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We consider the relationship between correlations and entanglement in gapped quantum systems, with
application to matrix product state representations. We prove that there exist gapped one-dimensional local
Hamiltonians such that the entropy is exponentially large in the correlation length, and we present strong
evidence supporting a conjecture that there exist such systems with arbitrarily large entropy. However, we then
show, under an assumption on the density of states which is believed to be satisfied by many physical systems
such as the fractional quantum Hall effect, that an efficient matrix product state representation of the ground
state exists in any dimension. Finally, we comment on the implications for numerical simulation.
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I. INTRODUCTION

Finding the ground state of a local quantum Hamiltonian
is one of the basic problems in physics. Efficient numerical
techniques, however, only exist for certain special cases.
Quantum Monte Carlo, for example, is most effective for
systems which lack a sign problem. Fortunately, in one di-
mension, the extremely powerful density matrix renormaliza-
tion group1 algorithm is available, at least for systems with
an excitation gap. This algorithm is based ultimately on
knowledge of the structure of the ground state: it is not an
arbitrary wave function, but rather has the special form of a
matrix-product state.2 Recently, a very promising algorithm
capable of finding higher-dimensional matrix-product states
to approximate the ground state of fairly arbitrary Hamilto-
nians has been developed,3 and appears to offer, at least for
certain systems, the possibility of studying systems that can-
not be attacked by any other numerical technique.

All this work raises the following important question: Are
ground states of such gapped, local quantum systems, in-
deed, close to matrix product states? A basic consequence of
such a description is an area law: the reduced density matrix
of the ground state wave function on some subvolume of the
entire system has an entropy that is bounded by some con-
stant times the surface area of that volume, while critical
systems in one dimension may exhibit logarithmic
corrections.4 One advance5,6 was to show that for all such
Hamiltonians, the Hamiltonian could be written as a sum of
local terms such that the ground state wave function was
close to an eigenvector of each term separately, allowing one
to use certain generalized matrix-product states. Unfortu-
nately, these states required a hierarchical construction, join-
ing blocks of the system together at successively longer
length scales, and hence, do not provide a construction of the
desired local matrix-product states. Further, this work left
open the question of the number of such states required in
each block, precisely the question of whether an area law
holds or not.

Let X ,Y be sets of sites in the system. An area law would
follow from the assumption that the reduced ground state
density matrix of the system �X�Y on the set of sites X�Y
approximately factorizes into a product of density matrices,
�X � �Y, if X ,Y are separated by some distance from each

other, as discussed in the Appendix. As a partial result to
showing this factorization, it was shown that a gapped sys-
tem with a local Hamiltonian has exponentially decaying
correlations,7,8 and so for any operators OX ,OY with support
on X ,Y we have Tr�OXOY�X�Y��Tr�OXOY�X � �Y�, up to
exponentially small corrections in the distance between X
and Y. However, the exponential decay of correlation func-
tions is not directly useful in showing the factorization of
density matrices, as there are so-called data hiding states on
bipartite systems for which correlations are very small de-
spite a high degree of entanglement.9,10

In this paper, we provide two results relating entangle-
ment entropy, correlations, and a spectral gap. The first result
is, in a sense, a negative result, showing that even in a sys-
tem with short-range correlations, the entanglement entropy
may be large. The second result is a positive result, giving a
condition obeyed by many systems which guarantees that the
ground state can be approximately represented in a matrix-
product form, which is in many ways stronger than simply
having an area law especially in higher dimensions.

To show the first result, we provide two examples of sys-
tems with large entropy compared to the correlation length.
The first example proves that there exist one-dimensional
systems for which the entropy is exponentially large in the
correlation length. The second example provides strong evi-
dence to support a conjecture that for any, arbitrarily large, S
there exist one-dimensional systems with an entanglement
entropy equal to S, and with a Hilbert space dimension on
each site D equal to 3 or 4 and a correlation length bounded
above by some S-independent constant of order unity. This
result contradicts the naive expectation that a system with
short-range correlations obeys an area law and, in particular,
has an entanglement entropy proportional to the correlation
length in one dimension. One handwaving argument for this
naive expectation is that only the degrees of freedom close to
the surface of the subvolume can be correlated with the de-
grees of freedom on the other side. However, the problem
with this naive argument is that there can be truly many-body
entanglement of a form that cannot be detected by measuring
correlation functions of just a few degrees of freedom.

However, all these systems involve long-range interac-
tions so that the entropy is still of order log�D� times the
Lieb-Robinson group velocity13 divided by the energy gap.
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Thus, this result leaves open the question of whether the
entropy obeys an area law in a system with short-range in-
teractions. These results point out one important fact in any
attempt to find an area law: one must consider more than
two-point correlation functions, and must instead consider
measures which are more sensitive to entanglement, such as
the trace norm distance Tr���XY −�X � �Y��.

The second result shows that under a certain assumption
on the density of states believed to be satisfied by many
important physical systems such as the 1/3 fractional Hall
effect �in this case, defined for a lattice system of electrons�,
we show that systems in arbitrary dimensions can be effi-
ciently represented as higher-dimensional matrix-product
states. This result is based on a recent result5 that the density
matrix at a nonzero temperature can be represented as a
matrix-product density matrix.11

II. ONE-DIMENSIONAL MODEL SYSTEM
AND THE EXPANDER GRAPH STATE

In this section, we construct the one-dimensional model
systems described above. Following Refs. 2 and 12, we con-
struct the system by first writing its ground state as a matrix
product and then defining the Hamiltonian as a sum of pro-
jection operators. We write the ground state wave function
for this V site system as

��s1,s2, . . . ,sV� = Tr„A�s1�A�s2� ¯ A�sV�… , �1�

where 1�si�D is the state of the system on site i and where
the A�si� are k�k dimensional matrices, with k denoting the
dimension of the matrix-product state. We normalize so that

�
s=1

D

A�s�A†�s� = 1. �2�

This state �1� is the ground state of a Hamiltonian,
H=�iPi,i+1,. . .,i+l, where Pi,i+1,. . .,i+l projects onto the set of
states ���,�� on sites i , i+1, . . . , i+ l defined
by ��,��si ,si+1 , . . . ,sl�=����A�si���1

A�si+1��1�2
¯A�si+l��l�

,
where A�si���, with 1�� ,��k, are matrix elements of
A�si�. Here, the interaction length l is of order logD�k�,2,12

and hence, the Lieb-Robinson13 group velocity v of this sys-
tem is of order l.

A sufficient condition2,12 for this Hamiltonian to have a
unique ground state with a gap and to have a finite correla-
tion length is that the linear map from k�k matrices to k
�k matrices,

E�M� = �
s=1

D

A�s�MA†�s� , �3�

have one nondegenerate eigenvalue equal to unity, and then
have a gap to the next largest �in absolute value� eigenvalue.
From Eq. �2�, the eigenvector with unit eigenvalue is propor-
tional to the unit matrix.

We now propose a specific choice of A�s� such that E�M�
has a gap in its spectrum and such that k is exponentially
large in D. We pick

A�s� =
1

	D
U�s� , �4�

where U�s� is a unitary matrix depending on s. Thus, Eq. �2�
is automatically satisfied. We then pick U�s� following two
different rules, one rule for 1�s�D /2 and one for D /2
	s�D.

For 1�s�D /2, we pick U�s� to be a diagonal matrix
with matrix elements

U�s��� = 
��F��,s� , �5�

where F�� ,s� is some function such that F�� ,s�= ±1 for all
� ,s. We pick F�� ,s� such that for any two � ,� with ���,


�
s=1

D/2

F��,s�F��,s�
 � D/4. �6�

The following question arises: For which values of k and
D is it possible to satisfy Eq. �6�? Define the vector v� to be
a vector in a D /2 dimensional vector space by v�

= �F�� ,1� /	D /2 ,F�� ,2� /	D /2 , . . . ,F�� ,s� /	D /2�. Then,
to satisfy Eq. �6�, we must find k vectors v� in a D /2 dimen-
sional vectors space such that the inner product between v�

and v� is less than 1/2 for ���, and hence, the angle be-
tween the vectors v� ,v� is greater than �=cos−1�1/2�. It is
known14,15 that for large D, it is possible to do this for k
�exp�cD /2� such vectors for some constant c�0, and
hence, k may be exponentially large in D.

For D /2	s�D, we pick U�s� to be the matrix with ma-
trix elements

U�s��� =
1

k
�
a=0

k−1

exp
2
ia
�� − ��

k
�F̂�a,s� , �7�

and we pick F̂ such that for any two a ,b with a�b,


 �
s=D/2+1

D

F̂�a,s�F̂�b,s�
 � D/4. �8�

Again, this is possible to do so as long as k�exp�cD /2�.
Equation �6� implies that off-diagonal elements of M are

reduced by the map E�M�, while Eq. �6� implies that off-
diagonal elements of M in the Fourier basis are also reduced
by this map. We now use this idea to show that the map
E�M� does, indeed, have a gap between the unit eigenvalue
and the next largest eigenvalue. The completely positive map
E�M� is a Hermitian linear operator from k�k matrices, to
k�k matrices, and hence, the eigenvalue which is second
largest in absolute value can be found by taking the maxi-
mum over all traceless matrices M with Tr�M†M�=1 of
�Tr(M†E�M�)�. Let E1�M�=�s=1

D/2A�s�MA†�s� and let E2�M�
=�s=D/2+1

D A�s�MA†�s� so that E�M�=E1�M�+E2�M�. Let Md

denote the diagonal part of such a matrix M and let Pd
=Tr�Md

†Md�. Then, from Eq. �6�, we have �Tr(M†E1�M�)�
� Pd /2+ �1− Pd� /4. Let Mf be the matrix with elements
Mf

ab= �1/k����M�� exp�−2
i�a�−b�� /k� and let Mdf de-
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note the diagonal components of this matrix Mf with Pdf
=Tr�Mdf

† Mdf�. Then, from Eq. �8�, we have �Tr(M†E2�M�)�
� Pdf /2+ �1− Pdf� /4.

We now rewrite Pd , Pdf as sums of squares of traces of
k�k matrices. Let Md,x, for x=1, . . . ,k−1, be traceless, di-
agonal matrices such that

Tr�Md,x
† Md,y� = 
x,y . �9�

Let Mdf ,x, for x=1, . . . ,k, be matrices with matrix elements
�Mdf ,x���= �1/k�exp�2
ix��−�� /k� so that

Tr�Mdf ,x
† Mdf ,y� = 
x,y . �10�

Note that

Tr�Md,x
† Mdf ,y� = 0. �11�

Now, for a traceless matrix M, Pd=�x=1
k−1�Tr�Md,x

† M��2, while
Pdf =�x=1

k �Tr�Mdf ,x
† M��2. Now consider the space of k�k ma-

trices as a vector space, with an inner product given by the
trace of two matrices; Eqs. �9�–�11� imply that the matrices
Md,x ,Mdf ,y form a set of orthonormal vectors in this
vector space. While these are not a complete set of vec-
tors, it still follows that Tr�M†M���x=1

k−1�Tr�Md,x
† M��2

+�x=1
k �Tr�Mdf ,x

† M��2, so that for a traceless matrix M with
Tr�M†M�=1, we have Pdf + Pd�1. Therefore, for any trace-
less matrix M, we have �Tr(ME�M�)��3/4, showing the ex-
istence of a gap as claimed.

In the case of this construction, we showed the existence
of a gap in the spectrum of E�M�, which implies2,12 that the
correlation length is bounded by a constant, independent of
D and k. Since the eigenvector of the map with unit eigen-
value is proportional to the identity matrix, 1, for a suffi-
ciently long chain, the entanglement entropy between two
halves of the chain is equal to −Tr(�1/k�1)loge(�1/k�1)
=loge�k�. This construction allows us to take k exponentially
large in D and still have a gap in the spectrum of E�M�, as
claimed, and hence, the wave function has short-range cor-
relations with a correlation length of order unity. Alternately,
one can represent each site on this system with D states by
log2�D� sites with 2 states on each site. In this case, the
correlation length of the system is of order log2�D�, while the
entropy is of order loge(exp�cD /2�)=cD /2, which is expo-
nentially large in the correlation length as claimed. While
this is surprising, since one might believe that the entropy
should be proportional to the correlation length, it must be
noted that this construction, as far as we know, does require
a Hamiltonian with a long interaction range.

We now present an alternative construction which im-
proves on the first construction, since it gives an arbitrarily
large k for a fixed D, along with evidence that it also leads to
a gap in E�M�. Hence, this provides a system with a Hilbert
space dimension on each site of order unity, a correlation
length of order unity, and yet arbitrarily large entropy. We
take D=4, and for s=1,2, we take the matrices U�s� to be of
the form

U�s� = P�s���s� , �12�

where ��s� is a diagonal matrix with entries equal to ±1, and
P�s� is a permutation matrix �that is, it has exactly one in

each row and column, with all other entries equal to zero�.
We then take U�3�=U�1�† and U�4�=U�2�†. We set P�3�
= P�1�† and P�4�= P�2�†. We now fix k at an arbitrary value,
and then argue that by an appropriate choice of P and �, it is
possible to have a gap in E�M�.

Let P�s ,�� denote the value of j such that the matrix
element P�s���=1. That is, P�s ,�� is the result of applying
the given permutation to �. The operator E�M� is block di-
agonal: by acting on a diagonal matrix, it produces a diago-
nal matrix, and by acting on an off-diagonal matrix, it pro-
duces an off-diagonal matrix. We study the spectrum of E�M�
in each block separately, starting with the action on a diago-
nal matrix. Let M�� ,�� be the matrix with matrix elements
M�� ,����=
��
��. We have

E„M��,��… =
1

4�
s=1

4

M„P�s,��,P�s,��… . �13�

Equation �13� can be represented by a diffusion process on a
graph. The graph has vertices labeled by �=1, . . . ,k, and
with an undirected edge from vertex � to � if for some s
=1,2 we have P�s ,��=� or P�s ,��=�. This graph has fixed
coordination number equal to 4, although some vertices may
have more than one edge connecting them if for some s� t
we have P�s ,��= P�t ,��.17 Then, Eq. �13� implies that in the
first block, E�M� has the same spectrum as 1/4 times the
adjacency matrix of the given graph. However, it is known
that it is possible to find graphs with k vertices and fixed
coordination number q, for any q�2, such that 1 /q times the
adjacency matrix has a unit eigenvalue and then a gap to the
next eigenvalue which is bounded below by some
k-independent constant.16 Indeed, it has been shown that the
gap between the unit eigenvalue and the next eigenvalue of
the adjacency matrix of a random graph generated using the
above procedure with a random choice of permutations P is,
with probability tending to unity as the size k of the graph
tends to infinity, bounded below by some k-independent
constant.18 Graphs with such a gap in the adjacency matrix
spectrum are called expander graphs, and we refer to the
state with the appropriate choice of permutation matrices and
diagonal matrices ��s� discussed below as the expander
graph state.

Now we consider the spectrum of E�M� in the second
block. We have

E„M��,��… =
1

4
�
s=1

2

M„P�s,��,P�s,��…��s�����s���

+ �
s=3

4

M„P�s,��,P�s,��…��s�P�s,��P�s,��

���s�P�s,��P�s,��� . �14�

While it is possible to prove the existence of a gap in the
spectrum of E�M� in the first block for suitable matrices P,
we have to apply some physical intuition to show that the
second block has all eigenvalues separated from unity by a
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constant. If all the ��s��� were equal to +1, then the second
block would have one unit eigenvalue, with eigenvector pro-
portional to a matrix with all off-diagonal entries equal to
unity and all diagonal entries equal to zero. In this case, Eq.
�14� would describe two correlated random walks on the
given graph, one for each index � and �. Then, for a random
choice of the permutations P, we would expect that, for simi-
lar reasons to the existence of a gap in the diagonal sector,
there would typically be a gap to the next eigenvalue in the
off-diagonal sector as any correlations between � and �
would be short lived under this random process. We instead
randomly set each ��s��� equal to ±1, independently for
each �. In this case, we expect that random choices of the �
and P will, due to the random signs, cause all eigenvalues in
the second block to be separated from unity by at least some
k-independent gap with probability tending to unity as k
tends to infinity.

We have tested this numerically by generating random
permutations and random �. We picked permutations with
the additional restriction that each permutation had exactly
one cycle of length k. We performed tests on systems with k
up to 50 and found that there was always one unit eigenvalue
and a gap in the rest of the spectrum, with the most negative
eigenvalue separated by a gap from −1, and further, that the
spectrum away from the unit eigenvalue exhibited a scaling
collapse, such that the density of eigenvalues appeared to be
roughly equal to k2 times some k-independent function.

In the above, we considered D=4 so that we could take
the matrices U�3�=U�1�† and U�4�=U�2�† and arrive at a
real spectrum for E�M�. If we take D=3, and choose U�s�
= P�s���s� for s=1,2 ,3 with P�1�, P�2�, and P�3� random
permutations and ��1�, ��2�, and ��3� random diagonal ma-
trices with entries ±1, then for the first block of E�M� we
arrive at the adjacency matrix of a directed graph of degree
3. In this case, E�M� may have a complex spectrum. How-
ever, we still expect there to be a gap.

III. MATRIX-PRODUCT STATES FROM THERMAL
DENSITY MATRICES

In this section, we build on the result in Ref. 5 that it is
possible for local Hamiltonians to approximate the thermal
density matrix by a matrix-product operator to show, subject
to an assumption on the density of states, that the ground
state is close to a matrix-product state. We start by consider-
ing the case of a unique ground state and a gap �E to the
next excited state, and then generalize to multiple ground
states. The idea is as follows: we approximate the thermal
density matrix, Z−1 exp�−�H� for a Hamiltonian H, with Z
=Tr�exp�−�H��, by a matrix-product density operator up to
some small error in trace norm. For large enough �, the
thermal density matrix becomes a good approximation in
operator norm to �0= ��0���0�, the projector onto the ground
state �0 of the given Hamiltonian. We then make an assump-
tion on the number of low energy states of the Hamiltonian,
which then allows to show that the thermal density matrix is
a good approximation in trace norm to the projector, and
hence, that our matrix-product operator is a good approxima-

tion in trace norm to the projector. This means that, in any
complete orthonormal basis, there must exist some state such
that the matrix-product operator acting on the basis is close
to the ground state; picking this basis to be a factorized basis
gives us a matrix-product state which is close to the ground
state.

We consider a regular lattice �this condition can be weak-
ened to include other lattices� of V sites labeled 1,2,…, V,
with a metric d�i , j� between sites i and j, and we consider a
Hamiltonian H which is a sum of terms Hi supported on the
sites within distance R of i for some range R and with op-
erator norm �Hi� bounded by some constant J. Then, it was
shown that for any � and for any regular d-dimensional lat-
tice of V sites, there exists a matrix-product density operator
approximation to the thermal density matrix of the form

���,lproj� = �
��k�

�1��1��2��2� ¯ �V��V�

�F1��� j��F2��� j�� ¯ FV��� j�� , �15�

where Tr(��� , lproj�)=1, where each operator �i��i� acts only
on site i, where � j are some set of indices, with range 1
�� j ��max for all j, and where each function Fi depends
only on � j with d�i , j�� lproj, and such that

Tr„����,lproj� − Z−1 exp�− �H��… � � . �16�

Tr��¯ �� denotes the trace norm and

lproj � R log�V�/J�� , �17�

with the constant of proportionality depending on the exact
lattice structure, and with

�max � Dlproj
d �/J. �18�

Now, we want to introduce a condition on the density of
states of a given Hamiltonian that will lead to a bound on
how accurately the thermal density matrix approximates the
ground state projection operator. To motivate this bound,
suppose that we have a Hamiltonian of the following particu-
larly simple form: H=�E�iOi, where Oi is an operator on
site i with one zero eigenvalue and D−1 eigenvalues equal to
unity. Then, there exists one state with all spins down and
with energy 0. There exist �D−1�V states, each with one spin
up and with energy �E. There exist �D−1�2V�V−1� /2 states
with energy 2�E, and so on. Thus, we have the bound that
��m�, which we define to be the number of states with energy
Ei with m�E�Ei	 �m+1��E, obeys

��m� � �cV�m/m!, �19�

for c=D−1.
In general, however, many gapped systems will obey as-

sumption �19� for some constant c. All free fermion systems
with a gap in the single particle spectrum will obey this
assumption. Physically, we expect that a lattice realization of
the fractional Hall effect at an incompressible filling fraction
will also obey this. In the rest of this section, we show that if
a system does obey this assumption, then it is possible to
write the ground state as a higher-dimensional matrix-
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product state, providing bounds on the error as a function of
the dimension of the matrix-product state. Using this as-
sumption,

Tr��Z−1 exp�− �H� − �0�� � 2�
m=1

�
�exp�− ��E�cV�m

m!

= 2�exp�exp�− ��E�cV� − 1� ,

�20�

and hence, for any �, for �� log(cV / log�1+� /2�) /�E, we
have

Tr��Z−1 exp�− �H� − �0�� � � . �21�

The operator ��� , lproj� can be written in the form
��� , lproj�=O†O for some operator O. We write an orthonor-
mal basis of states for the system by vectors ��v��, where v�
= �v1 ,v2 , . . . ,vV� with 1�vi�D. The vector ��v�� denotes
the state where site i is in state vi. This is a factorized basis
of states for the system. Then, ��� , lproj�=��v��O

†��v����v��O.
Let

pv�
0 = ��v��O�0O†��v�� �22�

and

pv�
� = ��v��OO†��v�� − pv�

0. �23�

Thus, pv�
0 is equal to �O†�v��2 times the probability that the

state O†�v� / �O†�v�� is in the ground state �0, with pv�
� equal

to �O†�v��2 times the probability that the state is not in the
ground state. Then �v��pv�

0 + pv�
��=1 and ��Tr���−�0��� �1

−�v�pv�
0�+�v�pv�

�, so �v�pv�
��� /2. Hence,

�
v�

pv�
�

�
v�

pv�
0

�
�/2

1 − �/2
. �24�

Hence, there must exist some w� such that

pw�
�

pw�
0 �

�/2

1 − �/2
. �25�

Then,

��mps� �
1

	pw�
0 + pw�

�
O†��w� � �26�

is a normalized matrix-product state by the assumption that
O is a matrix-product operator. Further,

���0��mps��2 =
pw�

0

pw�
0 + pw�

� �
1

�1 + ��/2��/�1 − ��/2��
= 1 −

�

2

+ O��2� , �27�

so that �mps is close to the state �0.
Thus, for any �, we can find a matrix-product state ��mps�

such that Eq. �27� holds and such that lproj grows logarithmi-
cally in V, with �max growing as an exponential of log�V�d+1.

This is a matrix-product state with bond variables that con-
nect sites separated by a distance up to lproj. By introducing
auxiliary variables, this can be written as a state with bond
variables that connect nearest neighbor sites only, with a

bond variable scaling as �max
lproj
d

, which is exponentially large in
log�V�2d+1. Although this is a rather high power of log�V�, it
is still significantly better than the number of bond variables
required to represent an arbitrary state, which scales expo-
nentially in V. Further, we have imposed a very strict re-
quirement on our matrix-product state: it must be able to
approximate �0 with an overlap of order unity. In many
applications, one is interested only in approximating local
observables of �0 such as the energy, and hence, a much
smaller number of bond variables may suffice.

This derivation can be readily generalized to the case of
multiple ground states, labeled ��0

�a��, a=0, . . . ,n−1. Let
�0=n−1�a=1

n ��0
a���0

a�, and assume that there exists a �
=O†O with Tr���=1 and Tr���−�0����. Then, define pv�

0 as
above and again find an appropriate ��w� 0

�, so that ��mps,0�
= �1/	pw� 0

0 + pw� 0

� �O†��w� 0
� is close to some state �0

�0� in the

ground state subspace. Then, define �1=�0−n−1��0
�0����0

�0��
and define pv�

1 = ��v��O�1O†��v��. One can then find a state
��w� 1

� such that ��mps,1�= �1/	pw� 1

1 + pw� 1

� �O†��w� 1
� is close to

some state ��0
�1�� in the ground state subspace, with

��0
�1� ��0

�0��=0. Repeating this n times, one can then approxi-
mate a set of states that span the ground state subspace with
a set of matrix product states, ��mps,a�, a=0, . . . ,n−1.

We note that in the procedure discussed in this section, the
thermal density matrix is introduced simply as a means of
approximating the projection operator by a local operator.
Other approximate projection operators could have been
used, such as

1
	2
tq

�
−�

�

dt exp�iHt�exp
−
�t/tq�2

2
� , �28�

for some tq, where the approximation becomes more accu-
racte, but also less local, as tq increases. In this case, given
the entropy assumption �19�, we would need to take tq of
order log�V� /�E to ensure that the approximate projection
operator was close in trace norm to the exact projection op-
erator.

IV. DISCUSSION

We have shown that it is possible to find systems for
which the entanglement entropy between a given subvolume
and the rest of the system is much larger than expected from
the correlation length. However, we have also shown that,
subject to assumption �19� which is satisfied by many physi-
cal systems, matrix products give a good representation of
the ground state even in higher-dimensional systems, provid-
ing additional reason to consider the use of these states as a
numerical technique.

Equation �19� has an interesting physical interpretation. If
there is a gap and this equation is satisfied, then the system is
not “glassy” in that at temperatures of order �E / log�V� the
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system is in its ground state with probability of order unity.
Consider, however, the following system, related to an ex-
ample of Terhal and DiVincenzo: a one-dimensional system
with D=3, represented by a spin-1 degree of freedom on
each of V different sites. The Hamiltonian is −�i��Si

z�2

−1/2���Si+1
z �2−1/2�+ �1/V��i�Si

z�2. The ground state has
spins with Sz=0 and energy equal to −V /4. However, there
are 2V states, with each spin having Sz= ±1 and with energy
−V /4+1. Thus, this system does not satisfy Eq. �19� for any
fixed, V-independent c. However, the related Hamiltonian
−�i��Si

z�2−1/2���Si+1
z �2−1/2�+�i�Si

z�2 has the same ground
state and does satisfy Eq. �19�. In general, for any classical
system, meaning that the Hamiltonian is a sum of operators
which are diagonal in some factorized basis, the ground state
will trivially be a matrix-product state. Thus, we conjecture
that for any gapped local Hamiltonian, it is possible to find a
related Hamiltonian close to the same ground state and
which satisfies Eq. �19�, and hence, has an approximate
matrix-product ground state.
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APPENDIX: DENSITY MATRIX FACTORIZATION
AND AN AREA LAW

The goal in this section is to relate the factorization of the
density matrix to the entropy of the reduced density matrix.
Suppose X is an arbitrary set and let Y be the set of all sites
i such that dist�X , i�� l for some l. Let B denote the set of
sites j which are neither in X nor in Y. In this section, we
assume that for some state �0 there is a bound

Tr���XY − �X � �Y�� � � �A1�

for some � for the given X ,Y and derive a bound on the
entropy of the reduced density matrix �X. The case that �
=0 was considered is in Ref. 9, where it was shown that this
implies that the density matrix �X has at most D�B� nonzero
eigenvalues. In this appendix, we consider the case of a non-
zero �.

The wave function �0 can be written as

��0� = �
�

A�����B
�� � ��XY

� � , �A2�

where ��XY� is a wave function on X�Y and ��B� is a wave
function on the set B, where B is the set of all sites i such
that i�X and i�Y, and where ��B

� ��B
��= ��XY

� ��XY
� �=
�,�.

Then,

�XY = �
�

�A����2��XY
� ���XY� . �A3�

Then, �XY is equal to the weighted sum of at most D�B� dif-
ferent density matrices ��XY

� ���XY�, each of which corre-
sponds to a pure state. Define P to be the projection operator
onto the space spanned by these D�B� different states �XY

� .
Then, from Eq. �A1�, we have Tr(��XY −�X � �Y�P)�� so,
therefore, Tr�P�X � �Y��1−�.

The operator �X may be diagonalized, so that

�X = �
�

�X�����X
����X

�� , �A4�

where ��X
� ��X

��=
�,�. The index � ranges from 1 to at most
D�X�. Let us order the eigenvalues, so that �X�����X��� if
���. Similarly, we write �Y =���Y���=����Y

����Y
�� and

again order the eigenvalues so that �Y�����Y��� if ���.
Finally, we denote the eigenvalues of �X � �Y by ���� and
also order these eigenvalues. Note that for each �, ����
=�������� for some � ,� with ���. Since P projects onto a
space with dimension at most D�B�, we have

1 − � � Tr�P�X � �Y� � �
�=1

D�B�

���� � �
�=1

D�B�

�X��� . �A5�

Therefore,

�
�=D�B�+1

�=D�X�

�X��� � � . �A6�

Equation �A6� means that the total probability of the sys-
tem being in any state on set X other than some given set of
D�B� states is bounded by �. This is very close to a result for
the entropy. Indeed, �X has at most D�X� nonzero eigenvalues.
Thus, the entropy is bounded by

S��X� � − �
�

�X���log���� = − �
�=1

D�B�

�X���log���� − �
�=D�B�+1

D�X�

�X���log���� � �B�log�D� + ��X�„log�D� + log���… . �A7�
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