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We study a magnetic impurity embedded in a correlated electron system using the density-matrix renormal-
ization group method. The correlated electron system is described by the one-dimensional Hubbard model. At
half filling, we confirm that the binding energy of the singlet bound state increases exponentially in the
weak-coupling regime and decreases inversely proportional to the correlation in the strong-coupling regime.
The spin-spin correlation shows an exponential decay with distance from the impurity site. The correlation
length becomes smaller with increasing the correlation strength. We find discontinuous reduction of the binding
energy and of spin-spin correlations with hole doping. The binding energy is reduced by hole doping; however,
it remains of the same order of magnitude as for the half-filled case.
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I. INTRODUCTION

Although more than 40 years have passed since the dis-
covery of the Kondo effect, it is still one of the most inter-
esting topics in condensed matter physics; it lies at the heart
of understanding strongly correlated electron systems.1 The
Kondo effect, which leads to the quenching of an impurity
spin, forms the basis of the physics of a single magnetic
impurity embedded in a metal. In order to understand the
Kondo effect, the Anderson model2 has been applied with
great success. In the theoretical studies, one generally as-
sumes an impurity level to be embedded in a noninteracting
conduction band.

In the past, a system of magnetic ions coupled to
�strongly� correlated conduction electrons has attracted con-
siderable interest in connection with the heavy-fermion be-
havior, namely, Nd2−xCexCuO4.3 This raised the question
whether correlations among conduction electrons affect sub-
stantially the expected formation of heavy quasiparticles.4 So
far, a number of authors have studied models of a single
magnetic impurity embedded in a host of correlated conduc-
tion electrons. Thereby, perturbation theory and other ap-
proximation schemes were applied.5–10 For example, it was
shown that the Kondo scale can increase exponentially in the
weak-coupling regime with increasing interaction of the con-
duction electrons.8,10 However, a quantitative theory is still
missing. Moreover, the case of strongly correlated conduc-
tion electrons with band filling slightly less than one-half
�hole doping� is still an open problem.

In this paper, we study a single magnetic impurity coupled
to a correlated electron system. The latter is assumed to be
one dimensional �1D� and described by a Hubbard Hamil-
tonian. Using the density-matrix renormalization group
�DMRG� method, we calculate the binding energy of the
impurity-induced bound state and spin-spin correlation func-
tions between the impurity and the correlated electrons in the
thermodynamic limit. Special attention is paid to the case of
a nearly half-filled conduction band with repulsive electron-
electron interactions. For a 1D correlated host, there has been
a numerical study for similar models11,12 as well as an ana-
lytical study for an integrable model.13,14 We hope that the
present investigation will contribute to better insights.

This paper is organized as follows. In Sec. II, we intro-
duce our model, i.e., a magnetic impurity coupled to a Hub-
bard chain. In Sec. III, we give some numerical details of the
DMRG method applied here. In Sec. IV, we first present
calculated results for the binding energy and spin-spin corre-
lation functions at half filling and discuss the effect of the
host-band correlations on the Kondo physics. Then, we con-
sider the evolution of the same quantities with hole doping.
Section IV contains a summary of the results and the discus-
sions.

II. MODEL

We study a magnetic impurity coupled to a 1D correlated
electron system.15 The Hamiltonian consists of three terms,

H = Hc + Hf + Hcf . �1�

The first term Hc represents 1D correlated electrons. Here,
we describe them by a Hubbard Hamiltonian,

Hc = t�
i,�

�ci+1�
† ci� + H.c.� + U�

i

ni↑ni↓, �2�

where ci�
† �ci�� is the creation �annihilation� operator of an

electron with spin � �=↑ , ↓ � at site i, and ni�=ci�
† ci� is the

number operator. Furthermore, t is the hopping integral be-
tween neighboring sites and U is the on-site Coulomb inter-
action. The second term Hf is the orbital energy of the mag-
netic impurity site. We assume that the impurity contains one
orbital, e.g., 4f , and the Coulomb repulsion on the orbital Uf
is infinite. Since double occupancies are excluded, i.e., the f
orbital is either empty or singly occupied, the impurity site is
given by

Hf = � f�
�

f̂�
† f̂�, �3�

with f̂�
† = f�

†�1− f �̄
† f �̄�, where �̄=−� and � f �0. For conve-

nience, we define r=−� f /U��0� and label an electron on the
impurity site as “f electron.” The third term Hcf involves the
interaction between the impurity site and the correlated elec-
tron system. The interaction is assumed to be local and de-
scribed by a hybridization like in the Anderson model, i.e.,
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the impurity site is hybridized with a single site �denoted as
site 0� of the correlated electron system. Thus,

Hcf = V�
�

�c0�
† f̂� + f̂�

†c0�� , �4�

where V is the hopping integral between the impurity site
and site 0. The lattice structure is shown in Fig. 1. Values of
�� f�=2–3 eV and V=0.1–0.2 eV are typical for Ce3+ ions in
metals. We will work in units where t=1 and take as values
�� f�=2–3 and V=0.1–0.2, throughout.

III. METHOD

We employ the DMRG method, which is one of the most
powerful numerical techniques for studying quantum lattice
many-body systems including quantum impurity systems.16

With the DMRG method, we can obtain ground-state and
low-lying excited-state energies as well as expectation values
of physical quantities quite accurately for very large finite-
size systems.

In order to carry out our calculations, we consider
N �=N↑+N↓� electrons �N: even� in a system consisting of a
chain of L site correlated electron system �L: odd� and a
single-impurity site. The electron density is defined as n
=N / �L+1�. Note that the number of lattice sites must be
taken as L+1=4l−2, with l ��1� being an integer to main-
tain the total spin of the ground state as S=0. If one chooses
it as L+1=4l, the singlet and triplet states are degenerate.
We now apply the open-end boundary conditions to the 1D
correlated electron system and assume that the impurity site
is hybridized with the central site of the 1D open chain. The
latter corresponds to site 0, and sites i and −i are equivalent.
In this paper, we restrict ourselves to the half-filled and hole-
doped cases �N�L+1�.

Regarding quantum impurity problems, it is generally
complicated for finite-size calculations to obtain accurate re-
sults in the thermodynamic limit L→� because of finite-size
effects. In our calculations, the most problematic finite-size
effects are Friedel oscillations due to the open ends of the
Hubbard chain. Mostly, the energy scale of the Kondo phys-
ics is exponentially small; nevertheless, Friedel oscillations
can persist even at the center of the chain as they decay as a
power law from the edge sites. Therefore, we study several
long chains with sites L+1=62, 126, 190, 254, 318, 382,
446, and 510, and then perform the finite-size-scaling analy-
sis based on the size-dependent quantities. All DMRG results
in this paper are extrapolated to the thermodynamic limit
L→�. For precise calculations, we keep up to m�5000

density-matrix eigenstates in the DMRG procedure. In this
way, the maximum truncation error, i.e., the discarded
weight, is 7�10−9, while the maximum error in the ground-
state energy is less than 10−8–10−7.

IV. RESULTS

A. System at half filling „n=1…

1. Binding energy

We first study the binding energy between the f electron
and the correlated electrons. It corresponds to an energy gain
due to the formation of a Kondo �or local� singlet bound
state. Hence, the binding energy is given by an energy dif-
ference between the first triplet excited state and the singlet
ground state,

	B = lim
L→�

	B�L� , �5�

with

	B�L� = E0�L,N↑ + 1,N↓ − 1� − E0�L,N↑,N↓� , �6�

where E0�L ,N↑ ,N↓� is the ground-state energy in a system of
L+1 sites with N↑ up-spin and N↓ down-spin electrons. Note
that, at half filling, the system is insulating for finite U. The
bound state therefore may be from a local singlet rather than
the Kondo singlet. Here and in the following, we will speak
of a Kondo singlet only if it involves more than the central
site of the correlated electrons.

In Fig. 2�a�, we show the DMRG results of the binding
energy 	B as a function of the Coulomb interaction U for
various parameter sets. In total, the results for the different
parameter sets are qualitatively the same; as U increases, the
binding energy rises rapidly for small U, reaches a maximum
around U�4, and decreases gradually for large U. This be-
havior is similar to the dependence of the effective Heisen-
berg interaction on the Coulomb interaction in the half-filled
Hubbard model.21 Accordingly, the DMRG results show that
for large values of U the binding energy is approximately
proportional to the effective exchange coupling Jcf, between
the impurity and site 0.17 If we assume that the effective
exchange coupling results from second-order perturbation,
i.e., Jcf =

2V2

U−� f
, we can explain why the results for V=0.2 are

about four times larger than those for V=0.1. This estimation
of the effective exchange coupling is also consistent with a
slight decrease of the binding energy with increasing �� f�.

Let us now consider the behavior in the limiting cases for
weak and strong interaction strengths. A magnified view of
the weak-coupling regime �U� t� for � f =−3, V=0.2 is given
in Fig. 2�b�. When U=0, the system is metallic and essen-
tially equivalent to the single-impurity Anderson model
�SIAM� in the Kondo limit �Uf /V=�� but asymmetric case
���−Uf /2�. The orbital energy of the impurity site is lower
than the Fermi energy of the conduction band, so that the
occupation number of the impurity site is always 1. The ex-
change interaction Jcf is estimated to be the order of V2 /�F
and, therefore, the binding energy is expected to be very
small but finite. We estimate it to be roughly 	B
�10−7–10−6. This value is compatible with the Kondo tem-

�

�

� � � �

�

�

	

� � 
 � � � � � � � 


FIG. 1. Lattice structure of the system. Open and solid circles
represent correlated electron system and impurity site, respectively.
The bottom numbers i denote the site index of correlated electron
system and �i� corresponds to a distance between site i and the
impurity site.
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perature TK in the asymmetric SIAM.18 The introduction of a
finite Coulomb interaction makes the system insulating. With
increasing U, 	B increases gradually when U / t
0.2 and
rapidly for U / t�0.2. There is a crossover from the Kondo
singlet to a local singlet around U / t=0.2. Assuming an ex-
ponential behavior of 	B with U leads to a good fitting of the
DMRG data, i.e., 	B=��U exp�−
 /U� with ��2.5�10−4

and 
�0.4. Furthermore, 	B increases almost linearly in the
regime U / t=0.2–2. We thus find that the binding energy of
the local singlet can be a few orders of magnitude larger than
that of the Kondo singlet.

The DMRG results for the strong-coupling regime �U
� t� with � f =−3 and V=0.2 are plotted in Fig. 2�c�. In this
regime, the electrons are strongly localized at each site.
Therefore, the system �Eq. �1�	 can be reduced to the Heisen-
berg model with Hamiltonian,

Heff = J�
i

si · si+1 + JcfS f · s0, �7�

with J= 4t2

U . The DMRG data can be fitted quite well by a
function 	B= �

U−�F
with ��3.1�10−4. Despite the strong lo-

calization of the electrons, the binding energy is 2 orders of
magnitude smaller than the cf exchange coupling. This is so
because for n=1 a spin-density wave �SDW� is forming in
the chain for any value of U ��0�, which makes the forma-
tion of the local singlet state more difficult. This kind of
behavior has already been observed before for J�Jcf.

19,20

We then note that the behavior of the binding energy for
finite U is essentially the same as that of the Néel tempera-
ture in the half-filled Hubbard model.21

2. Spin-spin correlations

In the Kondo problem, the spin degrees of freedom
around the impurity play an essential role. Therefore, we
investigate spin-spin correlations between the f electron and
the correlated electrons. The correlated system is now de-
scribed by the lattice model �Eq. �2�	, so that we are allowed
to study the distance r dependence of correlation functions,
like 
S f ·sr�.

Let us first derive the spin-spin correlations between the
spin on the impurity site and on the central site i=0, i.e.,

S f ·s0�. The DMRG results for various parameter sets are
shown in Fig. 3�a� as function of the Coulomb interaction U.
Since the antiferromagnetic correlation is derived from the cf
exchange interaction, 
S f ·s0� is negative for all parameter
sets and Coulomb interaction strengths. The absolute value
of 
S f ·s0� increases with increasing V and with decreasing
��F�, as expected from the behavior of the binding energy.
However, the influence of ��F� is rather smaller. In the limit
U→0, 
S f ·s0� is antiferromagnetic but the magnitude is very
small due to strong charge fluctuations, when the system is
metallic �see inset of Fig. 3�a�	. It reflects the small binding
energy around U=0. The magnitude of 
S f ·s0� increases with
increasing U and reaches its maximum value as U→�,
which means that one electron is localized on each site in
that limit.

We consider next spin-spin correlations between a spin on
the impurity site and on the next-nearest-neighbor site i=1,
i.e., 
S f ·s1�. In Fig. 3�b�, the DMRG results for 
S f ·s1� are
shown as a function of the Coulomb interaction U for vari-
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FIG. 2. �a� Binding energy 	B for � f =−3, V=0.2 �circles�, � f

=−3, V=0.1 �triangles�, and � f =−2, V=0.1 �squares�. �b� Magnified
view of small U region for � f =−3, V=0.2. The data are fitted by a
function 	B=��Uexp�−
 /U� with ��2.5�10−4 and 
�0.4. �c�
	B for � f =−3, V=0.2 in the strong-coupling regime �U� t�. The
data are fitted by a function 	B� �

U−�F
with ��3.1�10−4.
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FIG. 3. Spin-spin correlation functions �a� 
S f ·s0� and �b�

S f ·s1� as a function of the Coulomb interaction U for � f =−3, V
=0.2 �circles�, � f =−3, V=0.1 �triangles�, and � f =−2, V=0.1
�squares�. Inset: semilogarithmic plots of the magnitude of the spin-
spin correlation functions.
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ous parameter sets. One expects ferromagnetic correlations
from the effective Hamiltonian �Eq. �7�	 for finite values of
U, and indeed 
S f ·s1� has positive sign for all the parameter
sets and Coulomb interaction strengths. Note that the
Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction in-
duces ferromagnetic correlations, as substitute for the spin-
spin interaction �Eq. �7�	, in the weak-coupling �U�0� and
metallic regimes. However, it is difficult to separate the con-
tribution from RKKY and the interaction �Eq. �7�	. The Cou-
lomb interaction dependence of 
S f ·s1� is similar to that of

S f ·s0�. For the same parameter sets, the value of 
S f ·s1� is
found to be slightly smaller than that of �
S f ·s0��. This indi-
cates a slow decay of the spin-spin correlation 
S f ·sr� with
distance r. It implies that the spin of the f electron is hardly
screened by the spin on site 0. In addition, the influence of V
on the spin-spin correlations is rather small. Note that the
binding energy depends strongly on the hybridization V.

Let us now consider the distance dependence of the spin-
spin correlation functions. In Fig. 4�a�, we plot the DMRG
results for 
S f ·sr� as a function of distance r �=�i��. We
choose three Coulomb interactions: �i� U=0.5 in the Kondo-
singlet regime, �ii� U=200 in the limit of the local singlet
regime, and �iii� U=4 in the intermediate regime where a
maximal binding energy is obtained. The results for different
distances are extrapolated to the thermodynamic limit L
→�. We find that 
S f ·sr� decays slowly and the sign changes
alternately with r, i.e., 
S f ·sr� has a positive �negative� sign
for odd �even� r, denoted by solid �empty� symbols in Fig.
4�a�. The interaction �Eq. �7�	 and/or the RKKY interactions
cause ferromagnetic �antiferromagnetic� correlations be-
tween the spin of the f electron and that of the odd �even�
site r. The absolute value of 
S f ·si� increases with increasing
U because larger Coulomb interactions stabilize the
2kF-SDW oscillation which accompanies charge localization.

Since the system is in a spin-gapped ground state, an ex-
ponential decay of the spin-spin correlation with distance
must be expected. In Fig. 4�b�, we present a semilogarithmic
plot of 
S f ·sr� as a function of distance r. For a convenient
comparison, we have normalized 
S f ·sr� with respect to
its value at r=0. The results can be fitted with a function
exp�− r

�
� and thus the exponential decay of the correlation

functions is confirmed for all values of U. The correlation
lengths are estimated as �=3184, 508, 400 for U=0.5, 4,
200, respectively. They seem to be much longer than those of
other standard spin-gapped systems, e.g., �=3.19 in the two-
leg isotropic Heisenberg system. However, it has been found
that in the zigzag Heisenberg chain, the correlation lengths
increase rapidly with decreasing binding energy.22 Thus, the
very large values of � reflect exponentially small binding
energies. This also means that spin-polarized electrons are
widely spread around the impurity site, i.e., the Kondo
screening effect is quite weak. Furthermore, we note that the
correlation functions decay rapidly around r�0. The decay
rate is dependent on the magnitude of the cf exchange
interaction.

B. Less than half filling „n�1…

We are also interested in doped systems, which are metal-
lic even if U�0. We thus investigate the properties of the
model �Eq. �1�	 with � f =−3 for various hole concentrations
n=1−Nh /L, where Nh is the number of doped holes �Nh

�0�. For this choice of � f, the occupation number of the
impurity site is near unity because the Fermi level lies well
above � f. In the strong-coupling limit �U� t�, doubly occu-
pied sites are excluded and therefore we can derive an effec-
tive model �Eq. �1�	 by applying degenerate perturbation
theory.5 The effective Hamiltonian is written as

H = Ht + HJ + Hp + HK + H�. �8�

Here, Ht is the kinetic-energy term of the conduction elec-
trons,

Ht = �
i�

ti�ĉi+1�
† ĉi� + ĉi�

† ĉi+1�� ,

ti = −
t

2

1 −

V2�2 + 2r + r2�
2� f

2�1 + r�2 �i0� , �9�

with ĉi�
† =ci�

† �1−ni��. Furthermore, HJ is a spin-coupling
term between the conduction electrons, which is of the
Heisenberg type,

HJ = Ji�
i

si · si+1,

Ji =
2t2

U

1 −

V2

� f�U − � f�
�i0� . �10�

The sum of these two terms defines the 1D correlated elec-
tron system. It is essentially equivalent to a t-J model except
for small modifications around site 0 due to the impurity. The
term Hp corresponds to the one-particle potential around the
impurity site, which is given by
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FIG. 4. �a� Spin-spin correlation functions 
S f ·sr� as a function
of the distance r for U=0.5 �triangles�, 4 �squares�, and 200
�circles�. �b� Semilogarithmic plot of the magnitude of the spin-spin
correlation functions. The data are fitted by a function 
S f ·sr�
�exp�− r

�
� with �=3184, 508, 400 for U=0.5, 10, 200, respectively.
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Hp = −
�V2

2� f�1 + r�
�1 − n0� +

V2t2

� f
2U�1 + r�2 �

i=±1
�1 − ni� ,

� = 2 + r +
2t2

� f
2�1 + r�2 �2 + 7r + 7r2 + r3� . �11�

It describes the attraction �repulsion� of a hole at site 0 �1� by
the f electron. Furthermore, HK is a spin-spin interaction
term in analogy to the cf exchange interaction,

HK =
2�V2

U − � f
S f · s0 +

tV2�2 + r�
U� f�1 + r�2S f · �

i=±1
�ŝi0 + ŝ0i� , �12�

with ŝii�= �1/2���
ĉi�
† ��
ĉi�


† , where ��
 are the Pauli matri-
ces. Furthermore, �=1+2t2 / �U−��2. The last term H� gives
a correction to the effective model,

H� =
2V2t2

U� f
2�1 + r�2 �

i=±1
S f · �si�1 − n0� − s0�1 − ni�	 . �13�

The first term of Eq. �13� implies an antiferromagnetic inter-
action between the impurity site and site ±1 if there is a hole
at site 0; on the other hand, the second term gives a correc-
tion to the Kondo-type interaction, i.e., the first term of Eq.
�12�, and the antiferromagnetic spin exchange between the
impurity site and site 0 may be reduced.

1. Binding energy

Of particular interest is the evolution of the binding en-
ergy of the impurity-induced bound state upon hole doping.
We can easily imagine that the binding energy is suppressed
by hole doping due to the enhancement of charge fluctuation.
Thus, away from half filling, the 1D correlated system is
metallic and the bound state changes from a local singlet to
the Kondo singlet. If the bound state survives with hole dop-
ing, it has a much larger energy than the standard Kondo
singlet. In Fig. 5, we show the binding energy 	B as a func-
tion of band filling n ��1� at �a� V=0.2 and �b� V=0.1 with
� f =−3 for various values of U. Filled �empty� symbols refer
to the data for n=1 �n�1� and empty symbols at n=1 rep-
resent the values for infinitesimally doped systems �see be-
low�. Roughly speaking, 	B is discontinuously reduced at
n=1 and decreases with increasing hole doping for all cases
except U=0. We find, however, that 	B remains of the same
order of magnitude as in the half-filled case even at doping
level up to a few percent. Also, the dependence of 	B on U is
weaker for higher doping concentrations.

More precisely, there are two differences in behavior on
the hybridization strength V. One is that in the vicinity of
n=1, the binding energy for V=0.2 decreases more rapidly
than that for V=0.1 despite larger cf exchange coupling �Eq.
�12�	. It must be associated with the attraction between
doped holes and the f electron, which is described in detail in
the next paragraph. The other is that the binding energy dis-
appears at lower doping levels for small values of V; 	B for
V=0.2 maintains its value at n
0.9 and that for V=0.1 goes
to zero around n�0.8–0.9. It results from the size of the cf
exchange coupling Jcf, and thus the critical doping concen-
tration is highest at U�4, giving a maximal value of Jcf.

For the limit n→1, we have extrapolated the finite-size
binding energy 	B�L� to the thermodynamic limit L→� for
the four-hole-doped system by going up to L+1=510. One
notices that the value of the binding energy in the limit n
→1 differs from the n=1 undoped value. It reflects the fact
that the binding energy of the Kondo singlet in the infinitesi-
mally doped system is less than that of the local singlet in the
undoped system. The reason being that, when the system is
doped by a hole, the carrier tends to move onto site 0 due to
the attraction from the impurity site �Eq. �11�	 and thus a
spin-singlet formation is prevented. In Fig. 5�c�, we show the
hole density nhi=1−ni for V=0.2 and U=4 for the 1% hole-
doped case. One can see that the doped holes concentrate
around the impurity site. The discontinuity is higher for V
=0.2 than for V=0.1 because the attractive interaction is en-
hanced by the hybridization V. Such a discontinuity of the
spin-excitation energy has also been found in studies of lad-
der systems.23,24 Note that in the hole-doped case, the V de-
pendence of the binding energy is not simple because V en-
hances two competing effects: �i� the attraction between
doped holes and the f electron and �ii� the cf exchange cou-
pling between conduction electrons and the f electron.

2. Spin-spin correlations

Finally, we study the hole-doping dependence of spin-spin
correlations between the f and conduction electrons. The cor-
relation is expected to be weakened by hole doping due to an
increase of charge fluctuations. In Fig. 6, we show the spin-
spin correlation functions 
S f ·s0� and 
S f ·s1� as a function of
band filling n ��1� when �a� V=0.2 and �b� V=0.1 with � f

=−3 for various Coulomb interaction strengths. The proper-
ties are fundamentally linked to those of the binding energy
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� f =−3 as a function of the band filling n. The Coulomb interaction
strengths are U=0 �crosses�, 2 �triangles�, 4 �circles�, and 10
�squares�. Filled �empty� symbols correspond to the data for n=1
�n�1�, and empty symbols at n=1 represent the values for infini-
tesimally doped systems. �c� Calculated hole density nhi=1−ni for
V=0.2, U=4, and n=0.99. The size of a dot is proportional to the
hole density and is explicitly shown for h=0.015.
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as follows: �i� correlations are suppressed by hole doping and
�ii� there exists a discontinuity at n=1.

Let us now investigate the DMRG results for the two V
values. When V=0.2, all the correlation functions for finite U
decrease rapidly close to n=1 and decay slowly when n

0.9. This behavior is quite similar to that of the binding
energy. It is seen that �
S f ·s1� / 
S f ·s0�� decreases with de-
creasing n. The small value corresponds to a rapid decay of

S f ·sr� around r=0, as seen in Fig. 4, e.g., for U=0.5 and
n=1. It is accompanied by a transfer from the local singlet to
the Kondo singlet. It also suggests a reduction of the RKKY
interaction with doping. In addition, it is surprising that

S f ·s0� seems to be enlarged by hole doping for small values
of U �
2�. The “exchange hole” around the impurity is as a
consequence of the Pauli principle. When V=0.1, all the cor-
relation functions decrease monotonously and go to zero
around n�0.9, which is accompanied by a vanishing of the
binding energy. For n
0.8−0.9, �
S f ·s1�� has small negative
values for large values of U, which indicates antiferromag-
netic correlations between the f electron and the spin at site

1. It is derived from the first term of Eq. �13� and was pre-
viously suggested in Ref. 5.

V. CONCLUSION

Using the DMRG method, we have studied a magnetic
impurity embedded in a correlated electron system, which is
assumed to be the 1D Hubbard chain. At half filling, we
confirm that the binding energy increases exponentially in
the weak-coupling regime. There is a crossover from the
Kondo singlet to the local singlet. The former state involves
a wider spread of spin-polarized electrons around the impu-
rity than the latter one. With increasing values of U, the
binding energy has a maximum around U�4 and afterward
decreases inversely proportional to the Coulomb interaction.
Due to the formation of a singlet bound state, the spin-spin
correlation function decays exponentially with distance from
the impurity site for all values of U ��0�. The correlation
length is quite long when the binding energy is small. It
becomes shorter with increasing Coulomb interaction. For
infinitesimally hole doping, we find a discontinuous reduc-
tion of the binding energy and of the spin-spin correlations
from the values at half filling. For further doping, the binding
energy is reduced but remains of the same order of magni-
tude as in the half-filled case even for doping concentration
of a few percent. The electron-doped case is not studied here,
but we expect qualitatively similar properties as for hole
doping. When U becomes very large, the effective repulsion
of electrons at site 0 is somewhat enlarged and the probabil-
ity for double occupancy is correspondingly reduced due to
the presence of the impurity.5 However, there is no disconti-
nuity at half filling. This is so because when an electron is
added to the half-filled system, it is distributed almost uni-
formly over the 1D chain.

Possible further extensions of this work include the com-
putation of the specific heat away from half filling. This is of
interest because of available experiments on Ce doped
Nd2CuO4. However, sufficiently accurate calculations are not
simple and will require considerble efforts. A simple exten-
sion is the computation of spectral densities.
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