
Multicritical behavior of two-dimensional anisotropic antiferromagnets in a magnetic field

Andrea Pelissetto1 and Ettore Vicari2
1Dipartimento di Fisica dell’Università di Roma “La Sapienza” and INFN, Piazzale Aldo Moro 5, Roma 00185, Italy

2Dipartimento di Fisica dell’Università di Pisa and INFN, Largo Bruno Pontecono 3, Pisa 56127, Italy
�Received 19 February 2007; revised manuscript received 4 May 2007; published 27 July 2007�

We study the phase diagram and multicritical behavior of anisotropic Heisenberg antiferromagnets on a
square lattice in the presence of a magnetic field along the easy axis. We argue that, besides the Ising and XY
critical lines, the phase diagram presents a first-order spin-flop line starting at T=0, as in the three-dimensional
case. By using field-theory methods, we show that the multicritical point where these transition lines meet
cannot be O�3� symmetric and occurs at finite temperature. We also predict how the critical temperature of the
transition lines varies with the magnetic field and the uniaxial anisotropy in the limit of weak anisotropy.
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I. INTRODUCTION

Anisotropic antiferromagnets in an external magnetic field
have been studied for a long time. In order to determine their
phase diagram, they have often been modeled by using the
classical XXZ model �we only consider the case of a mag-
netic field along the easy axis�

H = J �
�mn�

S�n · S�m + A �
�mn�

Sm,zSn,z − H�
m

Sm,z, �1�

where �mn� indicates a nearest-neighbor pair. Equivalently,
one can use the Hamiltonian

H = J �
�mn�

S�n · S�m + D�
m

Sm,z
2 − H�

m

Sm,z, �2�

with a single-ion anisotropy term. The most interesting case
corresponds to uniaxial systems that show a complex phase
diagram. They correspond to Hamiltonians with A�0 or D
�0. Several quasi-two-dimensional uniaxial antiferromag-
nets have been studied experimentally, such as K2MnF4,
Rb2MnF4, and Rb2MnCl4.1–7

Some general features of the phase diagram of anisotropic
antiferromagnets are well known. Their phase diagram in the
T-H plane presents two critical lines, belonging to the Ising
and XY universality classes, respectively, which meet at a
multicritical point �MCP�. The nature of the MCP has been
the object of several theoretical studies. In three dimensions
�3D�, the issue has been recently studied using a field-theory
�FT� approach.8,9 The starting point is the O�n1� � O�n2�
symmetric Landau-Ginzburg-Wilson �LGW� �4 theory,10

HLGW =� ddx�1

2
�����1�2 + ����2�2	 +

1

2
�r1�1

2 + r2�2
2	

+
1

4!
�u10��1

2�2 + u20��2
2�2	 +

1

4
w0�1

2�2
2
 , �3�

where �1 and �2 are vector fields with n1 and n2 real com-
ponents, respectively. In our case, n1=2 and n2=1, so that
Hamiltonian �3� is symmetric under Z2 � O�2� transforma-
tions. The renormalization-group �RG� flow has been studied
by computing and analyzing high-order perturbative
expansions8,9 to five and six loops. It has been shown that the
stable fixed point �FP� of the theory is the biconal FP, and

that no enlargement of the symmetry to O�3� is asymptoti-
cally expected because the corresponding O�3� FP is
unstable, correcting earlier claims10 based on low-order
�-expansion calculations. The perturbative results allow us to
predict that the transition at the MCP is either continuous and
belongs to the biconal universality class or that it is of first
order—this occurs if the system is not in the attraction do-
main of the stable biconal FP. Which of these two possibili-
ties occurs is still an open issue. A mean-field analysis11,10

shows that the MCP is bicritical if �0�u10u20−9w0
2�0, and

tetracritical if �0�0. Figures 1 and 2 sketch the correspond-
ing phase diagrams. At one loop in the � expansion, the
biconal FP is associated with a tetracritical phase diagram.10

Since uniaxial antiferromagnets have a bicritical phase dia-
gram, this result predicts a first-order MCP as in Fig. 3. In
this case, first-order transitions are also expected along the
critical lines that separate the disordered phase from the or-
dered ones. They start at the MCP, extend up to tricritical
points, and are followed by lines of XY and Ising transitions.

The nature of the MCP is even more controversial in two
dimensions �2D�, where different scenarios have been put
forward; see, for example, Refs. 1–7 and 12–16. The exis-
tence of the Ising and XY Kosterlitz-Thouless �KT� critical

� �

T

g

XY

Ising

ordered phase 1

ordered phase 2

flop line

phase
disordered

FIG. 1. �Color online� Phase diagram with a bicritical point
where an Ising line and an XY line meet. Here, T is the temperature
and g is a second relevant parameter. The thick black line �“flop
line”� corresponds to a first-order transition.
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lines is well established. However, other features, such as the
existence of the spin-flop line, the nature of the MCP, and the
MCP temperature, are still the object of debate. For example,
the two different phase diagrams sketched in Fig. 4 have
apparently been both supported by recent numerical Monte
Carlo �MC� analyses: Ref. 15 claims that MC data are in
agreement with the phase diagram reported on the top, while
Ref. 16 supports that reported on the bottom. Similar contra-
dictions appear in the analyses of the experimental data.1–7

In this paper, we study the nature of the MCP in 2D
within the FT approach. Our main findings are the following:

�i� The MCP cannot be O�3� symmetric even at T=0.
Indeed, the magnetic field and the anisotropy give rise to an
infinite number of relevant perturbations of the O�3� FP.
Moreover, since at T=0 the order parameter is discontinuous
as H is varied,12,17 we expect a first-order spin-flop line. We
thus predict a finite-temperature MCP.

�ii� We study the limit of weak anisotropy. In this limit,
we determine how the critical temperature of the Ising and
KT transition lines and of the MCP vary with H and A.

Our results on the phase diagram of the classical XXZ
model �1� are also relevant for the phase diagram of quantum
spin-S XXZ models18,19 and related systems, such as the
hard-core boson Hubbard model.20,21

The paper is organized as follows. In Sec. II, we summa-
rize some general predictions for the isotropic model. In Sec.
III, we investigate the stability of the O�3� FP by using field
theory and give predictions for the critical temperature as a
function of H and A for small A and H. Finally, in Sec. IV,
we discuss the implications of the FT results and discuss the
possible phase diagrams that are compatible with them.

II. ISOTROPIC ANTIFERROMAGNET
IN TWO DIMENSIONS

For H=A=0, the critical behavior of model �1� is well
known. Indeed, if we perform the change of variables

�� n = �− 1��n	S�n, �4�

where �n	�nx+ny �n= �nx ,ny�	 in 2D ��n	�nx+ny +nz �n
= �nx ,ny ,nz�	 in 3D�, we obtain the ferromagnetic Heisenberg
model, for which several results are known.22,23 In particular,
if we define the two-point function

G�n� = �S�0 · S�n� , �5�

a universal critical behavior is observed for the staggered
susceptibility

�s = �
n

�− 1��n	G�n� �6�

and for the staggered second-moment correlation length

	s
2 =

1

4�s
�

n

�− 1��n	�n�2G�n� . �7�

Under the mapping �4�, �s and 	s go over to the standard
susceptibility and correlation length of the ferromagnetic
model. In 2D, the perturbative RG allows one to derive the
critical behavior of these two quantities for T→0.23 Using
the results of Refs. 24 and 25, we obtain

�s = C�	s
2 T

2

�2

�1 + 0.181 69T + 0.1334T2

+ 0.1346T3 + O�T4�	 ,
�8�

	s = C	e
2
/T T

2

��1 − 0.0914T − 0.1969T2 + O�T3�	 .

The constants C	 and C� cannot be determined in perturba-
tion theory. Numerical values are reported in Ref. 26:

C� = 93.25�3�, C	 = 0.012 478 3�12� . �9�

The asymptotic expansions �8� are quite accurate for T
�0.3, within a few percent at most.27,28
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FIG. 2. �Color online� Phase diagram with a tetracritical point
where an Ising line and an XY line meet. Here, T is the temperature
and g is a second relevant parameter.
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FIG. 3. �Color online� Phase diagram with a first-order bicritical
point. The thick black lines correspond to first-order transitions.
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III. CRITICAL AND MULTICRITICAL BEHAVIORS
FOR SMALL A AND H

A. General results

We consider the O�3� isotropic model at H=0 and add
terms that break the O�3� symmetry down to Z2� O�2� �for
instance, the magnetic field or the anisotropy�. The corre-
sponding general Hamiltonian is

Hgen = J �
�nm�

S�n · S�m + �Q�S� . �10�

If Q�S� is a relevant perturbation of the O�3� FP, the O�3�
critical point is a MCP in the full theory. In 3D, we can write
the singular part of the free energy10 for �→0 as

Fsing � ut
2−B�X�, X = u�ut

−�, �11�

where  and � are the O�3� specific-heat and crossover ex-
ponents, respectively, B�X� is a universal scaling function,
and ut and u� are the scaling fields associated with the tem-
perature and with �. In general, we expect

ut = t + k� , �12�

where k is a constant, t�T /TO�3�−1 is the reduced tempera-
ture, and TO�3� is the critical temperature of the isotropic
model. No such mixing between t and � occurs in u�, since
u� vanishes for �=0. Hence, we can take u�=�. The cross-
over exponent � is related to the RG dimension y� of the
operator Q that represents the perturbation of the MCP: �
�y��. Suppose now that the system has a continuous tran-
sition for ��0 at Tc���. Since the singular part of the free
energy close to a critical point behaves as �T−Tc�2−, we
must have B�Xc�=0, where Xc is the value of X obtained by
setting T=Tc���. This equation is solved by Xc=X±, where
X± are two constants that depend on the sign of �, such that
X+�0, X−�0. Hence, we obtain

��Tc���
TO�3�

− 1 + k��−�

= X±. �13�

It follows that

Tc��� = TO�3��1 + ��/X+�1/� − k� + ¯ 	, � � 0,

�14�
Tc��� = TO�3��1 + ��/X−�1/� − k� + ¯ 	, � � 0.

These expressions provide the � dependence of the critical
temperature for � small. Note that, depending on the sign of
�, Tc��� varies differently. The sign of � may also be rel-
evant to the nature of the phase transition. Indeed, the low-
temperature phase may be different depending on this sign:
in this case, one observes critical behaviors belonging to dif-
ferent universality classes for ��0 and ��0.

One can generalize these considerations to the case in
which there are two relevant perturbations Q1 and Q2 with
parameters �1 and �2. In this case, we can write

Fsing � ut
2−B�X1,X2� , �15�

with

X1 � u1ut
−�1, X2 � u2ut

−�2,

u1 = �1 + c1�2, u2 = �1 + c2�2, �16�

ut = t + k1�1 + k2�2,

where k1, k2, c1, and c2 are constants. We assume here that
there are two RG relevant operators that break the O�3� in-
variance, with RG dimensions y1�y2�0, as is the case for
anisotropic systems in the presence of a magnetic field. The
crossover exponents are �1=�y1 and �2=�y2. The scaling
fields u1 and u2 are linear combinations �and, beyond linear
order, generic functions� of �1 and �2, due to the fact that the
lattice operators Q1 and Q2 generically couple both RG op-
erators.

P
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KT
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KT
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FIG. 4. �Color online� Phase diagrams in the T-H plane in the
presence of easy-axis anisotropy A�0 in 2D. The top figure shows
a first-order transition line separating the antiferromagnetic �AF�
and spin-flop �SF� phases, with a bicritical point where the Ising �Is�
and the XY Kosterlitz-Thouless �KT� critical lines meet. In the bot-
tom figure, the Ising and KT lines meet at a zero-temperature O�3�-
symmetric MCP.
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Let us now assume that, for �1 and �2 small, the model
shows generically two types of phase transitions belonging
to different universality classes and that, for specific values
of the ratio �1 /�2, multicritical transitions occur. As before,
we wish to derive the dependence of the critical temperature
as a function of �1 and �2 for �1 ,�2→0. Since

X2 = u2�u1�−�2/�1�X1��2/�1, �17�

we can rewrite Eq. �15� as

Fsing � ut
2−B±�X1,u2�u1�−�2/�1� , �18�

where we have introduced two different functions depending
on the sign of u1. If u1�0, the relevant function is B+�x ,y�;
if u1�0, one should consider B−�x ,y�. At the critical point,
we must have

B±�X1c,u2�u1�−�2/�1� = 0, �19�

which implies

X1c = F±�u2�u1�−�2/�1� , �20�

with F+�x��0 and F−�x��0. We obtain

Tc

TO�3�
− 1 � � u1

F±�u2�u1�−�2/�1��1/�1

− k1�1 − k2�2. �21�

Let us now discuss some limiting cases. First, assume that
u2�u1�−�2/�1 �1. This implies that X2 is small compared to X1,
so that we can neglect X2. We are back to the case considered
before, so that we can use Eq. �14�. Depending on the sign of
u1, we have

�1� if u1�0, the phase transition is located at

Tc

TO�3�
− 1 �  u1

X+
�1/�1

− k1�1 − k2�2, �22�

where X+�0;
�2� if u1�0, there is a phase transition located at

Tc

TO�3�
− 1 �  u1

X−
�1/�1

− k1�1 − k2�2, �23�

where X−�0.
By comparing with Eq. �21�, we obtain F±�0�=X±.
The second interesting limiting case corresponds to u1

→0. In this case, X1 can be neglected and we need to con-
sider only X2. Therefore, depending on the sign of u2, we
have a MCP located at

Tc

TO�3�
− 1 �  u2

Xmc,±
�1/�2

− k1�1 − k2�2, �24�

where Xmc,+�0 and Xmc,−�0. Consistency with Eq. �21� re-
quires

F±�x� � ± �x/Xmc,+�−�1/�2 �25�

for x→ +�, and

F±�x� � ± �x/Xmc,−�−�1/�2 �26�

for x→−�. One may devise simple interpolations that are
exact for x→0 and x→�. If, for instance, u1�0 and u2

�0, we may consider the approximate expression

Tc

TO�3�
− 1 � u1 + bu2

�1/�2

X+
�1/�1

− k1�1 − k2�2, �27�

where b=X+Xmc,+
−�1/�2. The functions F±�x� are crossover func-

tions that interpolate between the two regimes, in which only
one of the relevant operators is present. As far as the nature
of the transition is concerned, the relevant quantity is the
sign of u1. In general, we expect that the transition belongs to
different universality classes depending on the sign of u1. For
u1=0, the leading relevant operator decouples and, thus, we
obtain a MCP whose nature may depend on the sign of u2.

The previous results apply to the three-dimensional
model, but cannot be used directly in 2D, since in this case
TO�3�=0 and the correlation-length exponent � is not defined
�the correlation length increases exponentially, as 	s�e2
/T

for �=0�. In order to investigate the two-dimensional case,
let us consider again Hamiltonian �10�; let us assume that
Q�S� renormalizes multiplicatively under RG transforma-
tions and that its RG dimension is 2 with logarithmic correc-
tions �as we shall see, this is the case of interest�. The per-
turbative analysis of the scaling behavior of the free energy
is analogous to that presented in Ref. 29. The correct scaling
variable is

Y = u� T

2

�p

e4
/T � u� T

2

�p−2

	s
2, �28�

where we used Eq. �8�, and p is a power that can be com-
puted by using the one-loop expression of the anomalous
dimension of Q. Then, the singular part of the free energy is
given by

Fsing � 	s
−2B�Y� . �29�

The critical line is again characterized by Y =Y±, i.e., by

� Tc

2

�p

e4
/Tc = Y±, �30�

with Y+�0 and Y−�0. Solving this equation for Tc, we
obtain

Tc =
4


ln�Y±/��
�1 − p

ln 1
2 ln�Y±/��
ln�Y±/��

+ ¯ � . �31�

The case of two relevant perturbations can be treated analo-
gously. We define two scaling variables Y1 and Y2 as

Yi = ui T

2

�pi

e4
/T, i = 1,2, �32�

and write the free energy as

Fsing = 	s
−2B�Y1,Y2� . �33�

If p1� p2, the critical behavior depends on the sign of u1: For
u1�0 and u1�0, one obtains different critical behaviors. In
the limit in which Y2 is small and can be neglected, we can
write
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Tc =
4


ln�Y±/u1�
�1 − p1

ln 1
2 ln�Y±/u1�
ln�Y±/u1�

� , �34�

where Y± are two constants such that Y+�0 and Y−�0. As
observed in the three-dimensional case, Eq. �34� �it is the
analog of Eqs. �22� and �23�	 holds only if Y2 can be ne-
glected. Since

Y2 =
u2

u1
Y1 T

2

�p2−p1

�
u2

u1
Y1�1

2
lnY1

u1
��p1−p2

, �35�

Eq. �34� holds only in the parameter region in which

u2 � u1�1

2
lnY±

u1
��p2−p1

, �36�

i.e., far from the MCP at u1=0. For �u1�→0, this region
shrinks to zero and, thus, a correct formula requires the full
crossover function.

For u1=0, we have a MCP at

Tc =
4


ln�Ymc,±/u2�
�1 − p2

ln 1
2 ln�Ymc,±/u2�
ln�Ymc,±/u2�

� , �37�

depending on the sign of u2.

B. Effective Hamiltonians

In order to apply the results of the previous section to the
XXZ model, let us now derive an effective ferromagnetic
Hamiltonian for model �1�. For this purpose, we consider the
ferromagnetic Hamiltonian corresponding to Eq. �1� under
the mapping �4�,

H f = − �
�nm�

�� n · �� m − A �
�nm�

�n,z�m,z + H�
n

�− 1��n	�n,z,

�38�

where we set J=1 for convenience. We argue that Hamil-
tonian �38� is equivalent to the Hamiltonian

H* = − �
�nm�

�� n · �� m + �
l�1

l�T,h,a�O2l��� , �39�

where O2l��� are the zero-momentum dimension-zero spin-
2l perturbations of the O�3� FP, h�H /T, a�A /T �note that
the partition function depends on h and a�. The operators
O2l��� can be constructed starting from the symmetric trace-
less operators of degree 2l, see, e.g., Ref. 30. Explicitly, for
l=1,2, we have

O2��� = �
n
�n,z

2 −
1

3
� ,

�40�

O4��� = �
n
�n,z

4 −
6

7
�n,z

2 +
3

35
� .

The functions l�T ,h ,a� are smooth and vanish for h→0
and a→0. It should be stressed that the two Hamiltonians
are equivalent only for the computation of the leading critical
behavior of long-distance quantities.

The equivalence of H f and H*, for what concerns the
critical behavior, can be justified on the basis of the results of

Ref. 10 obtained in the usual LGW approach. In the absence
of anisotropy and magnetic field, i.e., for A=H=0, model �1�
is O�3� invariant and, thus, its critical behavior is described
by the usual LGW Hamiltonian

H�4 =� ddx�1

2�
�

�����2 +
r

2
�2 +

u

4!
�4� , �41�

where �� is a three-component vector. The magnetic field and

the anisotropy break the O�3� invariance. If we define ��

= ��� ,��, where �� is a two-component vector and � a scalar,
the LGW Hamiltonian �3� corresponding to Eq. �1� can be
written as10

H = H�4 +� ddx�f22P22 + f42P42 + f44P44	 , �42�

where

P22 = �2 −
1

3
�2,

P42 = �2P22, �43�

P44 = �4 −
6

7
�2�2 +

3

35
��2�2,

and f ij are coupling constants depending on a, h2, and T. We
have introduced here the homogeneous polynomial Pml. The
polynomial Pll has degree l and transforms irreducibly as a
spin-l representation of the O�3� group.31 Polynomials Pml,
m� l, are defined as Pml���2��m−l�/2Pll. The classification of
the zero-momentum perturbations in terms of spin values is
particularly convenient, since polynomials with different
spins do not mix under RG transformations and the RG di-
mensions yml do not depend on the particular component of
the spin-l representation. We refer to Ref. 8 for details. Thus,
in the LGW approach, the O�3� Hamiltonian is perturbed by
spin-2 and spin-4 perturbations. If one considers higher pow-
ers of the fields, also spin-6, spin-8,…, perturbations appear.
They are irrelevant in 3D and can, thus, be neglected. In 2D,
instead, they should be kept into account, since the field � is
dimensionless and any polynomial of the fields is relevant.32

C. Three-dimensional behavior

In 3D, the critical behavior is well known:
�i� In the absence of anisotropy, i.e., for A=0, there is an

XY critical line TXY�H� ending at the O�3� critical point for
H=0. The phase diagram is symmetric under H→−H.

�ii� In the absence of magnetic field, i.e., for H=0, there
are two critical lines: an XY critical line for A�0 and an
Ising critical line for A�0, which meet at the O�3� critical
point as A→0.

�iii� If A and H are both present, one observes two differ-
ent phase diagrams depending on the sign of A. If A is nega-
tive, there is an XY transition. If A is positive, there is an
Ising critical line for small values of H and an XY critical
line for large H; the two lines meet at a MCP corresponding
to a nonvanishing value of H.
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We wish now to determine the dependence of the critical
temperatures on A and H close to the O�3� point. For this
purpose, we investigate the relevance of the perturbations. In
3D, we expect that only polynomials of degree 2 or 4 are
relevant. Thus, P22, P42, and P44 are the only quantities that
should be considered. The RG analysis is reported in Ref. 8
and indicates that P42 is irrelevant, while P22 and P44 are
relevant. Perturbative FT calculations provide estimates of
the corresponding RG dimensions:8,33 y22�1.79, y44�0.01,
and y42�−0.55. The relevant scaling fields are u1=a+c1h2

associated with P22 and u2=a+c2h2 associated with P44. The
scaling fields depend on h2, because of the symmetry under
H→−H transformations. Since P22 is the most relevant op-
erator, the critical behavior depends on the sign of u1. We
obtain XY behavior for a+c1h2�0 and Ising behavior for
a+c1h2�0. Since for A=0 only the XY transition is ob-
served, the constant c1 must be negative. Hence, Ising behav-
ior can only be observed if a is positive and h2 is not too
large, in agreement with experiments. The critical tempera-
tures behave as

Tc,XY − TO�3� = bXY�− a − c1h2�1/�22 − k1a − k2h2,

�44�
Tc,Is − TO�3� = bIs�a + c1h2�1/�22 − k1a − k2h2,

where bXY, bIs, k1, and k2 are constants, with bXY �0 and
bIs�0. Here,8 �22=1.260�11� and 1/�22=0.794�7�.

Multicritical behavior is observed for a=−c1h2. Note that,
since c1 is negative, this equality can only occur for a�0.
Since 1/�44�100, the leading nonanalytic term with expo-
nent 1 /�44 cannot be observed in practice, and therefore,

Tc,MC − TO�3� = − k1a − k2h2. �45�

D. Two-dimensional behavior

The critical behavior in 2D is analogous to that observed
in 3D. For A�0, there is an XY KT transition for any H,
while for A�0, there is an Ising transition for small �H�, an
XY transition for large �H�, and a MCP in between. The phase
diagram in the two limiting cases A=0 and H=0 is reported
in Figs. 5 and 6.

To compute the position of the critical point, we should
investigate the relevance of the perturbations Pml. As shown
in Ref. 32, in 2D, any spin-l perturbation Pll is relevant at the
O�3� FP, since the corresponding RG dimension yll is posi-
tive: yll=2 apart from logarithms which can be computed by
using perturbation theory. One can also argue that perturba-

tions Pml with m� l can be neglected. Indeed, spin waves,
which are rotations of the spins, are the critical modes of the
ferromagnetic O�3� model. Changes in the size of the field �
should not be critical. Therefore, Pml���2��m−l�/2Pll should
be equivalent to ��0

2��m−l�/2Pll� Pll, where �0
2 is the average

of �2. Thus, one should only consider the operators Pll.
Equation �39� then follows immediately. The equivalence of
model �1� with Hamiltonian �39� was already conjectured in
Ref. 34, even though there only the leading spin-2 term was
explicitly considered.

The relevant scaling variables are

Y2l = ul T

2

�l�2l+1�+2

e4
/T, �46�

which are associated with the spin-2l perturbation. The
power l�2l+1�+2 of T, which is universal, has been deter-
mined by using the perturbative results of Ref. 32, which
provide the anomalous dimension of any zero-dimension
spin-l perturbation of the 2D N-vector model. The scaling
fields ul are linear combinations of the parameters that break
the O�3� invariance. As before, we write them as ul=a
+clh

2. As a consequence, the free energy can be written as

Fsing � 	 −2F̂�Y2,Y4, . . . � . �47�

Note that different powers of T appear in definition �46�. The
most relevant term for T→0 corresponds to the spin-2 op-
erator, since Y2l�Y2Tl�2l+1�−3 and l�2l+1�−3 is positive for
l�2. Next, one should consider the spin-4 scaling variable
Y4. If one considers the scaling limit at fixed Y2�0 or Y4
�0, the higher-order spin variables go to zero as T→0 and,
thus, represent corrections to scaling proportional to powers
of T. Thus, in the scaling limit one can neglect Y6 ,Y8 , . . .,
and write

Fsing � 	 −2F2�Y2,Y4� , �48�

which coincides with Eq. �33�. We can thus use the above-
obtained results.

�i� For u1�0, i.e., a+c1h2�0, there is a KT transition at

T

H KT

FIG. 5. �Color online� Phase diagram of isotropic antiferromag-
nets in the T-H plane �A=0�.

T

A

KT

Is

FIG. 6. �Color online� Phase diagram of anisotropic antiferro-
magnets in the T-A plane for H=0.
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Tc,XY =
4


ln�YXY/u1�
�1 − 5

ln 1
2 ln�YXY/u1�
ln�YXY/u1�

� , �49�

where YXY �0. Note that the occurrence of an XY transition
for a=0 implies c1�0 as in the three-dimensional case.

�ii� For u1�0, i.e., a+c1h2�0, there is an Ising transition
at

Tc,Is =
4


ln�YIs/u1�
�1 − 5

ln 1
2 ln�YIs/u1�
ln�YIs/u1�

� , �50�

where YIs�0. Since c1�0, this transition can only occur for
a�0 and small h2.

�iii� For u1=0, i.e., a+c1h2=0, there is a MCP at

Tc,MC =
4


ln�YMC/h2�
�1 − 12

ln 1
2 ln�YMC/h2�
ln�YMC/h2�

� , �51�

where YMC�0. Note that since the MCP occurs for a=
−c1h2, we can replace u2=a+c2h2 simply with h2.

Note that, as discussed before, Eqs. �49� and �50� are
valid only as long as condition �36� is satisfied, i.e., far from
the MCP u1=0.

IV. DISCUSSION AND CONCLUSIONS

In Sec. III D, we discussed the behavior of the classical
two-dimensional XXZ model �1� on a square lattice in the
presence of a magnetic field along the easy axis, for A and H
small, focusing on the dependence of the critical temperature
on A and H. In this section, we wish to discuss the possible
scenarios for the nature of the MCP.

First, we exclude the possibility that the MCP is O�3�
symmetric and located at T=0, as shown on the bottom in
Fig. 4. This is implicit in the results of Sec. III D, but we
wish to present here an extended discussion. There are es-
sentially two observations that exclude an O�3� MCP.

�i� For T=0, the XXZ model �1� on a square lattice can be
easily solved.12,17 At fixed A�0, one finds two critical val-
ues of the magnetic field:

Hc1 = 4J�2A + A2,
�52�

Hc2 = 4J�2 + A� .

For �H��Hc1, the system is in a fully aligned antiferromag-
netic configuration; for Hc1� �H��Hc2, the system is in a
spin-flop configuration; while for �H��Hc2, all spins are
aligned with the magnetic field. The spin-flop transition at
�H�=Hc1 is of first order, since the order parameter, the stag-
gered magnetization, has a discontinuity. If the transition
were at T=0, the MCP should coincide with the spin-flop
point �H�=Hc1. Thus, the magnetization, the susceptibility,
and all critical quantities would have a discontinuity at T
=0 when varying H. It is unclear how an O�3� critical be-
havior might be consistent with this discontinuity. On the
other hand, the first-order behavior at T=0 is consistent with
the existence of a first-order spin-flop line.

�2� The second objection is based on the LGW analysis
presented in Sec. III B. The O�3� FP is unstable under an

infinite number of perturbations. Thus, an infinite number of
tunings is needed to recover the O�3� symmetry.

On the basis of these remarks, a phase diagram with a
zero-temperature O�3�-symmetric MCP, as put forward in
some analyses5,16 of experimental and numerical MC results,
appears untenable. These conclusions are analogous to those
that hold in 3D.8,9 It should be noted that in 2D the argument
is much stronger. While in 3D these conclusions are based on
the numerical determination of the RG dimension of the
spin-4 perturbation, in 2D they follow from the relevance of
the spin-l perturbations, which is an exact result. Moreover,
while in 3D the O�3� behavior can be obtained by tuning a
single additional parameter in such a way as to decouple
both the spin-2 and spin-4 operators, in 2D the O�3� behavior
can never be obtained at finite A, since an infinite number of
tunings is needed.

Since the two-dimensional MCP cannot have O�3� sym-
metry, its nature is an open problem. We can show that the
decoupled FP, corresponding to a multicritical behavior in
which the two order parameters are effectively uncoupled, is
stable. The stability of the decoupled FP can be proven by
nonperturbative arguments.35 Indeed, the RG dimension yw
of the operator �1

2�2
2 that couples the two order parameters

in the LGW theory �3� is given by

yw =
1

�KT
+

1

�Is
− 2 = − 1 � 0, �53�

since �KT=� and �Is=1. Therefore, the perturbation is irrel-
evant and the decoupled FP is stable. Note that a decoupled
MCP is always tetracritical, as in Fig. 2.

The stability of the decoupled FP and the instability of the
O�3� FP are also consistent with some general arguments.36

At a MCP, the exponent � describing the critical behavior of
the correlation function of the order parameter is replaced by
a matrix �ij, see, e.g., Ref. 10. The conjecture of Ref. 36
states that Tr � should have a maximum at the stable FP.
This indeed occurs in the present case: at the decoupled FP,
we have Tr �=3/4, while at the O�3� FP, Tr �=0.

In Fig. 7, we show a plausible phase diagram, with three
transition lines: a spin-flop first-order transition line, an Ising
line, and a KT critical line. The phase diagram inside the
blob is an open issue. Some possibilities are shown in Fig. 8:

�1� Figure 8�a� presents a bicritical point, which may be
associated with a stable biconal FP with symmetry Z2
� O�2�, whose attraction domain is in the bicritical region of
the bare parameters of the LGW �4 theory. We should say
that we do not have any evidence for the existence of such a
FP.

�2� In Fig. 8�b�, we show a tetracritical point, where the
Ising and KT lines intersect each other. In this case, the MCP
may be controlled by the stable decoupled FP discussed
above.

�3� In Fig. 8�c�, the transition at the MCP is of first order.
Starting from the MCP, the first-order transitions extend up
to tricritical points, where the Ising and KT critical lines
start. This occurs if the system is outside the attraction do-
main of the stable FP of the RG flow. This is the phase
diagram expected in 3D and shown in Fig. 3.

MULTICRITICAL BEHAVIOR OF TWO-DIMENSIONAL… PHYSICAL REVIEW B 76, 024436 �2007�

024436-7



�4� Finally, we cannot exclude phase diagrams like those
shown in Figs. 8�d� and 8�e�. Figure 8�d� is apparently ob-
served in antiferromagnets with single-ion anisotropy and
more than nearest-neighbor interactions,37 and also in hard-
core boson systems,21 which are equivalent to anisotropic
spin-1 /2 XXZ systems in a magnetic field.

Of course, further experimental and theoretical investiga-
tions are called for to conclusively settle this issue.

We finally mention that the results presented here are ex-
pected to apply to the XXZ model on generic bipartite lat-
tices. On the other hand, the XXZ model �1� on a triangular
lattice or on a stacked triangular lattice �and, more generally,
on lattices that are not bipartite� is expected to show a dif-
ferent multicritical behavior, essentially because of frustra-
tion. Reference 38 reports a study of the possible phase dia-
grams in the mean-field approximation and a FT study of the
three-dimensional RG flow.

We thank Pasquale Calabrese for useful discussions.
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