for lattice models as the Anderson model for impurity mod-
els, being the simplest model of its type, where the interplay
of kinetic energy and strong local interactions can be studied.
Here, we are interested in studying the magnetic response of
this model for different interactions and fillings. The calcu-
lations are based on the dynamical mean-field theory
�DMFT� with the numerical renormalization group �NRG� to
solve the effective impurity problem. We present results for

the local spectral densities and spin dynamics in parameter
regimes at half-filling and for finite hole doping, where dif-
ferent responses to the magnetic field can be observed.

We interpret the low energy results in terms of quasipar-
ticles which are characterized by field-dependent renormal-
ized parameters. The approach is similar to that used
earlier10,11 for the Anderson model in a magnetic field. We
deduce the renormalized parameters by two different meth-
ods based on the NRG calculations. These parameters can be
used to define a free quasiparticle density of states, which
gives the asymptotically exact spectral behavior for low en-
ergy. The effects of the interactions between these quasipar-
ticles can be taken into account using a renormalized pertur-
bation theory �RPT�.12,13 It was shown earlier that a very
good description of the T=0 spin and charge dynamics for
the Anderson model in the Kondo regime can be obtained by
summing the RPT diagrams for repeated quasiparticle
scattering.14 Here, we extend these RPT calculations for the
spin dynamics to the lattice case and show that we can also
understand the DMFT-NRG for the local dynamic spin sus-
ceptibilities in terms of quasiparticle scattering.

II. DYNAMICAL MEAN-FIELD APPROACH AND
RENORMALIZED PARAMETERS

The Hamiltonian for the Hubbard model in a magnetic
field in the grand canonical formulation is given by

H� = �
i,j,�

�tijci,�
† cj,� + H.c.� − �

i�

��ni� + U�
i

ni,↑ni,↓, �1�

where tij are the hopping matrix elements between sites i and
j, and U is the on-site interaction; ��=�+�h, where � is the
chemical potential of the interacting system, and the Zeeman
splitting term with external magnetic field H is given by h
=g�BH /2, where �B is the Bohr magneton. We are dealing
with the one s-band Hubbard model here, so no coupling of
the field to angular momentum states has to be included.

From Dyson’s equation, the Green’s function Gk,���� can
be expressed in the form

PHYSICAL REVIEW B 76, 035118 �2007�

1098-0121/2007/76�3�/035118�12� ©2007 The American Physical Society035118-1

http://dx.doi.org/10.1103/PhysRevB.76.035118


Gk,���� =
1

� + �� − ���k,�� − ��k�
, �2�

where ���k ,�� is the proper self-energy and ��k�
=�ke−k·�Ri−Rj�tij. The simplification that occurs for the model
in the infinite-dimensional limit is that ���k ,�� becomes a
function of � only.15,16 In this case, the local Green’s func-
tion G�

loc��� can be expressed in the form

G�
loc��� = �

k
Gk,���� =� d�

D���
� + �� − ����� − �

, �3�

where D��� is the density of states for the noninteracting
model �U=0�. It is possible to convert this lattice problem
into an effective impurity problem.17 We introduce the dy-
namical Weiss field G0,�

−1 ��� and write the Green’s function in
the form

G�
loc��� =

1

G0,�
−1 ��� − �����

, �4�

which is equivalent to

G0,�
−1 ��� = G�

loc���−1 + ����� . �5�

The Green’s function G�
loc��� can be identified with the

Green’s function G���� of an effective Anderson model by
reexpressing G0,�

−1 ��� as

G0,�
−1 ��� = � + � + �h − K���� , �6�

so that

G���� =
1

� − �d� − K���� − �����
, �7�

with �d�=−��. The function K���� plays the role of a dy-
namical mean field describing the effective medium sur-
rounding the impurity. In the impurity case in the wide band
limit, we have K����=−i	. Here, as can be seen from Eqs.
�5� and �4�, K���� is a function of the self-energy ����� and
hence depends on �. As this self-energy is identified with the
impurity self-energy, which will depend on the form taken
for K����, it is clear that this quantity has to be calculated
self-consistently. Starting from an initial form for K����,
����� is calculated using an appropriate “impurity solver”
from which G�

loc��� can be calculated using Eq. �3�, and a
new result for K���� from Eqs. �5� and �6�. This K����
serves as an input for the effective impurity problem and the
process is repeated until it converges to give a self-consistent
solution. These equations constitute the DMFT, and further
details can be found in the review article of Georges et al.17

We need to specify the density of states D��� of the non-
interacting infinite-dimensional model, which is usually
taken to be either for a tight-binding hypercubic or Bethe
lattice. Here, we take the semielliptical form corresponding
to a Bethe lattice,

D��� =
2


D2
�D2 − �� + �0�2, �8�

where 2D is the bandwidth, with D=2t for the Hubbard
model, and �0 the chemical potential of the free electrons.
We choose this form, rather than the Gaussian density of
states of the hypercubic lattice, as it has a finite bandwidth.

Before considering in detail the methods of solving these
equations, we look at the form of these equations in the low
energy regime, where we can give them an interpretation in
terms of renormalized quasiparticles. We assume that we can
expand ����� in powers of � for small � and retain terms to
first order in � only. Substituting this expansion into the
equation for the local Green’s function gives

G�
loc��� = z�� d�

D��/z��
� + �̃0,� + O��2� − �

, �9�

where

�̃0,� = z���� − ���0�� and z� = 1/�1 − ����0�� . �10�

We have assumed the Luttinger result that the imaginary part
of the self-energy vanishes at �=0. As the Green’s function
in Eq. �9� has the same form as in the noninteracting system,
apart from the weight factor z�, we can use it to define a free

quasiparticle propagator, G̃0,�
loc ���,

G̃0,�
loc ��� =� d�

D��/z��
� + �̃0,� − �

. �11�

We then interpret z� as the quasiparticle weight. We will
refer to the density of states �̃0,���� derived from this

Green’s function via �̃0,����=−Im G̃0,���+ i�� /
 as the free
quasiparticle density of states �DOS�. For the Bethe lattice,
the quasiparticle DOS takes the form of a band with renor-
malized parameters,

�̃0,���� =
2


D̃�
2
�D̃�

2 − �� + �̃0,��2, �12�

where D̃�=z�D. We can also define a quasiparticle occupa-
tion number ñ�

0 by integrating this density of states up to the
Fermi level,

ñ�
0 = �

−


0

d��̃0,���� . �13�

With a generalization of Luttinger’s theorem18 for each spin
component, it is possible to relate this free quasiparticle oc-
cupation number ñ�

0 to the expectation value of the occupa-
tion number n� in the interacting system at T=0. Using the
quasiparticle density of states in Eq. �12�, we can rewrite Eq.
�13� as

ñ�
0 = �

−





d�D������� − ���0� − �� , �14�

where ���� is the Heaviside step function and D��� as given
in Eq. �8�. Assuming Luttinger’s result for each spin compo-
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nent, the right-hand side of Eq. �14� is equal to n�. We then
have the result,

ñ�
0 = n�, �15�

that the occupation for electrons of spin � is equal to the
number of free quasiparticle of spin �, as calculated from
Eq. �13�. It should be noted that there is no simple generali-
zation of the h=0 result, �−�0=��0�, in the spin polarized
case.

To solve the DMFT equations, we need an impurity
solver, and the most commonly used are the quantum Monte
Carlo, the exact diagonalization �ED� method, and the NRG,
all of which have advantages and disadvantages. Here, we
use the NRG approach as it is the most accurate method for
calculations at T=0 and for the low energy excitations. There
has been a DMFT study of the static properties of a half-
filled Hubbard model in a magnetic field using the ED
method by Laloux et al.7 The focus of our paper here, how-
ever, is rather different so there is little overlap with this
earlier work but, where there is, we make comment and com-
pare with their results.

To evaluate the renormalized parameters, z� and �0,�,
which specify the form of the quasiparticle DOS, we use two
different methods based on the NRG approach. The first
method is a direct one, where we use the NRG to determine
the self-energy ����� and the chemical potential ��, and
then substitute into Eq. �10� for z� and �̃0,�. The second
method is indirect and makes no reference to the self-energy.
It is based on the quasiparticle interpretation of the NRG low
energy fixed point of the effective impurity. To explain this
approach, we need to consider in a little detail how the NRG
calculations are carried out.

In the NRG approach,19 the conduction band is logarith-
mically discretized and the model then converted into the
form of a one-dimensional tight-binding chain, coupled via
an effective hybridization V� to the impurity at one end. In
this representation, K����= �V��2g0,����, where g0,���� is the
one-electron Green’s function for the first site of the isolated
conduction electron chain. As earlier, we expand the self-
energy ����� to first order in �, and then substitute the result
into Eq. �7�. We then define a free quasiparticle propagator,

G̃0,����, for the impurity site as

G̃0,���� =
1

� − �̃d� − �Ṽ��2g0,����
, �16�

where

�̃d� = z���d� + ���0��, �Ṽ��2 = z��V��2. �17�

In the DMFT approach, we identify G̃0,���� with the local
quasiparticle Green’s function for the lattice �Eq. �11��,

G̃0,�
loc ��� = G̃0,���� , �18�

which specifies the form of g0,���� in Eq. �16� and yields
�̃0,�=−�̃d�. By fitting the low energy single-particle excita-
tions found in the NRG results to the poles of this Green’s

function, we can deduce the parameters �̃d� and Ṽ�, as has

been explained in an earlier work.20 The quasiparticle weight

z� is then obtained from the relation z�= �Ṽ� /V��2 in Eq. �17�,
and �̃0,� from �̃0,�=−�̃d�.

Using the DMFT-NRG approach, we can calculate the
spectral densities for the local two-particle response func-
tions as well as single-particle ones. The main interest here
will be in the local longitudinal and transverse dynamic spin
susceptibilities, �l��� and �t���. Having calculated the
renormalized parameters, which describe the free quasiparti-
cles, we can compare the DMFT-NRG results for the dy-
namic susceptibilities with the corresponding quantities cal-
culated via a renormalized RPA-like treatment that takes
account of repeated quasiparticle-quasihole scattering. This
approach has been described fully elsewhere for the Ander-
son impurity model.11,14 The calculations here proceed along
similar lines as for the effective impurity model. The equa-
tion for the transverse susceptibility is

�t��� =
�̃↑↓���

1 − Ũt�h��̃↑↓���
, �19�

where �̃↑↓��� is the transverse susceptibility calculated using
the free quasiparticle density of states given in Eq. �12�, and
Ũt�h� is the irreducible quasiparticle interaction in this chan-
nel. For the Anderson model, it was possible to calculate
Ũt�h� in terms of the renormalized on-site interaction Ũ.
Though it is possible in the lattice case to calculate Ũ, we
have no way of deducing Ũt�h� from it since unlike in the
impurity case we do not have an exact expression for �t�0� in
terms of Ũ. We determine it to fit the DMFT-NRG result for
Re �t��� at the single point �=0. The corresponding result
for the longitudinal susceptibility �l��� is

�l��� =
�̃↑↑��,h� + �̃↓↓��,h� + 4Ũl�h��̃↑↑��,h��̃↓↓��,h�

2�1 − 4Ũl
2�h��̃↑↑��,h��̃↓↓��,h��

,

�20�

where the susceptibilities �̃����� are those for the free qua-

siparticles, and Ũl�h� is determined by fitting the DMFT-
NRG result for Re �l�0�.

Having covered the basic theory, we are now in a position
to survey the results for the Hubbard model in different pa-
rameter regimes.

III. RESULTS AT HALF-FILLING

We present the results at half-filling for three main param-
eter regimes where we find qualitatively different behaviors.
The results in all cases will be for a Bethe lattice with a
bandwidth W=2D=4, setting t=1 as the energy scale. The
local spectral densities are calculated from Eq. �3� using the
NRG deduced self-energy.21 In the evaluation of all NRG
spectra, we use the improved method22,23 based on the com-
plete Anders-Schiller basis.24 In concentrating on the field
induced polarization, we do not include the possibility of
antiferromagnetic ordering. The regimes are �a� a relatively
weak coupling regime where U is smaller than the band-
width, �b� an intermediate coupling regime with W�U
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�Uc, where Uc is the value at which a Mott-Hubbard gap
develops in the absence of a magnetic field �Uc	5.88�,25

and �c� a strong coupling regime with U�Uc.

A. Weakly correlated regime

The first plot in Fig. 1 gives the spectral densities for the
majority spin electrons �↑��� for various magnetic field val-
ues in the weakly correlated regime, U=2. We can clearly
see that, for increasing magnetic field, more and more spec-
tral weight is shifted to lower energies �the opposite happens
for the other spin component, which is not displayed here�.
Above h
1.0, the system is completely polarized, 2m=1.
This extreme high field limit corresponds to a band insulator.
There is a gap of the magnitude 	g�h�=2h+U−W between
the upper �minority� and lower �majority� bands, which both
have the semielliptical form as for the noninteracting system
with W=4. At this point, dynamic renormalization effects
have vanished. The inverse of the quasiparticle weight z��h�,
which corresponds to the enhancement of the effective mass
m�

*�h�=m /z��h�, is shown as a function of h in Fig. 2. We

calculated the values of z��h� using the two methods de-
scribed earlier. At half-filling, we have z↑�h�=z↓�h� and we
have plotted the average of the values for �=↑ and �=↓,
which is compared for the two methods. The deviation for
the values for the different spins is only due to small numeri-
cal inaccuracies and is less than 2%. The method based on
analyzing the excitations of the impurity fixed point �FP� is
only applicable in the metallic regime and when the system
is not completely polarized. From these results shown in Fig.
2, it can be seen that the two sets of values are in good
agreement. The values of z��h� increase from about 0.75 to
1, which corresponds to a progressive “derenormalization”
of the quasiparticles with increasing field, as observed earlier
for the impurity model.10 Since the interaction term in the
Hubbard model acts only for opposite spins, it is clear that
there is no renormalization when the system is completely
polarized with one band fully occupied and the other empty.
The expectation value of the double occupancy �n↑n↓� de-
creases with increasing field, which further illustrates why
the interaction term becomes less important for larger fields.

We can also follow the field dependence of the renormal-
ized chemical potential �̃0,��h�, as plotted in Fig. 3. In the
case of particle-hole symmetry, we have �̃0,↑�h�=−�̃0,↓�h�,
and similar to the case for the quasiparticle weight we have
displayed the average of the up and down spin values for
each method. Also, here the deviation within one method is
only due to small numerical inaccuracies and less than 2%.

Again, the agreement between the two methods of calcu-
lation is very good over the full range of magnetic fields.
Mean-field theory is valid for very weak interactions, so we
compare our results for �̃0,��h� for U=2 with the mean-field
value �̃0,�

MF=�+�h−Un−�
MF in Fig. 3. The results coincide for

h=0, when �̃0,�
MF=0 and when the system becomes fully po-

larized at large field values, �̃0,�
MF=−��U+h�, but in general

�̃0,�
MF��̃0,��h�. We also compare the mean-field �MF� result

for the field dependence of the magnetization m�h� with the
one obtained in the DMFT calculation in Fig. 4. The general
behavior is similar, but the mean-field theory without quan-
tum fluctuations overestimates the magnetization, as one
would expect.
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FIG. 1. �Color online� The local spectral density for the majority
spin �↑��� for U=2 and various fields h.
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FIG. 2. �Color online� The inverse of the quasiparticle weight
z��h� calculated from the impurity fixed point �FP� and directly
from the self-energy and the magnetization m�h� for U=2 and vari-
ous fields h.
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FIG. 3. �Color online� The renormalized chemical potential
�̃0,��h� calculated from the impurity fixed point �FP� and directly
from the self-energy for U=2 and various fields h.
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B. Intermediate coupling regime

In the next plot in Fig. 5, where U=5, we show typical
behavior of the local spectral density in the intermediate cou-
pling regime.

Similar to the weak coupling regime, we find a shift of
spectral weight towards lower energy for the majority spin.
There is, however, a difference in the way this happens due
to the initial three peak structure, namely, the quasiparticle
peak in the middle gets narrower for increasing field and
finally vanishes in the polarized phase. The quasiparticle
weight, which is shown in Fig. 6, reflects this behavior by
decreasing to zero with increasing field signaling heavy qua-
siparticles. Here, as in the weak coupling case, we plot the
average of the spin up and down results for each method.
The deviations can be larger here, especially close to the
metamagnetic transition.

When the material is polarized, z��h� reverts to 1, which
corresponds to the band insulator as before. This approach to
the fully polarized localized state in high fields contrasts with
that found in the weak coupling regime. It gives rise to the
metamagnetic behavior in this parameter regime. To illus-
trate further the different response to a magnetic field, the
real part of the local longitudinal dynamic spin susceptibility

�l�� ,h� as a function of � is shown for various values of
h in Fig. 7. It can be seen that the local susceptibility
�loc�h�=Re �l�0,h� in this regime increases with h so that
��loc�h� /�h�0. This can also be seen in the curvature of the
magnetization shown in the inset of Fig. 6. This behavior is
characteristic of a metamagnetic transition and related to the
magnetic field induced metal-insulator transition. Laloux et
al.7 find the metamagnetic behavior in a similar parameter
regime. There, a comparison is made with results from the
Gutzwiller approximation, which gives such a behavior al-
ready for smaller values of the interaction, and we refer to
their paper for details.

We can also check the Luttinger theorem in a magnetic
field �Eq. �15�� by comparing the values of ñ�

0 , deduced from
integrating the quasiparticle density of states, with the value
of n� calculated from the direct NRG evaluation in the
ground state. The results are shown in Fig. 8. It can be seen
that there is excellent agreement between the results of these
two different calculations, ñ�

0 =n�, so that Luttinger’s theo-
rem is satisfied for all values of the magnetic field in this
intermediate coupling regime.

Having deduced the renormalized parameters of the qua-
siparticles from the NRG results, we are now in a position to
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FIG. 4. The magnetization in the mean-field approximation
compared with the DMFT result for U=2 and for the full range of
magnetic fields h.
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FIG. 5. �Color online� The local spectral density for the majority
spin �↑��� for U=5 and various fields h.
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FIG. 6. �Color online� The inverse of the quasiparticle weight
z��h� calculated from the impurity fixed point �FP� and directly
from the self-energy for U=5 and various fields h. The inset shows
the magnetization m�h�.
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FIG. 7. �Color online� The real part of the local longitudinal
dynamic spin susceptibility for U=5 and various fields h.
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test how well we can describe the low energy dynamics of
this model in a magnetic field in terms of a renormalized
perturbation theory. It is of interest first of all to see how the
free quasiparticle density of states �̃0,���� multiplied by
z��h� compares with the full spectral density �����. In Fig. 9
�upper panel�, we make a comparison in the zero magnetic
field case.

We see that the quasiparticle band gives a good represen-
tation of the low energy peak in ����� and, as expected, does
not reproduce the high energy features. These, however, to a
fair approximation can be described by the mean-field solu-
tion �MF��� weighted with a factor 1−z�, as can be seen in
Fig. 9 �upper panel�. A case with a finite magnetic field h
=0.15, where the peaks in the density of states of the two
spin species are shifted due to the induced polarization rela-
tive to the Fermi level, is shown in Fig. 9 �lower panel�. The
figure focuses on the region at the Fermi level and one can
see that the free quasiparticle density of states describes well
the form of ����� in the immediate vicinity of the Fermi
level. It is to be expected that the frequency range for this
agreement can be extended if self-energy corrections are in-
cluded in the quasiparticle density of states using the renor-
malized perturbation theory as shown in the impurity case.26

We now compare the NRG results for the longitudinal and
transverse local dynamic spin susceptibilities for the same
value U=5 and a similar range of magnetic field values with
those based on RPT formulas �20� and �19�. In Fig. 10 �upper
panel�, we show the imaginary part of the transverse spin
susceptibility calculated with the two different methods.

It can be seen that the RPT formula gives the overall form
of the NRG results and precisely fits the gradient of the NRG
curve at �=0. Some of the relatively small differences be-
tween the results might be attributed to the broadening factor
used in the NRG results which gives a slower falloff with �
in the higher frequency range and a slightly reduced peak.
We get similar good agreement between the two sets of re-
sults for the same quantity for the case with a magnetic field
h=0.15, shown in Fig. 10 �lower panel�.

In Fig. 11, where we give both the real and imaginary
parts of the transverse susceptibility for h=0.19, we see that

this overall agreement is maintained in the large field regime
where we get the metamagnetic behavior. The shapes of the
low energy peaks for both quantities are well reproduced by
the RPT formulas. Note that the peak in the real part is not at

�=0, so it is not fixed by the condition that determines Ũt,
but nevertheless is in good agreement with the NRG results.
Due to their very small values, it becomes difficult to calcu-
late z��h� as the system approaches localization for larger
fields. In this regime, as z��h�→0 the free quasiparticle den-
sity of states will converge to a delta function. Self-energy
corrections to the free quasiparticle propagators, which were
used in the calculation of �̃�,�����, will become increasingly
important as this limit is approached. Once the system has
undergone the localization transition and is completely po-
larized, however, we find that the values �̃� �z��h�=1� de-
duced from the self-energy give a quasiparticle density of
states coinciding with the DMFT-NRG result of an upper and
lower semicircular bands.

Results for the longitudinal susceptibility are shown in
Figs. 12 and 13. In Fig. 12, we give the values for the real
part as a function of � for h=0 and h=0.15. Here the peak
height, which is at �=0, is fixed by the condition which
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determines Ũl. The widths of the peaks in the two sets of
NRG results, however, are given reasonably well by the RPT
equations. The imaginary part of the longitudinal susceptibil-
ity obtained by the two methods is given in Fig. 13 for h
=0.15. Again, there is overall agreement between the two
sets of results. The slight undulations seen in the RPT results

are due to the sharp cutoff in the band edges in the free
quasiparticle density of states. For larger values of h, the
agreement with the NRG results is not as good as that as for
the transverse susceptibility, and the central peak in the real
part of the RPT results narrows more rapidly with h than in
those obtained from the direct NRG calculation.

C. Strong coupling regime

Finally, we consider the strong coupling regime with U
�Uc, where for h=0 the spectral density has a Mott-
Hubbard gap so that for half-filling the system is an insulator.
The electrons will be localized with free magnetic moments
coupled by an effective antiferromagnetic exchange J

 t2 /U. In fields such that h�J, the system polarizes com-
pletely, as can be seen in Fig. 14, where we show the total
density of states ����=�↑���+�↓��� for h=0 and h=0.2.

For smaller fields, such that h�J, we do not find a con-
vergent solution to the DMFT equations, and the iterations
oscillate between local states which are either completely full
or empty. We interpret this as due to the tendency to antifer-
romagnetic order which in a weak field, due to the absence of
anisotropy, will be almost perpendicular to the applied field
in the x-y plane with a slight canting of the spins in the z
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direction �spin flopped phase�. In this calculation, no allow-
ance has been made for this type of ordering, but this state
can be well described using an effective Heisenberg model
for the localized moments.

IV. RESULTS AWAY FROM HALF-FILLING

After the extensive discussion of the behavior of the Hub-
bard model in a magnetic field at half-filling, we want to
compare these results with the situation where the system is
doped with holes. As is well known, doping retains the me-
tallic character of the system and one does not find a para-
magnetic metal-insulator transition anymore. Thus, we do
not find distinct regimes �a�–�c� any longer. To illustrate the
characteristics of the magnetic response for the doped sys-
tem, we focus on two cases, one at quarter filling and one
very close to half-filling.

A. Quarter filled case

First, we compare the results in the intermediate coupling
regime with U=5 at half-filling with those at quarter filling,
x=0.5. In the latter case, the Fermi level falls in the lower
Hubbard peak in the spectral density. To see how the band
changes with increasing magnetic field, we plot the dens-
ity of states for both spin types, for the majority spin elec-
trons �Fig. 15, upper panel� and for the minority spin elec-
trons �Fig. 15, lower panel�, for various values of the mag-
netic field.

In the majority spin case, the lower peak gains spectral
weight on the low energy side and the weight in the upper
peaks decreases with the increase of the field. For the fully
polarized case �h�0.4�, the Fermi level, which is indicated
by a dotted line, lies in the middle of the lower band, which
has the noninteracting semicircular shape. The opposite fea-
tures can be seen in the minority spin case, with the spectral
weight in the lower peak below the Fermi level decreasing
and the weight in the upper peak increasing. Thus, the in-
crease of spectral weight below the Fermi level for the ma-
jority spin electrons, and the decrease for the minority spin
electrons, can be seen to be due to a change of band shape

rather than a simple relative shift of the two bands, which
would be the case in mean-field theory. In the fully polarized
state, there are no minority states below the Fermi level and
the upper peak in the majority state density of states has
disappeared.

The corresponding values for the inverse of the quasipar-
ticle weight 1 /z��h� are shown in Fig. 16 for a range of
fields. As noted in the impurity case,11 the quasiparticle
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FIG. 14. �Color online� The total local spectral density ���� for
U=6 for h=0 �dashed line�, Mott insulator, and h=0.2 �full line�,
fully polarized band insulator.
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weights differ for the two spin types with z↑�h��z↓�h�. The
values of z��h� have been calculated, as described earlier,
both from the energy levels �FP� and from a numerical de-
rivative NRG derived self-energy. There is reasonable agree-
ment between the two sets of results, and the small differ-
ences can be attributed to the uncertainty in the numerical
derivative of the NRG self-energy. As observed in the case
for the nonsymmetric Anderson model,11 there is an initial
decrease of z↓�h� with an increase of h, whereas z↑�h� in-
creases monotonically. This implies that the effective mass of
the majority spin electrons decreases to its bare value, while
the effective mass of the minority spin electrons does not
decrease much. The reason for that is that in the polarized
system, the up electrons cannot interact through the Hubbard
interaction term, whereas a down spin electron can interact
with all the up spin electrons leading to an enhanced mass.
The field dependence of the magnetization is also shown in
Fig. 16 and is similar to the half-filled case with a weak
interaction �U=2�. We have calculated, but do not show, the
corresponding occupation values for ñ�

0 which again agree
well with the values of ñ�, confirming Luttinger’s theorem in
a magnetic field.

We give two examples of results for the susceptibilities
for this case. In Fig. 17 �upper panel�, we plot the real and
imaginary parts of the transverse susceptibility. Despite the
large value of U, we can see that the peak heights are very
much reduced compared with those seen in the half-filled
case for U=5. The peak widths are also an order of magni-
tude larger as can be seen from the � scale. The RPT results
reproduce well the overall features to be seen in the NRG
results, but we note some discrepancies in the shape of the
curve at larger frequencies, where the RPT shows more pro-
nounced features. The real and imaginary parts for the lon-
gitudinal susceptibility are shown in Fig. 17 �lower panel�.
Again all the low energy features are reproduced in the RPT
results and differences are mainly seen for tails at larger
energies. In this regime, apart from the overall factor of 2,
there is less difference between the transverse and longitudi-
nal susceptibilities than at half-filling.

Our conclusion from these results, and from calculations
with other values of U at quarter filling, is that when there is
significant doping, the behavior in the field corresponds to a
weakly correlated Fermi liquid, very similar to that at half-
filling in the weak interaction regime. The only remarkable
difference in the presence of a magnetic field is the spin
dependence of the effective masses, as shown in Fig. 16.

B. Near half-filling

Very close to half-filling and for large values of U, we
have a qualitatively different parameter regime. Here, the
system is metallic but we can expect strong correlation ef-
fects when U is of the order or greater than Uc due to the
much reduced phase space for quasiparticle scattering. We
look at the case with 5% hole doping from half-filling and a
value U=6, which is just greater than the critical value for
the metal-insulator transition. We show the spectral density
of states for the majority spin state �Fig. 18, upper panel� and
for the minority spin state �Fig. 18, lower panel� for various
values of the magnetic field.

There is a clear sharp quasiparticle peak for h=0 at the
Fermi level �marked by a dotted line� at the top of the lower
Hubbard band. As in the quarter filling case with U=5, we
see a similar transfer of spectral weight with increasing field
to below the Fermi level for the majority spin case and above
the Fermi level for the minority spins. For large fields, when
the system is completely polarized the Fermi level lies close
to the top of the lower band in the majority spin spectrum.
One can see in the lower panel that there is still a sharp
narrow peak in the spectral density of the minority spin
states above the Fermi level, though the spectrum for the
majority states below the Fermi level is that of the noninter-
acting system. A spin up electron added above the Fermi
level feels no interaction as the system is completely spin up
polarized so these electrons see the noninteracting density of
states. On the other hand, a spin down electron above the
Fermi level interacts strongly with the sea of up spin elec-
trons. The self-energy due to scattering with particle-hole
pairs in the sea creates a distinct resonance in the down spin
density of states just above the Fermi level. Just such a reso-
nance was predicted by Hertz and Edwards27 for a Hubbard
model in a strong ferromagnetic �fully polarized� state.

The field dependence of the inverse of the quasiparticle
weight is presented in Fig. 19. Again, we find reasonable
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agreement between the two methods of calculation for these
quantities. The magnetization as a function of h is shown as
an inset in the same figure. The behavior of z↑�h� and z↓�h�
as a function of h contrasts sharply with the behavior found
for the metallic state at half-filling with U=5 shown in Fig.
6. For zero field, the quasiparticle weight has a very similar
value in both cases. At half-filling, the tendency of the mag-
netic field to induce localization resulted in values of z↑�h�

and z↓�h� �z↑�h�=z↓�h�� which decrease sharply as a function
of h. In the 5% doped case with U=6, the system must
remain metallic and the quasiparticle weights, z↑�h� and
z↓�h�, both increase in large fields though their values differ
significantly. The quasiparticle weight for the minority spin
electrons decreases initially with the increase of h, whereas
that for the majority spins z↑�h� increases monotonically and
quite dramatically with h. When the system becomes fully
polarized �h
0.26�, the up spin electrons become essentially
noninteracting, z↑�h�=1, whereas there is a strong interaction
for a down spin electron and we find in this case z↓�h�

0.15. The interpretation for this is as given in the previous
paragraph for the spectral densities. On further increasing the
magnetic field, z↓�h� also tends to 1, but relatively slowly, as
can be seen in Fig. 19. Note that the results in this regime are
based on the calculation from the self-energy, as the method
based on the fixed point analysis becomes difficult to apply
in this regime.

Laloux et al.7 compared the quasiparticle weight at half-
filling for the infinite-dimensional model with results from
the Gutzwiller approximation. The values for the infinite-
dimensional model were found to be significantly smaller
than the Gutzwiller predictions; the ratio is more than a fac-
tor of 2 for U�4 and zero field. Spałek and co-workers4,28

have made predictions based on the Gutzwiller approach for
situations away from half-filling in finite field, z↑�z↓. As in
the study of Laloux et al.,7 our results for z↑ and z↓ are
significantly smaller than the Gutzwiller predictions.

For the fully polarized case �h=0.26�, we show the com-
parison of the weighted free quasiparticle density of states
z��̃0,���� with the full spectrum ����� in Fig. 20. Note that
the parameters �̃0,� and z� in �̃0,���� are purely derived from
the NRG self-energy in this case. We can see that the differ-
ent values for the field-dependent quasiparticle weight z��h�
for up and down spins lead to remarkably different quasipar-
ticle band shapes. With z↑
1, the majority spin quasiparticle
band is essentially that of the noninteracting density of
states. The very much smaller value z↓ leads to a narrow
quasiparticle band above the Fermi level. The low energy
flank of this quasiparticle band describes well the narrow
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peak seen in the spectral density just above the Fermi level.
To describe these strong asymmetries in the spectral densities
near half-filling, we need z↑�z↓, which contrasts with the
cases at half-filling such as in Fig. 9 where always z↑=z↓.
This suggests a discontinuous behavior of the renormaliza-
tion factors z� on the approach to half-filling.

Also for this case, we show plots for the two susceptibili-
ties for a field of h=0.15. In Fig. 21 �upper panel�, we give
the real and imaginary parts of the transverse susceptibility.
The low energy features are seen on an � scale an order of
magnitude smaller than that for quarter filling due to the
much stronger renormalization effects in this regime. There
is excellent agreement both with the peak positions and
shapes between the NRG and RPT results for both quantities.
This is also seen to be the case for the real and imaginary
parts of the longitudinal susceptibility shown in Fig. 21
�lower panel�, though the peak in the real part can be seen to
be marginally narrower in the RPT results.

At the end of this section, we conclude that already a
small doping of the system is enough to maintain a metallic
character even for very strong interaction. Although the zero
field spectra of the half-filled case for U=5 and the small
doping case with U=6 display very similar zero field behav-
ior, i.e., a strongly renormalized quasiparticle band with
similar z�, no field induced localization transition occurs for
finite doping and no metamagnetic behavior is observed in
the latter case.

V. SUMMARY

In this paper, we have used the DMFT-NRG method to
calculate the spectral densities for one-particle and two-
particle response functions for the infinite-dimensional Hub-
bard model in a magnetic field, for the qualitatively different
filling regimes and interaction strengths. The results extend
earlier calculations of Laloux et al.7 using the ED method,
which were restricted to the case of half-filling. Our results
there are on the whole consistent with this earlier work, ex-
cept in the insulating regime for weak fields, where we could
not find a convergent solution of the DMFT equations. We
attributed this to the fact that in this regime, the magnetic
field is smaller than the exchange coupling between the lo-
calized spins so that the ground state would be one in which
the spins would have a canted antiferromagnetic ordering in
the plane perpendicular to the field.

Well away from half-filling, we find a magnetic response
similar to the weakly correlated case even for large values of
U. The large phase space for quasiparticle scattering in this
regime leads to modest renormalization effects. Here, we
find spin dependent quasiparticle weights, z↑�h��z↓�h�. This
implies spin dependent as well as field-dependent effective
masses, which have been discussed earlier in the works of
Spałek and co-workers4,28 and Riseborough.29 The calcula-
tions by Spałek and co-workers were based on a Gutzwiller28

and a mean-field slave boson approach.4 We can make a
comparison of our results �Sec. VI B� near half-filling, x
=0.95, with theirs in the later work.4 We find a qualitatively
similar behavior with the majority spin effective mass de-
creasing with h, but quantitatively there are differences. The
field dependence of the minority spin effective mass 1/z↓�h�
shows a very slow increase initially in both sets of results,
but the large field behavior is quite different. As seen in Fig.
19, we find a significant decrease in 1/z↓�h� for large fields,
whereas the corresponding quantity in Fig. 3 in Ref. 4 in-
creases.

The strong magnetic field dependence of the effective
masses found in the calculations by Riseborough is based on
the assumption that the system is close to a ferromagnetic
transition �paramagnon theory�. However, DMFT calcula-
tions for the Hubbard model find that any ferromagnetism in
the Hubbard model only occurs in a very small region of the
parameter space near half-filling and for very large values of
U.30 Our results are well away from this regime and the large
effective masses obtained here can be attributed to the ten-
dency to localization rather than the tendency to ferromag-
netism.

Using the field-dependent renormalized parameters z��h�
and �̃0,��h� in the RPT formulas for the dynamic local lon-
gitudinal and transverse spin susceptibilities, we found
agreement with the overall features to be seen in the DMFT-
NRG results for these quantities. In the case of the transverse
spin susceptibility, excellent agreement was found in all the
metallic regimes and for all values of the magnetic field con-
sidered, except in the high field regime at half-filling as the
localization point is approached, where consistent values of
the renormalized parameters are difficult to calculate. The
comparison of the RPT results with those from NRG was
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also excellent for the longitudinal dynamic susceptibility in
the weaker field regime h�0.15 but less good for higher
fields, h�0.15.

In all metallic parameter regimes, a spin dependent Lut-
tinger theorem in the form n�= ñ�

0 , the number of particles
equals the number of quasiparticles, was found to be satisfied
for all strengths of the magnetic field. In this form, it even
holds in the fully polarized insulating state.

Phenomena such as field-dependent and spin dependent
effective masses and metamagnetic behavior have been
observed experimentally in several heavy fermion com-
pounds.2,3,5,31 The Hubbard model, however, being a one
band model is not an appropriate starting point to make a
quantitative comparison with the heavy fermion class of ma-
terials. A periodic Anderson model with a two band structure
and including the degeneracy of the f electrons would be a
better model to describe these materials. Field-dependent ef-
fects in this model have been studied by several techniques,
modified perturbation theory,32 exact diagonalization,33 1 /N
expansion,34 and variational approach.35 The approach used
here could be generalized to the periodic Anderson model

but restricted to the nondegenerate case and N=2 as it is
computationally too demanding in the NRG to deal with
higher degeneracy. The Hubbard model at half-filling has
been used as a lattice model to describe the strongly renor-
malized Fermi liquid 3He.6,7 However, the metamagnetic be-
havior predicted for relevant parameter regime is not seen
experimentally.36 In Sec. VI B, we found for small doping
large effective masses but no metamagnetic behavior. This
raises the possibility that the weakly doped Hubbard model
could serve as a basis for interpreting the experimental re-
sults for liquid 3He.
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