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compare our results with the resonance observed in neutron-scattering measurements in cuprates.

DOI: 10.1103/PhysRevB.76.024503 PACS number�s�: 74.20.Mn, 74.25.Ha, 74.25.Jb, 74.40.�k

I. INTRODUCTION

Strong electronic correlations in high-temperature super-
conductors are believed to underlie their rich phenomenol-
ogy. The superconducting gap in these materials exhibits
d-wave symmetry with four nodes. Since the gap vanishes
and changes sign at these nodes, the low-energy fermionic
excitations have linear, Dirac-like, dispersion. An important
probe of the correlations of these nodal quasiparticles is pro-
vided by inelastic neutron-scattering measurements, which
give us information about the momentum and energy depen-
dence of the correlations of electronic spin degrees of free-
dom through their coupling to scattering neutrons. Over the
past decade a consistent experimental picture of these corre-
lations has been emerging in different families of cuprates,
so far the exclusive hosts of high-temperature superconduc-
tivity. These include the double-layer1–7 Bi- and Y- and the
single-layer8–13 La- and Tl-based families. The salient fea-
tures of this picture are the following: �i� a resonance peak at
the antiferromagnetic ordering wave vector, �� ,��, at a reso-
nance energy �res��41 meV at optimal doping�; �ii� a
two-dimensional14 incommensurate structure below the reso-
nance energy with maxima located at ��±� ,�� and with a
possible weak inward dispersion toward �� ,�� as �→�res;
�iii� an incommensurate structure above the resonance with
outward dispersion away from �� ,�� for higher energies.
The above dispersions have been taken to suggest that the
commensurate and incommensurate peaks may have a com-
mon origin.

In addition, the response is usually not discernible from
the background below a certain energy, referred to as the
“spin gap.” However, for the sake of clarity, we reserve the
label “spin gap” strictly for the minimum value of particle-
hole continuum, �sg, and call the former “spin response
threshold.” Thus whether the observed signals at �� ,�� and
�res and/or incommensurate peaks are true resonances is
closely linked to the question of whether they occur below
the corresponding spin gap. Accordingly, one could think of
two possible theoretical scenarios.

In the first scenario, there is no true resonance in the
system, that is, no particle-hole bound state, and the peaks
are merely the maxima of the spin response. The nodal qua-
siparticles will have a finite spin gap everywhere except at
the nodes. At �� ,��, the peak would be interpreted as the
overlap of the four incommensurate responses, one for each

node, at the center. The spin gap and the spin response
threshold are the same in this scenario. Usually this should
also mean that the central peak falls off slowly as 1/�, rather
than being sharp. However, as noted above, the central peak
observed in experiment seems to be very sharp, in some
cases limited only by the energy resolution of the measure-
ment.

In the second scenario, there would be a true resonance
below the spin gap given by a � function in the spin re-
sponse, due to the formation of particle-hole bound states—
the so-called spin excitons. In this scenario, the spin gap is
distinct from the spin response threshold. It would still be
important to determine the continuum response so we could
decide what effects derive from which source. However, it
would also be very important to determine the existence �or
lack of� and the properties of such excitons in a candidate
theory of cuprates.

In this paper, we study the existence of spin excitons
within the QED3 effective theory of underdoped
cuprates.15–18 The QED3 theory describes a d-wave super-
conductor in which the phase of the superconducting order
parameter is fluctuating. These phase fluctuations are en-
coded in a pair of U�1� gauge fields, the Berry gauge field
and the Doppler gauge field, that couple to a quasiparticle’s
spin and charge degrees of freedom, respectively. Both gauge
fields are massive in the superconducting phase, which, ac-
cordingly, exhibits sharp nodal excitations. As the system is
underdoped, however, the phase fluctuations grow stronger
and eventually destroy the phase coherence of the supercon-
ducting order parameter. The resulting state may be shown to
be insulating.19 Whereas outside the superconductor the
Doppler gauge field remains massive, the Berry gauge field
becomes massless. This allows the general chiral symmetry
breaking instability in the QED3 �Refs. 20 and 21� to become
operative, which in the present context implies the antiferro-
magnetic ordering in the system.16,22

Herbut and Lee23 have previously calculated the QED3
spin response in the superconducting phase in a low-energy
approximation and found no exciton resonance. In their ap-
proach the Berry gauge-field propagator in the superconduct-
ing phase was approximated by a constant, equal to its infra-
red mass. This result falls therefore into the first scenario
discussed above. This “constant-mass” approximation is
valid below a momentum cutoff that is proportional to the
gauge-field mass. So, it becomes less reliable in the under-
doped region where the mass decreases and eventually van-
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ishes at the underdoped transition. In the present paper we go
beyond the constant-mass approximation by including the
momentum dependence of the inverse propagator of the
Berry gauge field, which becomes linear at high momenta.
We do so by considering the scalar vertex for the spin re-
sponse in a ladder approximation and by reducing the prob-
lem to an approximate Schrödinger equation that describes
the formation of particle-hole bound states in the d-wave
superconductor. We find that, for a strong enough coupling
between the nodal quasiparticles mediated by the Berry
gauge field such bound states exist. We derive their disper-
sion and compare our results with the experimental picture
outlined above. However, due to the inherent gauge depen-
dence of our ladder approximation we cannot definitely de-
termine whether, for the physical values of parameters,
QED3 theory of cuprates is in this strong-coupling regime.

We note that the resonance is absent in La cuprates. This
could be due to different physics from competing stripe order
that is known to exist in this family and results in a smaller
critical temperature, Tc. Alternatively, within our theory, one
might expect the resonance to be harder to discern from the
incommensurate structure for a smaller Tc. See Sec. V for a
discussion.

The paper is organized as follows: In Sec. II we formulate
the ladder approximation for the scalar vertex and the spin
response. In Sec. III we derive the Schrödinger equation for
excitons, find the resulting expression for resonant spin re-
sponse, and determine the conditions for their existence. In
Sec. IV we discuss the dispersion of the excitons and com-
pare with experiments and existing literature. We summarize
our results in Sec. V where we also comment on the issue of
gauge dependence mentioned above. The details of some of
our calculations are given in two appendixes.

II. LADDER APPROXIMATION

The spin part of the effective action for the nodal quasi-
particles in the fluctuating d-wave superconductor19 is given
by

S =� d3r�
i=1

N

�̄i���vi,��� − iga���i

+
1

2
� d3p

�2��3a��− p�D��
−1�p�a��p� , �1�

where the number of flavors, N=2, is the number of pairs of
nodes. The bare value of the coupling g is unity. The Dirac
spectrum is assumed for quasiparticles near the nodes with
anisotropic velocities v1,�= �1,vF ,v	� and v2,�= �1,v	 ,vF�.
Here vF /v	�10 is the ratio of the Fermi velocity to the gap
gradient at the node. We will set vF=v	 throughout our cal-
culations and restore their values by rescaling the corre-
sponding momenta at the end. Only the transverse compo-
nents of the gauge field enter the action in Eq. �1�: The
gauge-field propagator has the form D���p�= ����− �1
−
�p̂�p̂��D�p�, where23

D�p� =
�

4	p	
F
 m

	p	� , �2�

F�z� = �4z2 + 1�tan−1 1

2z
− 2z , �3�

and 
 signifies a �nonlocal� gauge-fixing term.24 The gauge
field has a mass D−1�0�=12m /�. At high energies, D−1�p�
�	p	, which is an exact result.25 Most of what we will say
about excitons in QED3 does not depend on the exact form
of the interpolation between the infrared mass and the ultra-
violet linear dependence of D−1�p�, but for the sake of defi-
niteness we will present our results for this particular form of
the propagator, which is found from the dual theory of Refs.
26 and 19.

The spin operator Sz is related to the Dirac fields
through16

�̄i�r��i�r� = 4 cos�2Ki · r�Sz�r� ,

where K1,2= �±kF ,kF� denote the positions of two of the
nodes in the Brillouin zone. We assume spin-rotational sym-
metry. Thus ����k ,��= �S��−k ,−��S��k ,��
=�����k ,��,
where ��k ,��= �Sz�−k ,−��Sz�k ,��
. Writing k=2Ki+p, we
find

��p� =
1

16
� d3re−ip·r�

ij

��̄i�r��i�r��̄ j�0�� j�0�
 . �4�

In order to calculate the spin response in the QED3 action
we will adopt a ladder approximation for the four-point cor-
relator ��p�, shown diagrammatically in Fig. 1. The first dia-
gram represents the “bare” spin response in the absence of
gauge-field interactions. We denote it by �0�p�.

It is standard to reformulate the ladder approximation in
terms of gauge-field-induced corrections to the scalar vertex
for the interaction between the external source �neutrons� and
spinons. These vertex corrections are shown in Fig. 2. De-
fining the scalar vertex ��k , p� as the amputated diagram
�without the external legs� on the left-hand side, we have

��p� = −
N

16
� d3k

�2��3 tr�G0�k���k,p�G0�k + p�� , �5�

where G0�k�=−i��k� /k2 is the bare four-component spinon
propagator in the superconducting state. From Fig. 2 we see
that the scalar vertex satisfies the following Bethe-Salpeter
equation;

FIG. 1. Ladder approximation for the spin response.

FIG. 2. Ladder approximation for the scalar vertex, ��k , p�.

BABAK H. SERADJEH AND IGOR F. HERBUT PHYSICAL REVIEW B 76, 024503 �2007�

024503-2



��k,p� = 1 − g2� d3q

�2��3��G0�q���q,p�G0�q + p�


��D���k − q� . �6�

We may use the symmetries of the QED3 action to expand
the scalar vertex in terms of form factors,27

��k,p� = 1F1�k,p� + ���k�p�F2�k,p� + ��k�F3�k,p�

+ ��p�F4�k,p� . �7�

Here, ���=
1

2
��� ,���. Then, Eq. �6� is reduced to

Fi�k,p� = �i1 +� d3q

�2��3�
j=1

4

Kij�k,q,p�Fj�q,p� , �8�

with the matrix Kij having a block-diagonal form in terms of
two two-by-two matrices. For the reasons explained below
the most important element is

K11�k,q,p� = �2 + 
�g2 q · �q + p�
q2�q + p�2D�k − q� . �9�

The block-diagonal form of Kij implies that the form factors
F3 and F4 completely decouple from F1 and F2. Together
with Eq. �6�, which implies that F3 and F4 do not contribute
to the function �, this allows us then to neglect them alto-
gether for the purpose of calculating the spin response.

Within the ladder approximation for the scalar vertex, our
manipulations have so far been exact. At this point, we no-
tice that the dominant contribution to � comes from F1,
which is of order g0. Since F2�g2, we will then neglect F2
to obtain the set of equations,28,29

��p� =
N

4
� d3k

�2��3

k · �k + p�
k2�k + p�2F1�k,p� , �10�

F1�k,p� = 1 + �� d3q

�2��3

q · �q + p�
q2�q + p�2D�k − q�F1�q,p� ,

�11�

for the spin response, with �= �2+
�g2 as the �gauge-
dependent� coupling strength. These equations provide the
basis for our further study of the exciton modes in QED3. For
a constant D�k−q� they reproduce the results of Ref. 23.

Note that Eqs. �11� and �10� explicitly depend on the
choice of gauge. This arises because the ladder diagrams in
Fig. 2 are not gauge-invariant if the bare fermion propagator
is used. The gauge invariance can be restored by choosing
the �nonlocal� gauge-fixing parameter 
 so that the bare fer-
mion propagator satisfies the usual Ward-Takahashi identity
with the vertex. In principle this procedure will yield a
momentum-dependent function 
�p�.29 With m=0, we find
Nash’s gauge 
=2/330 whereas in the opposite limit of
constant-mass approximation one finds Feynman’s gauge, 

=1. In the rest of the paper, we choose to work with a
momentum-independent gauge-fixing parameter 
 for sim-
plicity.

III. EXCITONS IN QED3

Our strategy to solve the vertex function is to obtain a �set
of� differential equation�s� from the integral equation �11�.
This is similar to the classic derivation of exciton bound
states in metals and semiconductors.31,32 We will show that
there is an approximate Schrödinger-like equation that cap-
tures the bound-state content of the vertex function. Similar
Schrödinger equations have been derived before for the non-
relativistic limit of vertex functions in QED.33,34 Based on
this Schrödinger equation, we will determine the conditions
for the existence of the exciton bound states.

A. Schrödinger equation

Let us define a generalized response

��r,p� = ����� d3k

�2��3

k��k + p��

k2�k + p�2 eik·rF1�k,p� , �12�

where ��= ��1 ,�2 ,�3� are Pauli matrices �up to cyclic per-
mutations�. Then Eqs. �10� and �11� may be written as

��p� =
N

4
tr���0,p�� �

N

4
��0,p� , �13�

F1�q,p� = 1 + �� d3re−iq·rD�r���r,p� . �14�

Note that r is a real-space variable and D�r� indicates the
real-space gauge-field propagator.

We see that

− ��ip + p 
 �� · �� + � · �����r,p�

= ��3��r� + �D�r�tr���r,p�� . �15�

We may shift away the momentum p �which enters the equa-
tion only as a parameter� in the derivative by completing the
square. This is achieved by a phase transformation of the
form

� → �� = exp
1

2
�ip + p 
 �� · r�� . �16�

We note that ���0, p�=��0, p�. The transformed equation is,
then,

�− � · � + �p/2�2��� − �D�r�e�1/2��·Ltr�e−�1/2��·L��� = ��3��r� ,

�17�

where we have denoted the orbital angular momentum of the
particle-hole system by L=r
 p. This is an exact mapping of
the integral equation �11� to a set of coupled Schrödinger-
like differential equations.

Even though we have succeeded in deriving a set of dif-
ferential equations for our vertex function, they are still very
complicated. However, for the purpose of studying the
bound-state content of the vertex function, we may simplify
these equations further down to a single Schrödinger-like
equation. A numerical solution seems to be the only useful
alternative. As shown in Appendix A, this approximate, de-
coupled equation is given by
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��p/2�2 − � · � − Veff�r,p,m�����r,p� = ��3��r� , �18�

where, for 0� 	p	�2m,

Veff = �
1 −
� sin2 �

16
�cosh2	L/2	D�r� . �19�

Here, �=cos−1�p̂ · r̂�. We expect Eq. �18� to provide a valid
description of the bound states for an adequately short-
ranged interaction D�r�. This is the case when 0� 	p	�2m.
For 	p	�2m, Eq. �19� is valid only at short distances. At
large distances r� �	p	−2m�−1, the potential becomes infinite
for ��sin−1�2m / 	p	�:

Veff � −
�2

p2 sinh2	L	D2�r� → − � . �20�

We note that in the case of constant-mass approximation23

for which D�r����3��r�, and also for p=0 in the general
case, Eq. �18� follows exactly from Eq. �17� with Veff�r�
=�D�r�.

B. Resonant spin response

We may now find ��p� by solving the following three-
dimensional Schrödinger equation for the eigenvalue
en�	p	 ,m� and the normalized eigenfunction �n�r , 	p	 ,m�,

�− � · � − Veff��n = en�n. �21�

Then,

��p� =
N

4
���0,p� = N�

n

	�n�0, 	p	,m�	2

4en�	p	,m� + p2 . �22�

By analytically continuing to real frequencies, p0→−i�
+0+, and denoting pM =�p2−�2, we find that since
Im en�pM ,m�=0 the imaginary part of the spin response ob-
served in experiment is given by

Im ��pM� = N�
n

± 	�n�0,pM,m�	2��pM
2 + 4en�pM,m�� ,

�23�

where the sign ±=sgn���sgn�1+�en�pM ,m� /�pM
2 �. If

en�pM ,m� were not real there would be no � function, hence
no resonance.

From Eq. �23�, we see that the necessary and sufficient
condition for the existence of excitonic resonances at p and
�� 	p	 is that our Schrödinger equation �21� admits bound
state solutions with real and negative eigenvalues eb that
solve the equation

eb�pc,m� = −
pc

2

4
. �24�

We will now study the existence of such bound states.

C. Existence of excitons

As shown in Appendix B the gauge-field propagator D�r�
scales as 1 /r2. For 	p	�0, we may rescale the space as 	p	r

�z to see that the energy spectrum satisfies the scaling rela-
tion

eb�	p	,m� = p2�b�2m/	p	� . �25�

The scaling function �b is the bound-state energy eigenvalue
for the rescaled Schrödinger equation,

�− �z
2 − Ṽeff�z,����b�z,�� = �b����b�z,�� , �26�

where �=2m / 	p	 and the rescaled potential is

Ṽeff�z,�� =
1

p2Veff
 z

	p	
,1,

�	p	
2

� . �27�

The potential Ṽeff has an inverse-square form for small z. The
condition �24� for the resonant response is satisfied for
�b��c�=−1/4; then, pc=2m /�c.

The inverse-square potential is an instance of conformal
anomaly, i.e., the breakdown of scale symmetry in quantum
mechanics. The potential −� /16z2 has an infinite number of
negative energies for ���0

*=4 and is unbounded from
below.35 Thus in this “strong-coupling” regime, the problem
needs to be renormalized for it to be physically meaningful.
Although there are different ways of doing so, the result is
unique.36 The inverse-square potential has a single renormal-
ized bound state. The energy of the renormalized bound state
cannot be determined within the theory; it is an input of the
theory either from experiment, or from the physics at higher
energies, beyond the domain of physical validity of the po-
tential. The continuum spectrum that is renormalized into a
single bound state is called the “conformal tower.� The
bound-state wave function is given by

�0�z� =� �3

2�

K0��	z	�
��	z	

,

where −�2 is the renormalized bound-state energy, and K0 is
the modified Bessel function of the second kind.

For ��1 the potential Ṽeff decays exponentially at large
distances. However, the inverse-square form at small z is
expected to be sufficient for the existence of a conformal
tower in the strong coupling ���*. By using �0 as a trial
wave function to calculate the energy one can check that this
expectation is met for �* /�0

*�1.268. The corresponding
critical charge is given by gc�2.252/�2+
. In Nash’s and
Feynman’s gauge, for example, one finds gc,N=1.379 and
gc,F=1.300, respectively. The strong-coupling regime is
found for g�gc.

For 0���1, the potential Ṽeff�−e2�sin �−��	z	→−� for
��sin−1�. So it is less clear whether the conformal tower
would exist in this limit. However, the same way as above
and by choosing �� �1−�� /2, we have checked that the
conformal tower still persists for the same strong-coupling
regime. This result reflects the fact that the conformal tower
for bound states is essentially a short-distance phenomenon
produced by the singular behavior of the potential at the
center.
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IV. DISCUSSION AND COMPARISON WITH EXPERIMENT

In this section we will assume that QED3 theory is in the
strong-coupling regime characterized in Sec. III C and inves-
tigate the consequences of this assumption for the spin re-
sponse observed in neutron-scattering measurements.

The dispersion of the exciton mode can be read off from
Eqs. �23� and �24� to be

�res�p� = ��sg
2 �p� − pc

2, �28�

where �sg�p� is the “spin gap,” given by the minimum of the
particle-hole continuum. With the linear Dirac spectrum for
spinons, it is

�sg�p� = vF
2 px

2 + v	
2 py

2,

where we have now restored the Fermi and gap velocities. In
this formula, px �vF is the component of the wave vector
measured from the given node in the nodal direction and
py �v	 is the one in the perpendicular direction. There is one
dispersion branch for each node. Due to the strong aniso-
tropy v	 /vF�1, the spin gap is much more sensitive to the
changes of p in the nodal direction. This causes the disper-
sion �28� to assume a characteristic shape shown in Fig. 3.
This is in qualitative agreement with experiment if we iden-
tify the exciton mode with the observed resonance peak.10

We will now discuss some features of the dispersion.
In the diagonal direction, Fig. 3�a�, there are three exciton

branches. Each of the nodes on the same diagonal line con-
tribute one branch, and the other two nodes produce overlap-
ping branches. They all cross at �� ,�� and hence a strong

resonance is expected here. The overlapping branch is rather
flat. Its curvature is determined by the ratio v	 /vF. It quickly
enters the continuum away from �� ,�� and is, then, presum-
ably damped. The other two branches fall off rather steeply
�due to the square root in �res� and terminate a distance
pc /vF away from the corresponding nodes.

In the parallel direction, Fig. 3�b�, there are only two sets
of overlapping branches, each from a pair of nodes that map
to each other upon reflection about the parallel line. Here,
too, we observe a crossing at �� ,�� and therefore an en-
hanced response. The absence of the flat branch means that
the momentum width of the resonance at �� ,�� is only
bound by the momentum resolution of the experiment in this
direction. Again, the modes disperse down to zero energy at
an incommensurate position ��±�inc ,�� where

�inc =
2�� − 2kF� − �2pc/vF

1 + v	
2 /vF

2 � 2�� − 2kF� − �2pc/vF,

�29�

and the approximation is made for v	 /vF�1.
In our Schrödinger equation approximation, the strength

of the peak is given by 	�n�0, pc�	2 at the resonance �pM

= pc� and is the same for different momenta. That is, the
whole branch below the continuum spin gap has the same
intensity. This does not agree with experiments in which the
resonance peak appears to go away for low energies.

We also briefly note the effects of doping, x, on the dis-
persion of the exciton. In our formulation, doping enters
through the dependence of the gauge-field mass m�x�, the
position of the nodes kF�x�, and the spin gap �sg�p ,x�. The
gauge-field mass scales with Tc.

19,23 Thus it decreases with
underdoping and vanishes at the underdoped superconduct-
ing transition. As we approach half filling, the nodal points
move towards �� /2 ,� /2� and kF increases upon underdop-
ing. This causes the spin gap to decrease.37 From our scaling
relations in Sec. III C, we see that the value of pc�x��m�x�
also decreases with underdoping. Based on these trends, we
can expect that with underdoping, and hence with decreasing
Tc: �i� the resonance energy �res decreases and merges with
the decreasing spin gap, and �ii� the incommensurability �inc
decreases and merges with the nodal points. These are in
qualitative agreement with experiment.10,38–40 We note, in
contrast, that if kF remains fixed while Tc changes in a set of
experiments, Eq. �29� predicts that the incommensurability
�inc will increase linearly with decreasing Tc. Underdoping,
however, increases kF, hence the available area for the in-
commensurate structure shrinks.

The resonance and the incommensurate features go away
at the transition, where m=Tc=0. As Tc→0 the resonance
merges in with the continuum response. In our theory, we
interpret the absence of a resonance in La-based cuprates
with an anomalously small Tc compared to other cuprate
families, as the difficulty to discern such a merging feature.
If this is indeed what is happening, the same behavior should
be seen in other families as Tc→0. Of course, it is possible
that the absence of the resonance in La cuprates is due to the
different physics, that would give rise to stripes, for example.

FIG. 3. �Color online� The dispersion branches of the exciton in
�a� the diagonal direction; and �b� the parallel direction, as shown in
the insets. The wave vectors are in reciprocal-lattice units, and the
origin is at �� ,��. The value of parameters used are v	 /vF=0.15,
kF=0.4�, and pc /vF=� /16. The continuum spin gap is shown by
the thick blue line and vanishes at the nodes.
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To conclude our discussion, we briefly compare our re-
sults to existing theoretical literature. The spin response in
cuprates has been studied extensively.41–55 The most com-
mon approach to the problem is the random-phase approxi-
mation �RPA� derived or postulated in the context of a spin-
fermion model such as the �extended� t-J model. With a
d-wave gap and by appropriately choosing the hopping am-
plitudes �fermiology� the resonance arises as the pole of the
RPA response at a step �van Hove� singularity of the bare
spin response. The dispersion of the resonance is the result of
the dynamical nesting of the energy spectrum.50 It has also
been argued that the d-wave gap as opposed to the fermiol-
ogy is the root of the resonance structure.46,49 This resonance
has been interpreted as a spin collective mode or exciton.
Various phenomenological parameters such as higher har-
monics of the superconducting gap,51 interlayer
couplings,52–54 and Fermi surface geometry48 have been
modeled to fit the experimental results.

Clearly, our work shares with the above studies the expla-
nation of the resonance as a spin-collective mode. We calcu-
late the spin response in the ladder approximation which is
also the basis of the RPA response above. However, the
mechanism that gives rise to the exciton differs in our ap-
proach. In fact, there is no simple RPA form for our re-
sponse, and the bare response Im�0�p ,�����2−p2���2

−p2� does not contain any step singularity.23 The exciton we
find is due to the strong coupling between the spinons and
vortex defects of the superconducting order parameter
through the Berry gauge field. Perhaps more importantly, the
dispersion found here �Fig. 3� persists, at least in our simpli-
fied analysis, to very low energies. The dispersion in the RPA
approach has a similar shape to ours but practically merges
into the continuum at a finite frequency below the commen-
surate �res. In most RPA studies the form of the spectrum
away from the nodes �e.g., the curvature of the Fermi sur-
face� is an important part of the explanation. We have, in
contrast, only kept the linear part of the spectrum, which is
justified within our low-energy theory, and assumed the mass
of the Berry gauge field is small enough for the high-energy
tail of the gauge-field propagator to be important. Finally, the
RPA studies are phenomenological and rely on numerical
calculations. They reproduce rather well many aspects of the
experiments. Our work is, on the other hand, an analytical
study within the effective QED3 theory of underdoped cu-
prates. To be able to proceed analytically we have relied on
various approximations. Although we have argued they are
reasonable, these approximations might be too restrictive to
contain all the physics revealed in neutron-scattering mea-
surements.

V. CONCLUSION

We have studied the problem of particle-hole bound states
of spinons �excitons� in the QED3 effective theory of a
phase-fluctuating d-wave superconductor. This theory con-
tains a massive gauge field with an exact conformal propa-
gator at high energies. We employed a ladder approximation
and derived an approximate Schrödinger-like equation for
the bound states. We discussed the conditions for the exis-

tence of excitons and concluded that they would exist in the
strong-coupling regime. We deduced the dispersion of the
excitons and compared our results with neutron-scattering
measurements in cuprates.

This work complements the earlier work of Herbut and
Lee,23 who discuss the continuum spin response in QED3 in
a low-energy approximation. It was found there that dispers-
ing incommensurate and commensurate peaks similar to the
resonance structure exist in the continuum. The qualitative
behavior of this continuum spectrum remains the same when
higher-energy effects are included, but the numerical values
of spin gap are reduced and are in fact close to the experi-
mentally observed range of resonance energies.37 Thus the
continuum spectrum must be accounted for in extracting in-
formation on the exciton spectrum from experiments with a
finite energy and momentum resolution.

Our vertex function is by definition gauge dependent. In
this work we used a nonlocal gauge-fixing term, 
D�p�p̂�p̂�,
in the gauge field propagator with a momentum-independent
parameter 
. However, this is not enough to ensure the gauge
invariance of the response for D�p� given by Eq. �2�: enforc-
ing the Ward-Takahashi identity for the bare spinon propaga-
tor yields29 a momentum-dependent parameter 2 /3�
�p�
�1, with the lower and higher bounds corresponding to the
ultraviolet and infrared limits, respectively. A
renormalization-group analysis on the original dual theory of
Ref. 17, from which one can derive the action in Eq. �1�, has
been performed in Ref. 26. It was found that the charge g
cannot be renormalized due to the nonanalyticity of the
spinon polarization �	p	. So, within our ladder approxima-
tion and for the bare value g=1, it is likely that the gauge-
invariant response is not in the strong-coupling regime. Fur-
ther study of the gauge-invariant response seems necessary.

More comprehensive numerical studies of this problem
will be very useful. They can be applied, at various stages, to
the original vertex equations, or to the Schrödinger equation
for the bound states. Finally, it is interesting to see whether
other spin-collective modes, say triplets, can be formed in
QED3.
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APPENDIX A: DERIVATION OF EQ. (18)

We decompose the generalized response into symmetric
and antisymmetric components as ��=1��+ i� ·�A� . Then,
keeping in mind that L=r
 p, from Eq. �17� we find


 p2

4
− � · � − � cosh2	L/2	D�r�����r,p�

+ i
�

2
sinh	L	D�r�L̂ · �A��r,p� = ��3��r� , �A1�
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 p2

4
− � · � + � sinh2	L/2	D�r�L̂L̂��A��r,p�

+ i
�

2
sinh	L	D�r�L̂���r,p� = 0. �A2�

This is a set of coupled Schrödinger equations. However, we
notice that the second equation contains a repulsive potential
and consequently has presumably no negative-energy bound
states. Thus for 	p	�0, its Green’s function drops exponen-
tially with increasing distance. In order to account for its
effects on the bound states of the first equation, we may then
solve the second equation for finite p simply as

�A��r,p� � − i
2�

p2 sinh	L	D�r�L̂���r,p� .

By plugging this expression into the first equation we have
��p /2�2−� ·�−Veff�r�����r , p�=��3��r�, where

Veff�r� = �
1 −
4�

p2 sinh2	L/2	D�r��cosh2	L/2	D�r� .

For 0� 	p	�2m, due to the exponential falloff of D�r�
�see Appendix B�, we have

4

p2 sinh2	L/2	D2�r� �
	r 
 p	2

16r2p2 D�r� .

Thus we obtain Eq. �18�. For 	p	�2m we still find the same
behavior as above at short distances. But, for large distance,
the ��2 term overwhelms the other term and we have

Veff
r �
1

	p	 − 2m
� � −

�2

p2 sinh2	L	D2�r� ,

as claimed in Eq. �20�.

APPENDIX B: REAL-SPACE GAUGE-FIELD
PROPAGATOR

Here we derive the real-space interaction D�r�. Since
there is a gap in the low-energy limit, we expect an expo-
nential decay in the long-distance behavior of D�r�. Also, the
1/ 	p	 tail in the high-energy limit should translate to a 1/r2

singularity at short distances. We start by noting that

D�r� =
m

4�r
�

0

�/2m

F�1/2z�sin�2m	r	z�dz �B1�

�D̃�r� −
m

8	r	
, �B2�

where � is an ultraviolet cutoff and

D̃�r� =
m

8�	r	�−�/2m

+�/2m 1 + z2

z2 tan−1 z sin�2m	r	z�dz . �B3�

We compute D̃�r� using contour integration. To this end,
we need to choose two branch cuts to define tan−1 z. We take
them to be �+i , + i�� and �−i ,−i�� such that z− i=r1ei�1 with
− 3�

2 ��1�
�
2 and z+ i=r2ei�2 with − �

2 ��2�
3�
2 . Then,

tan−1 z = −
i�

2
+ ln

r2

r1
+ i��2 − �1� .

We take a contour C that includes the real axis and closes on
itself in the upper half plane, except that it avoids the upper
branch cut by tracing the path C1=−��0+����0−� where
����= ��+ i ,�+ i��. So, we can now write

D̃�r� =
m

8�r
Im�
�

C

− �
C1

�1 + z2

z2 tan−1 ze2im	r	zdz�
=

m

8r
1 + �
1

� u2 − 1

u2 e−2m	r	udu� . �B4�

So, we find

D�r� =
m

8r
�

1

� u2 − 1

u2 e−2m	r	udu �B5�

=
e−2m	r	

16r2 −
m

8	r	
E2�2m	r	� . �B6�

Note that D�r��0. Here, En�x�=�1
�e−uxdu /un is the exponen-

tial integral. For n=2 it has the following asymptotic behav-
ior:

E2�x� = �e−x
1

x
−

2

x2 + ¯ � , x → � ,

1 + ��E − 1 + ln x�x + ¯ , x → 0,
�

where �E is the Euler-Mascheroni constant. It leads in turn to
the following asymptotic behavior for D�r�:

D�r → �� =
e−2m	r	

64m	r	3
+ O�	r	−4e−2m	r	� , �B7�

D�r → 0� =
1

16r2 −
m

4	r	
+ O�m2 ln�m	r	�� . �B8�
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