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We study the phase diagram of a quasi-two-dimensional magnetic system Rb2MnF4 with Monte Carlo
simulations of a classical Heisenberg spin Hamiltonian which includes the dipolar interactions between Mn2+

spins. Our simulations reveal an Ising-like antiferromagnetic phase at low magnetic fields and an XY phase at
high magnetic fields. The boundary between Ising and XY phases is analyzed with a recently proposed
finite-size scaling technique and found to be consistent with a bicritical point at T=0. We discuss the compu-
tational techniques used to handle the weak dipolar interaction and the difference between our phase diagram
and the experimental results.
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I. INTRODUCTION

The phase diagram of anisotropic Heisenberg antiferro-
magnets has been studied with renormalization group �RG�
methods1–5 and Monte Carlo simulations.6–9 In three dimen-
sions, RG calculations for 4−� dimensions and Monte Carlo
simulations have found an Ising-like antiferromagnetic �AF�
phase at low magnetic fields and an XY phase at high fields,
separated by a first order spin-flop transition line. The spin-
flop transition line terminates at a bicritical point �BCP�,
where it meets the phase boundary between the XY phase
and the paramagnetic �PM� phase, and the AF-PM phase
boundary. In two dimensions, due to the Mermin-Wagner
theorem,10 a BCP with O�3� symmetry has to be at zero
temperature, which was confirmed by RG calculations in 2
+� dimensions for the anisotropic nonlinear � model.3,5 The
XY-PM phase boundary and AF-PM phase boundary are ex-
ponentially close to each other, while the PM phase sand-
wiched in between narrows as exp�−4� /T�. On the other
hand, the continuum field theory of this model contains an
infinite number of relevant perturbations beyond the aniso-
tropic nonlinear � model. Thus, it is also valid to argue that
the multicritical point may not be O�3� symmetric and occurs
at a finite temperature.11 One would look for numerical evi-
dence that distinguishes different scenarios. However, Monte
Carlo simulations have been unable to trace the phase bound-
aries of the XY and AF phases to sufficiently low tempera-
tures due to the exponentially large correlation length. Re-
cently, a novel finite-size scaling analysis was used to
interpret the data from Monte Carlo simulations.9 It was
found that the apparent spin-flop transition line was actually
consistent with a zero-temperature BCP. An additional con-
tinuous degeneracy in the ground state at the spin-flop field
has also been recently discovered.12 The ground state actu-
ally bears some similarities to a tetracritical phase; thus, it
was argued that the “hidden bicritical point” might be rela-
beled as the “hidden tetracritical point.”

In real materials, an ideal two-dimensional Heisenberg
spin system has not been found, since in a three-dimensional
system, the interactions between spins can never be com-
pletely restricted to two dimensions. Nevertheless, Rb2MnF4

is a very good quasi-two-dimensional Heisenberg antiferro-
magnet. In this layered compound, Mn2+ ions with spin 5/2
reside on �001� planes, as shown in Fig. 1. Adjacent planes
are widely separated by Rb+ ions, so that the exchange inter-
actions between magnetic ions in different planes are negli-
gible. The antiferromagnetic order parameter has been accu-
rately measured with neutron scattering experiments13 and
analyzed with spin-wave theory.14 The theoretical model
with only nearest neighbor exchanges and a staggered mag-
netic field accounts for the experimental data very well. In
the right hand portion of Fig. 1, we show a schematic phase
diagram that summarizes the prevailing theoretical alterna-
tives and experimental data for Rb2MnF4. On the other hand,
the large magnetic moment of Mn2+ ions makes it possible to
model the spins with classical vectors. Therefore, it is an
excellent system to test theoretical predictions for two-
dimensional Heisenberg spin systems, given that the effec-
tive anisotropy due to the dipolar interaction is accounted
for.15 Obviously, the dipolar interaction plays an important

FIG. 1. �Color online� The unit cell of Rb2MnF4 and the sche-
matic phase diagram. If the BCP is at T=0, the dashed line actually
represents two very close second-order phase boundaries. If the
BCP is at a finite temperature, the dashed line represents a single
first-order phase transition. The theoretical XY phase is found to
have transverse AF order in neutron scattering experiments.
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role in this system, as it provides the effective anisotropy that
stabilizes the low-field AF phase and could mediate a dimen-
sional crossover from two dimensions to three dimensions in
the real material. With the in-plane isotropic exchange inter-
action and the dipolar interaction, the Néel temperature at
zero field was calculated by Monte Carlo simulations to be
39.7±0.1 K,16 slightly higher than the experimental value
38.5±1.0 K.14,17 Following the previous research,16 we per-
formed extensive Monte Carlo simulations in both zero and
nonzero magnetic fields to construct the full phase diagram
and compare it with the experiments.18 We hope to see our
model reproduce the “apparent” BCP at approximately T
=30 K, as seen in the experiments. To determine the phase
diagram in the thermodynamic limit, we used different finite
size scaling analyses for different phase boundaries. In par-
ticular, the apparent spin-flop transition has to be examined
with the novel finite-size scaling method developed in Ref. 9,
and it is actually found to be consistent with a zero-
temperature BCP.

The Hamiltonian of our model reads

H = JS�S + 1��
�i,j�

Si · S j −
US2

2 �
i�j,�,�

Si
�Dij

��Sj
�

− �
i

Sg�Bh · Si, �1�

where S=5/2, Si are three-dimensional unit vectors, J
=0.6544 meV, the dipolar interaction constant19 U
=0.214 727 meV Å3, the Landé g factor g=2, the external
magnetic field h is fixed in the z direction, and the summa-
tion over �i , j� is over all nearest neighbor pairs. The dipolar
interaction tensor D is given by

Dij
�� = �3rij

�rij
� − rij

2 ����rij
−5. �2�

The Mn2+ ions are located on a body centered tetragonal
lattice, with in-plane lattice constant a=4.2 Å and c-axis lat-
tice constant c=13.77 Å. However, it is known that the di-
polar interaction between two tetragonal sublattices nearly
vanishes due to the geometric arrangement of the
moments.13,20 Therefore, besides a few simulations with two
sublattices performed to check the validity of this assump-
tion, we included only one sublattice in most of our simula-
tions, which allowed us to simplify the dipolar summation
and to run simulations for larger systems. Because the inter-
layer interaction is weak, we have included up to four layers
of spins in our simulations, with open boundary condition in
the z direction. Each layer is a square lattice with lattice
constant equal to a and the distance between adjacent layers
equal to c.

The Hamiltonian �Eq. �1�� is an approximation of the ac-
tual quantum mechanical Hamiltonian, where spin operators
have been replaced with classical vector spins SSi or
�S�S+1�Si. Here, some ambiguities arise as to whether S or
�S�S+1� should be used. For the dipolar term, we assume
that the magnetic field generated by a spin is a dipole field of
a magnetic moment gS�B, and the dipolar interaction energy
of a second spin with moment gS�B in this field is clearly
proportional to S2. This approximation guarantees that the

total dipolar energy of a ferromagnetic configuration agrees
with macroscopic classical magnetostatics of bulk materials.
The exchange term is more ambiguous. One can argue that
S�S+1� follows from the quantum mechanical origin of the
exchange interaction. After all, the appropriate constant
should reproduce the correct spin-wave spectrum or the criti-
cal temperature within acceptable error bars. There is no
guarantee that both of them can be accurately reproduced
with the same classical approximation. In general, by adopt-
ing the classical approximation to spins, one admits an error
possibly of order 1 /S in some quantities. To justify our
choice in Eq. �1�, we first found that the critical temperature
at zero field of Eq. �1� was quite close to the experimental
value, then we turned on the magnetic fields to explore the
full phase diagram. It is unlikely that the entire experimental
phase diagram would be reproduced exactly including the
spin-flop field. However, our Monte Carlo simulations
should exhibit the same critical behavior as the real material,
given that they are in the same universality class. In particu-
lar, we want to test if there is a “real” BCP at a finite tem-
perature due to the long-range nature of the dipolar interac-
tion.

This paper is organized as follows: In Sec. II, we briefly
review the simulation techniques used in this research, espe-
cially those designed to handle long-range, but very weak,
dipolar interaction. In Sec. III, we present the results from
simulations performed near each phase boundary. In Sec. IV,
we discuss the results and give our conclusions.

II. MONTE CARLO METHODS

A. Dipole summation

Direct evaluation of the dipolar energy in Eq. �1� should
be avoided because the computational cost of direct evalua-
tion scales as O�N2�, where N is the number of spins, and the
periodic boundary condition needs to be satisfied. In our
simulations, we have as many as 8�104 spins and need to
evaluate the dipolar energy repeatedly. Therefore, a fast al-
gorithm for dipolar interaction is required. We used the Ben-
son and Mills algorithm21 which employs the fast Fourier
transformation of the spins to reduce the computational cost
to O�N ln N�. After Fourier transform, the dipolar sum in Eq.
�1� can be written as

�
n,n�,�,�,q

Dnn�
�� �q�Sn

��q�Sn�
� �− q� , �3�

where n and n� label the different layers of the system, q is
the in-plane wave vector, and Dnn�

�� �q� is the Fourier trans-
form of Dij

��. This expression is less costly to evaluate than
Eq. �2�, since the double summation over all the spins is
replaced by a single summation over the wave vectors, and
Dnn�

�� �q� are constants which can be calculated quickly in the
initialization stage of the simulation. Explicit expressions for
Dnn�

�� �q� were first derived in Ref. 21, and were reproduced in
Ref. 22 with more detail and clarity.
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B. Monte Carlo updating scheme and histogram reweighting

In Monte Carlo simulations of magnetic spin systems,
cluster algorithms offer the benefit of reduced correlation
times. In Ref. 16, the Wolff cluster algorithm23 was used to
generate new spin configurations based on the isotropic ex-
change term in the Hamiltonian. Although the Wolff algo-
rithm is rejection-free by itself, the new configuration then
has to be accepted or rejected with a Metropolis algorithm
according to its dipolar and Zeeman energy. The changes in
the dipolar energy and Zeeman energy are roughly propor-
tional to the size of the cluster generated by the Wolff algo-
rithm. When these changes are larger than kBT, the number
of rejections rapidly increases, leading to a substantially
lower efficiency. This problem occurs when the magnetic
field is typically several tesla in our simulations. On the other
hand, in the paramagnetic phase or one of the ordered
phases, the cluster size is small, and the change in dipolar
energy is also small. It, thus, becomes redundant to evaluate
the dipolar energy after every small change in the spin con-
figuration.

Since there are no rejection free algorithms for the dipolar
interaction, and the dipolar energy only contributes a fraction
of about 0.1% to the total energy in our simulations, one of
our strategies to handle the dipolar interaction is to accumu-
late a series of single spin flips before evaluating the dipolar
energy, then accept or reject this series of flips as a whole
with the Metropolis algorithm depending on the change of
the dipolar energy. The number of single spin flips for each
Metropolis step can be adjusted in the simulation so that the
average acceptance ratio is about 0.5, at which the Metropo-
lis algorithm is most efficient. We used the rejection-free
heat-bath algorithm24–26 to perform single spin flips, which
handles both the isotropic exchange and Zeeman terms in the
Hamiltonian on the same footing.

Although fast Fourier transform significantly reduces the
computational cost of dipolar interaction, this part is still the
bottleneck of the simulation. Therefore, we want to further
reduce the number of dipolar energy evaluations. To this end,
we separate a short-range dipolar interaction from the full
dipolar interaction. The short-range part can be defined with
a cutoff in distance.27 In our simulations, we have included
the up to fifth nearest in-plane neighbor of each spin, and the
spins directly above or below it in the adjacent layer of the
same sublattice, to form the short-range dipolar interaction.
This short-range dipolar interaction can be handled with the
heat-bath algorithm on the same footing with the exchange
and the Zeeman term. The extra cost of evaluating local
fields produced by the additional 22 neighboring spins is
insignificant. With this modification in single spin updates,
the Metropolis algorithm should be performed with respect
to the change in the long-range dipolar interaction, i.e., the
difference between the total dipolar energy and the short-
range dipolar energy. Since this long-range dipolar energy is
typically a small fraction �about 1%� of the total dipolar
energy, it is justified to accumulate many single spin flips
before refreshing the total dipolar energy.

We have found that the long-range dipolar energy in our
simulations is usually a fraction of about 0.001% of the total
energy, which is actually comparable to kBT. This allows us

to further simplify the above algorithm by removing the Me-
tropolis step in the simulation, while we simply calculate and
record the full dipolar energy for each configuration whose
energies and magnetizations are stored for histogram re-
weighting. In the end, we get a Markov chain of configura-
tions from the simulation generated with a modified Hamil-
tonian,

H� = Hexchange + HZeeman + Hshort, �4�

where the first two terms are the exchange and Zeeman terms
in Eq. �1�, and the last term is the short-range dipolar inter-
action. For those configurations selected for computing ther-
modynamic averages, we calculate and record H�, Hshort,
their full dipolar energy Hdipole, staggered magnetization of
each layer

Ml
† =

1

L2�
i,j

�− 1�i+jSijl, �5�

where L is the size of each layer and the index l is the layer
index, and the average magnetization per spin in the z direc-
tion,

Mz =
1

L2Nl
�
i,j,l

Sijl
z , �6�

where Nl is the number of layers in the system. As we have
observed that the interlayer coupling due to the dipolar inter-
action is very weak, we define the total staggered magneti-
zation M† as

M† = 	Nl
−1�

l

�Ml
†�2
1/2

. �7�

Similarly, the Ising-like AF order parameter is defined as

Mz
† = 	Nl

−1�
l

�Ml,z
† �2
1/2

, �8�

and the XY order parameter is defined as

Mxy
† = 	Nl

−1�
l

�Ml,x
† �2 + Nl

−1�
l

�Ml,y
† �2
1/2

. �9�

Note that we have ignored the factor Sg�B in the definitions
of various magnetizations so that they are normalized to 1 in
the antiferromagnetic configuration. Additionally, the fourth-
order Binder cumulant for a quantity Q is defined as

U4�Q� = 1 −
�Q4�

3�Q2�2 , �10�

where �¯� represents the ensemble average.
The thermodynamic averages with respect to H� at a tem-

perature and a magnetic field slightly different from the
simulation can be obtained with the conventional histogram
reweighting technique.28 To calculate the thermodynamic av-
erage with respect to the original Hamiltonian, the weight for
each sample should be modified to
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exp�−
1

kBT�
�H� − Sg�BMz�h� − h� + Hlong��exp H�

kBT
� ,

�11�

where Hlong=Hdipole−Hshort, T and h are the temperature and
field at which the simulation was performed, while T� and h�
are the temperature and field at which the histogram re-
weighting is done.

The performance of this perturbative reweighting scheme
is valid only when Hlong is smaller than or comparable to the
thermal energy kBT. For large system sizes, it has the same
problem as the conventional histogram reweighting methods,
i.e., the overlap of two ensembles defined by H and H�
decreases exponentially, leading to a very low efficiency. In
fact, since both Hdipole and Hshort are extensive quantities, we
expect their difference Hlong to scale as NsL

2. Therefore, it
will exceed any given kBT with a sufficiently large system
size. For those large systems, the above simulation scheme
has to be modified to increase the overlap between the two
ensembles defined by H� and H. Fortunately, even for our
largest size L=196, the long-range dipolar energy for a
double layer system at about T=20 K and h=6 T is mostly
positive around 4 meV, and is mostly distributed between
kBT and 4kBT. Therefore, the perturbative reweighting tech-
nique serves to increase the weight on those configurations
with lower dipolar energy, which are usually associated with
larger Ising order parameter. One might argue that the long-
range dipolar interaction could be ignored since it is ex-
tremely small. Actually, our simulations show that for the
AF-PM and XY-PM phase boundaries, the long-range dipolar
interaction is indeed negligible, but for the apparent AF-XY
phase boundary, its effect can be observed. With the pertur-
bative reweighting technique, we gain knowledge of both
Hamiltonians, with or without long-range dipolar interaction,
simultaneously; hence, we can tell where in the phase dia-
gram the long-range dipolar interaction changes the phase
boundaries.

Most of the results presented in the next section were
calculated with the perturbative reweighting technique, ex-
cept part of the results for the apparent spin-flop transition in
Sec. III C, where a difference larger than the error bar is
observed. For equilibration, we ran two simulations from
different initial configurations until their staggered magneti-
zations converge within statistical fluctuations. Then, each
simulation ran for 5�106–2�107 Monte Carlo steps per
spin to accumulate a large amount of data for histogram re-
weighting. Early results for zero field were compared with
simulations with Metropolis rejection-acceptance steps based
on the full dipolar interaction; no difference larger than the
error bar had been observed.

III. RESULTS

A. Low-field antiferromagnetic transition

The zero-field AF-PM phase transition was studied with
Monte Carlo simulations in Ref. 16, where Tc �the Néel tem-
perature� was determined by extrapolating the crossing
points of the Binder cumulant. Since we have adopted a

slightly different model and also made a number of changes
to the Monte Carlo algorithm, we repeated this calculation
for testing and calibration purposes. The simulations were
performed for double layer systems with L=64,96,
128,144,196. We also calculated the Binder cumulant and
performed finite size scaling analysis29 with Ising critical ex-
ponents to fix the Néel temperature. Figure 2 shows the Ising
order parameter �total staggered magnetization in the z direc-
tion� for different sizes at temperatures close to the Néel
temperature. Although the Ising order parameter shows a
strong size dependence in the PM phase, the Néel tempera-
ture cannot be determined directly from it. The Binder cu-
mulant U4�Mz

†� is plotted in Fig. 3. Unlike the results in Ref.
16, where the crossing points of U4 are above all 40 K, we
see in Fig. 3 that all the crossing points are between 39.5 and
40 K. The crossing points of these curves move up toward
the universal value of the Ising universality class �U4

*

�0.618� as the system size increases. This trend is more
clearly revealed by curve fitting with smooth splines, shown

38 39 40 41 42
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0.1

0.15

0.2

T(K)

<
(M

+ z
)2 >

full dipole

L = 64
L = 96
L = 128
L = 144
L = 196

FIG. 2. �Color online� Ising order parameter �staggered magne-
tization� for double layer systems of different sizes across the zero-
field AF-PM phase transition. Data with full dipolar interaction do
not differ from those with only short-range dipolar interaction.
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0.6
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FIG. 3. �Color online� The Binder cumulant for the Ising order
parameter across the AF-PM phase transition at zero field. The inset
shows a smooth spline fitting of the original data. Crossing points in
these curves approach the Ising universal value ��0.618�.
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in the inset of Fig. 3. Because data points for ��Mz
†�4� and

��Mz
†�2� have smaller error bars, we actually did a curve fit-

ting for those two quantities first and plotted the Binder cu-
mulant curve with the fitted functions. Tc can be fixed to be
between 39.5 and 39.6 K, where the curves for three larger
sizes cross. These observations suggest that the critical be-
havior of this dipolar two-dimensional Heisenberg antiferro-
magnet belongs to the Ising universality class. Therefore, we
performed a finite size scaling analysis to test this prediction,
as well as to fix the Néel temperature more accurately. Figure
4 shows the finite size scaling analysis of the Ising order
parameter, where we plot �T /Tc−1�L1/	 versus ��Mz

†�2�L2�/	,
with Ising critical exponents 	=1 and �=1/8. Clearly, all
the data from different sizes fall nicely on a single curve. The
best result is achieved by choosing Tc=39.56 K. Obvious
deviations from a single curve are seen if Tc changes by
0.1 K; therefore we believe that the error bar for Tc is less
than 0.1 K. Although we have obtained a Tc which is only
slightly smaller than that obtained in Ref. 16, our data for the
Ising order parameter and its Binder cumulant are noticeably
different from those in Ref. 16. At the same temperature,
data presented here are smaller than those in Ref. 16. This
difference is actually expected because of the difference in
the strength of the dipolar interaction. The dipolar term is
proportional to S2 here in Eq. �1�, but proportional to S�S
+1� in the previous work.

We have also performed simulations at h=3 and 5 T to
study the AF-PM phase transition in a finite magnetic field.
The antiferromagnetic phase transition has been observed in
both cases, but the order parameter changes more gradually
with temperature when the magnetic field is turned on.
Finite-size scaling with Ising exponents has been performed.
Figure 5 shows the scaling plot of ��Mz�2� at h=3 T, which
has a lightly lower Tc. Long-range dipolar interaction only
produces negligible changes in these data points. The valid
regime for finite-size scaling seems to be narrower than at
h=0 because some deviations are clearly seen in the low-
temperature data points. This could be due to the shape of the
phase boundary, which is perpendicular to the temperature
axis at h=0 by symmetry, but not so at a finite magnetic

field. Because of this, we change both the temperature and
the effective anisotropy when the simulation scans tempera-
ture at a constant magnetic field.

B. Kosterlitz-Thouless transition

When the magnetic field is above 6 T, the AF-PM phase
transition disappears. Instead, the XY order parameter
�Eq. �9�� becomes large at low temperatures. For a two-
dimensional anisotropic Heisenberg antiferromagnet, one ex-
pects to see an XY phase,7–9 in which the correlation function
decreases algebraically. Since the dipolar interaction breaks
the spin rotational symmetry around the z axis on a square
lattice, one would expect the XY phase to be destroyed by its
presence. In the case of a ferromagnetic model, it has been
shown that above a critical strength, the ferromagnetic dipo-
lar XY model exhibits a ferromagnetic phase instead of an
XY phase.30 Experimentally, a “transverse” phase with long-
range order has been found.18 However, since the XY phase
is also very sensitive to small perturbations such as crystal
anisotropy and disorder, it is not clear whether the dipolar
interaction in Rb2MnF4 alone would prevent it from entering
the XY phase. To answer this question, we performed simu-
lations in constant magnetic fields h=6.4, 6.5, and 7 T at
temperatures from 27 to 38 K. Figure 6 shows the XY order
parameter measured from these simulations for double layer
systems with L=72, 96, 128, 144, and 196. In all these simu-
lations, the XY order parameter increases gradually with low-
ering temperature in a broad range of temperature, and it is
hard to determine the transition temperature from Fig. 6.
They also look very different from the results in Ref. 8,
where a transition in the XY order parameter from zero to a
finite value is clearly visible. There are two reasons for this.
First, the effective anisotropy induced by dipolar interaction
in Rb2MnF4 is very weak. The dipolar energy contributes
only about 0.1% to the total energy, while in the anisotropic
Heisenberg model studied in Refs. 7–9, the anisotropy is
about 10%–20% of the total energy �proportional to the an-
isotropy constant 
�. Secondly, the magnetic field at which
the simulations were performed �6.4–7 T� is still close to the
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FIG. 4. �Color online� Finite-size scaling analysis of the AF-PM
phase transition at zero field. Data points are taken from Fig. 2. All
of them fall onto a single curve with Ising critical exponents.
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FIG. 5. �Color online� Same scaling plot as Fig. 4, but for simu-
lations performed at h=3 T. The critical temperature, at which the
best collapsing of data points is achieved, is slightly lower than that
of Fig. 4.
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apparent spin-flop transition at about 6.2 T, where the sys-
tem is effectively an isotropic Heisenberg model. Experi-
mentally, the existence of such an effective Heisenberg
model has been tested.15 Near the apparent spin-flop transi-
tion, the system has a large correlation length, which pre-
vents the true XY critical behavior from being revealed in
simulations of limited sizes. This also explains why in Fig. 6
��Mxy

† �2� increases more rapidly at 7 T with decreasing tem-
perature than it does at 6.5 T.

Nevertheless, we can see in Fig. 6 that the XY order pa-
rameter decreases with system size faster at higher tempera-
tures than at lower temperatures. In the PM phase, one ex-
pects the size dependence to be exponential, i.e., ��Mxy

† �2�
�exp�−2L /��, while in the XY phase, the size dependence is
power-law, i.e., ��Mxy

† �2��L−2, where  is a temperature
dependent exponent. On the XY-PM phase boundary, the
critical value of this exponent is c=1/8. Therefore, we plot
��Mxy

† �2� versus L in Fig. 7 with log-log scale, and try to
identify the critical temperature for the Kosterlitz-Thouless
transition. Below the dashed line in Fig. 7, the order param-
eter obviously decreases faster than any power law, which
would be straight lines in the log-log scale. Above it, the data
points are very close to power law, and their slopes decrease

with temperature. These features are consistent with an
XY-PM phase transition. The critical temperature TKT is
roughly 34 K, estimated from Fig. 7. The same analysis has
been done for simulations at 6.5 T and the estimated TKT is
also near 34 K.

It has been found that if the square anisotropy is strong,
the XY model confirms the RG prediction that a second-order
phase transition with nonuniversal critical exponents
occurs.31,32 If the anisotropy is weak, two possibilities for
the phase diagram have been found by Monte Carlo
simulations:33 �1� a transition from the PM phase directly to
the ferromagnetic phase and �2� a narrow XY phase that is
sandwiched between the ferromagnetic phase and the PM
phase. Both of these cases might appear in our model if we
replace the ferromagnetic phase with an antiferromagnetic
phase. However, in all simulations performed above h
=6.4 T, at the lowest temperature T=27 K, XY order param-
eter decreases with increasing system size. No evidence for
this phase is evident, at least for the range of lattice size that
could be considered. Based on this observation, we believe
that if a low-temperature in-plane antiferromagnetic phase
exists, it does not appear in the range of temperature and
magnetic field where our simulations have investigated. An-
other check to exclude the transition from the PM phase to
an Ising-like antiferromagnetic phase is to do the finite-size
scaling analysis with Ising exponents for the XY order pa-
rameter. We have found that it is impossible to collapse all
the data points in Fig. 6 onto a single curve, no matter what
critical temperature we use.

We have also performed simulations with a single layer of
spins, and the results agreed with those for double layer sys-
tems within error bars. The results without perturbative re-
weighting, i.e., short-range dipolar interaction only, also do
not differ noticeably from those with full dipolar interaction
presented in Figs. 6 and 7. Therefore, we conclude that our
results are consistent with an XY-PM transition. The main
effect of the dipolar interaction is to provide an easy axis
anisotropy, but the in-plane square anisotropy of the dipolar
interaction is not strong enough to destroy the XY phase in
the parameter ranges that we have examined.

C. Transition from AF phase to XY phase

Having found an Ising-like AF phase at low magnetic
fields and an XY phase at high magnetic fields, we now turn
to the boundary between these two phases. Precisely speak-
ing, we want to tell if this boundary exists in the thermody-
namic limit, and if it exists, find where it is connected to the
XY-PM and AF-PM phase boundaries. So far, we know that
our system is best described by a two-dimensional aniso-
tropic Heisenberg antiferromagnet with a very weak long-
range interaction of square symmetry. Both the anisotropy
and the long-range interaction come from the dipolar inter-
action. If the long-range component of the dipolar interaction
can be completely ignored, the XY-PM phase boundary and
the AF-PM phase boundary meet at a zero-temperature BCP,
as predicted by the RG theory4,5 and confirmed by Monte
Carlo simulations recently.9 In this case, there is no real
phase boundary between the XY phase and the AF phase.
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sizes.
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However, if the long-range component of the dipolar inter-
action is relevant, then the other two possibilities might be
favored, i.e., a BCP at a finite temperature or a tetracritical
point. In experiment, the neutron scattering data favored a
finite temperature BCP, so that the transition from the AF
phase to the transverse phase is a first-order phase
transition.18 Whatever brings the transverse phase, which is
observed to have long-range order, can also bring the bicriti-
cal point to a finite temperature. Because both the transverse
phase and the AF phase have discrete symmetries, the BCP is
not required to have a continuous �rotational� symmetry. The
existence of such a bicritical point at finite temperature does
not violate the Mermin-Wagner theorem.

We have performed simulations at constant temperatures
T=5, 10, 20, and 30 K and calculated both the Ising order
parameter and the XY order parameter for magnetic fields
between 6 and 6.4 T. We found that a transition apparently
occurs at about 6.2 T at all temperatures, and this transition
happens over a larger range of magnetic field at higher tem-
peratures than it does at lower temperatures. It must be
pointed out that the location of this transition is about
0.9–1.1 T higher than the spin-flop transition in the experi-
mental phase diagram. The transition field also does not
show a noticeable temperature dependence, while the experi-
mental spin-flop line has a positive slope. However, our re-
sult is in agreement with previous simulations in Ref. 16;
therefore, we believe that this difference is a result of the
classical approximation we have adopted and also possibly
some other weak effects, e.g., crystal field anisotropy, that
we have not included in our simulations.

Figure 8 shows the Ising order parameter calculated at T
=20 K across the transition for different system sizes. The
left panel shows the result calculated with only short-range
dipolar interaction, and the right panel shows the same data
reweighted with full dipolar interaction. The XY order pa-
rameter which becomes large in higher magnetic fields is
shown in Fig. 9. To tell if there is a BCP at a finite tempera-
ture, we need to classify the transition we have seen in Figs.

8 and 9 using a finite-size scaling analysis. If it turns out to
be a first-order phase transition, a BCP must exist above
20 K. The finite-size scaling for the first-order phase transi-
tion was established in Ref. 34. For a BCP at T=0, Ref. 9
showed that logarithmic corrections to first-order finite-size
scaling would be observed. We plot the Ising order parameter
with the scaling ansatz for the zero-temperature BCP9 in Fig.
10 and with the first-order scaling ansatz in Fig. 11.

In Fig. 10, we have two tunable parameters: the critical
field hc and an effective temperature T*. The logarithmic cor-
rections, powers of x=1−T* ln L / �2��, come from the spin
renormalization constant calculated by RG for an effective
anisotropic nonlinear � model at T*, with effective aniso-
tropy vanishing at h=hc. By tuning hc and T*, we have col-
lapsed all the data points with short-range dipolar interaction
onto a single curve very well. The data with full dipolar
interaction also collapse onto a single curve, except for a few
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FIG. 8. �Color online� Ising order parameter of double layer
systems across the apparent spin-flop transition at T=20 K. The
data reweighted with full dipolar interaction in the right panel shift
toward large magnetic field and have larger error bars.
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data points with relatively large error bars. Especially on the
low-field side of the figure, the quality of collapsing is good.
On the other hand, the first-order scaling plot in Fig. 11
shows clear systematic deviation in the low-field data points.
This deviation is seen in both the left panel for short-range
dipolar interaction and the right panel for full dipolar inter-
action. The only effect of the long-range part of the dipolar
interaction is to shift the critical field hc up by 0.03 T. Al-
though this effect is small, it is clearly out of the error bars of
the finite-size scaling analysis. It is also expected from the
comparison of the left and right panels in Figs. 8 and 9,
where the transition with the full dipolar interaction clearly
shifts to higher magnetic fields.

The same scaling analysis applies to the XY order param-
eters as well. Figure 12 finite-size XY order parameter at T
=20 K calculated with short-range dipolar interaction. Obvi-
ously, the scenario of a zero-temperature BCP fits the data
better than a first-order phase transition.

At lower temperatures, the same scaling behavior of order
parameters has been observed, and the critical field hc turns
out to be nearly identical. Figure 13 shows the finite-size
scaling plots for Ising and XY order parameter calculated at
T=10 K. Since the transition at 10 K happens within a nar-
rower range of magnetic field, we have included data points

reweighted at fields different from those of the simulation.
Data points for L=196 close to the transition which have
large error bars are reweighted with different magnetic fields.
Nevertheless, most of the data points collapse nicely onto a
single curve. For data with short-range dipolar interactions,
we have again found hc=6.22 T, while for data reweighted
with full dipolar interaction, the scaling plots look best if we
choose hc=6.25 T.

Therefore, our finite-size scaling so far is more consistent
with a zero-temperature BCP than a finite temperature BCP
above 20 K. Reference 9 also predicts finite-size scaling re-
lations for the susceptibility and specific heat, and also pre-
dicts that the Binder cumulant U4�Mz

†� is close to, but
slightly below, 0.4 at the critical field. We have observed the
finite-size scaling behavior of the susceptibility; however, we
have not seen behaviors of the Binder cumulant and the spe-
cific heat similar to those presented in Ref. 9. For the Binder
cumulant, Fig. 14 shows that the curves for three larger sizes
cross approximately at h=6.203 T and U4=0.54. This value
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is still very different from the universal value for the Ising
universality class. However, this is actually consistent with
the theory in Ref. 9, if one notices that here we have two
nearly independent layers of spins. If there is only one layer,
Ref. 9 has shown that at the critical field, the system is ef-
fectively a single spin of length � with no anisotropy, where
� is the spin renormalization constant. Its angular distribution
is uniform, which implies ��Mz

†�n�=1/ �n+1� and the crossing
value of U4�Mz

†� is approximately 0.4. In our simulations,
since we have more than one layer, and they are weakly
coupled, we expect that the total staggered magnetization of
each layer Ml

† is uniformly distributed on a sphere of radius
�. Due to our definition of Mz

† in Eq. �8�, the distribution of
Mz

† is not a uniform distribution, although Ml,z
† of each layer

is distributed uniformly. Suppose that the interlayer coupling
can be completely ignored, which is a crude approximation.
After some simple calculations, we found that the probability
distribution of s= �Mz

†�2 /�2 for a double layer system is

P�s� = �
�

2
, 0 � s �

1

2

sin−1 1
�2s

− sin−1 �2s − 1

2s
, 1 � s �

1

2
.�

�12�

Thus, if we ignore both the longitudinal fluctuation of stag-
gered magnetization and the interlayer coupling, the Binder
cumulant at the critical field should be 1− �s4�P / �3�s2�P

2 �. A
numerical evaluation of this expression gives 0.5334, which
is very close to the crossing point in Fig. 14. Therefore, our
simulation is consistent with weakly coupled multiple layers
of an anisotropic Heisenberg antiferromagnet.

As for the specific heat, we have not seen a peak at the
transition in all our simulations. Figure 15 shows the energy
per spin and specific heat per spin calculated for double layer

systems at T=20 K with short-range dipolar interaction. The
energy drops when the magnetic field is larger than the criti-
cal field. However, the specific heat shown in the inset does
not show any sign of a peak. Although the error bar of the
specific heat, as one can estimate from the fluctuation of the
data points, is about 10%, a peak which is expected to be
similar to those discovered in Ref. 9 is clearly absent. How-
ever, this result is actually consistent with the finite-size scal-
ing theory for specific heat in Ref. 9, which shows that the
peak in specific heat should be proportional to �dhc /dT�2.
Because the critical field of our model is almost independent
of the temperature, i.e., dhc /dT�0, we actually do not ex-
pect to see a peak in the specific heat here.

D. Discussions

To summarize our results, we construct a phase diagram
in Fig. 16 based on our simulations and compare it to the
experimental phase diagram from Ref. 18. Both our XY-PM
and AF-PM phase boundaries are close to experimental re-
sults; the most pronounced difference is the spin-flop line.
Rigorously speaking, our spin-flop line is not a single line,
but the extensions of XY-PM and AF-PM phase boundaries
which are exponentially close to each other and meet at a
zero-temperature BCP. The experimental XY-AF “phase
boundary” is empirical. Our spin-flop line is higher in mag-
netic field than the experimental one and has a nearly van-
ishing slope, but this difference in spin-flop field is most
likely to be a consequence of the classical approximation
which omitted quantum fluctuations of the spins. The aniso-
tropic Heisenberg antiferromagnet studied in Ref. 9 offers a
simple case to qualitatively analyze this effect. A brief deri-
vation of the spin-flop field of this model is given in the
Appendix. If we assume that the length of the classical spins
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is �S�S+1�, the zero-temperature spin-flop field of this
simple model in the classical case is 4J�S�S+1��1−
2�. The
spin-flop field of the quantum mechanical Hamiltonian is
found to be 4JS�1−
2 within the linear spin-wave approxi-
mation. More accurate results can be obtained by quantum
Monte Carlo simulations; however, the linear spin-wave
theory has already considerably reduced the spin-flop field.
Since this simple model and the dipolar Heisenberg antifer-
romagnet studied here have the same critical behavior near
the apparent spin-flop transition, one would also expect the
quantum effects in the latter model would reduce the spin-
flop field by approximately the same amount. Actually, given
the classical result hc�6.25 T and assuming that the classi-
cal model consists of spins of length �S�S+1�, the reduced
spin-flop transition would be hc /�1+1/S=5.28 T, which
happens to be in agreement with the experimental value.

Above the spin-flop line, we have observed the XY phase,
as far as our simulations have covered, while the experiment
shows a transverse phase. Therefore, our Hamiltonian cer-
tainly misses some weak but important effects in the real
material, as the intricate correlation of the XY phase and the
spin-flop transition is sensitive to many perturbations. Disor-
der is one of them, which can impose a cutoff in correlation
length of the system so that the system would not approach
the ideal zero-point BCP from the narrow PM phase. As a
result, an apparent finite temperature BCP would be observed
and the apparent spin-flop transition below the “BCP” looks
like a first-order transition. The disorder can come from both
the crystal defects and the slight inhomogeneity in the mag-
netic field. The experimentally observed finite temperature
BCP can also be a result of crossover to three dimensions
due to very weak exchange between layers.

The other factor that might have contributed to a phase
diagram different from the experimental result is the ex-
change constant. The spin-wave analysis of Rb2MnF4, which
provided us the exchange constant J, was done for systems in
zero magnetic field, and the dipolar interaction had already
been simplified to a temperature dependent staggered mag-
netic field acting on Mn2+ spins.14 Therefore, the exchange
integral provided by this theory is an effective quantity that
depends on the particular form of the Hamiltonian which has
been assumed. As far as we know, similar calculations have
not been done in magnetic fields close to the spin-flop tran-
sition. Instead, a Hamiltonian with temperature and magnetic
field dependent anisotropy has been parametrized to fit the
experimental phase diagram.35 It is not guaranteed that when
the full dipolar interaction is used in the Hamiltonian, instead
of an effective staggered magnetic field, the exchange inte-
gral deduced from a simplified Hamiltonian is still applicable
and can be treated as a constant independent of either tem-
perature or magnetic field.

Finally, we show some results that justify two main as-
sumptions, i.e., the inclusion of only a few layers of Mn2+

spins and the omission of two sublattices. Figure 17 shows
the Ising order parameter across the apparent spin-flop tran-
sition for systems with L=96 but with different numbers of
layers. With short-range dipolar interaction, the result seems
to saturate when we have three or more layers. After re-
weighting with full dipolar interaction, the difference be-

tween data for different numbers of layers becomes even
smaller. We estimate the change in hc due to the change in
the number of layers to be of order 0.01 T. Therefore, it is
justified to do simulations with only a few layers of spins.
The crossover to a three-dimensional system will only occur
at very low temperatures. Figure 18 shows a finite-size scal-
ing plot of the apparent spin-flop transition at T=10 K cal-
culated with two sublattices. The dipolar interactions be-
tween two sublattices were truncated to third nearest
neighbors, i.e., a Mn2+ spin feels the magnetic field gener-
ated by a total of 32 neighboring spins in the Mn2+ layer
above and below it belonging to the other sublattice. The
magnetic field contributed by spins outside this truncation
radius should be extremely small based on our experience
with the long-range dipolar interaction. Compared with Fig.
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13, which was calculated with a single sublattice, the differ-
ence in T* and hc is negligible. We have enough reason not to
expect the interaction between two sublattices to reduce the
apparent spin-flop field hc by more than 0.1 T. The actual
additional energy due to the intersublattice dipolar interac-
tion is found to be only comparable to the long-range dipolar
energy.

IV. CONCLUSIONS

In conclusion, we have tried to explain the phase diagram
of Rb2MnF4 using a classical spin model with dipolar inter-
actions. A large amount of Monte Carlo simulations have
been carried out to investigate the phase boundaries. Among
different strategies to handle the dipolar interaction in the
simulations, we have found our perturbative reweighting
technique to be the most suitable for very weak dipolar in-
teractions in Rb2MnF4. The phase diagram inferred from our
data captures the main features of the experimental phase
diagram and the agreement is good at low magnetic fields.
On the apparent spin-flop line, the XY and AF boundaries
come so close together that they cannot be distinguished be-
low an “effective” BCP at T�30 K. However, our data
analyses support a zero-temperature BCP. This conclusion is
based on a novel finite-size scaling analysis for two-
dimensional anisotropic Heisenberg antiferromagnets.9 If
this multicritical point is located at very low finite tempera-
ture, as suggested by Ref. 11, we believe that its temperature
must be sufficiently low, which is beyond our numerical ac-
curacy. The ground state degeneracy for the anisotropic
Heisenberg antiferromagnets as found in Ref. 12 may also
exist in our model with dipolar interactions, which we have
not yet verified. If it exists, one might simply rename the
bicritical point as a tetracritical point. The zero-temperature
BCP is located above the experimental spin-flop line in the
phase diagram, which appears to be a line of first-order phase
transitions. We believe that this difference from the experi-
mental phase diagram is mainly caused by the classical ap-
proximation. Nevertheless, we have confirmed that the domi-
nant effect of the dipolar interaction in Rb2MnF4 is to
provide an effective anisotropy, while other effects, such as
in-plane square anisotropy and interlayer interaction, are ex-
tremely weak. Therefore, we would hope to obtain a more
accurate phase diagram if we performed quantum Monte
Carlo simulations for a simpler Hamiltonian which includes
the effective anisotropy.
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APPENDIX: SPIN-FLOP FIELD AT T=0 OF ANISOTROPIC
HEISENBERG ANTIFERROMAGNET

As an analogy to the dipolar Heisenberg antiferromagnet,
we consider the simple anisotropic Heisenberg antiferromag-
net with the Hamiltonian

H = J�
�i,j�

�
�Si
xSj

x + Si
ySj

y� + Si
zSj

z� − H�
i

Si
z, �A1�

which is defined on a square lattice. The classical version of
this model has been well studied,7–9 where the spins are
treated as unit vectors. The spin-flop field at zero temperature
is Hc=4J�1−
2. If we replace the spins with vectors of
length �S�S+1�, Hc is then modified to 4J�S�S+1��1−
2�.
This is not the only way to make connections to the quantum
Hamiltonian. One can also replace J with JS�S+1�, while
replacing H with HS, which can be justified by arguing that
the Zeeman energy of the ferromagnetic configuration takes
on the correct macroscopic value. In this case, the spin-flop
field is modified to Hc=4J�S+1��1−
2. However, in any
case, we will show that the classical spin-flop field is larger
than the quantum mechanical spin-flop field. By introducing
the Holstein-Primakoff �HP� bosons on A and B sublattices,
respectively, and keeping the quadratic terms, the Hamil-
tonian �Eq. �A1�� can be rewritten as

H � J�
i�A

�
�j,i�

�
S�ai
†bj

† + c.c.� + �ai
†ai − S��S − bj

†bj��

− H�
i�A

ai
†a + H�

j�B

bi
†b , �A2�

where a and a† are HP boson operators on sublattice A and b
and b† on sublattice B, and index i labels sites on sublattice
A which are nearest neighbors of the sites on sublattice B
labeled with j. After a Fourier transformation, this quadratic
Hamiltonian turns out to be

H = − 4JS�S + 1�NA − HNA − �
k

Hk, �A3�

where NA is the number of sites on sublattice A, and

Hk = SJ�ak
† b−k�4 − h 
�k


�k 4 + h
� ak

b−k
† � . �A4�

For simplicity, we have defined h=H /SJ and �k=2 cos kx
+2 cos ky. The spin-wave spectrum can be obtained with the
Bogoliubov transformation:

ck = cosh �kak + sinh �kb−k
† , �A5�

dk = sinh �kak
† + cosh �kb−k. �A6�

In order to eliminate the cross terms in the Hamiltonian, one
sets tanh 2�k=
�k /4. Apart from a constant term, the spin-
wave part of the Hamiltonian turns out to be

Hsw = �
k

��+�k�dk
†dk + �−�k�ck

†ck� , �A7�

where

�±�k� = JS�16 − 
2�k
2 ± H . �A8�

When H is large enough such that �−�0� becomes nega-
tive, the AF ground state becomes unstable since the excita-
tions on spin-wave mode ck=0 lower the ground state energy.
This precisely indicates the spin-flop instability. Therefore,
the critical magnetic field is given by
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Hc = 4JS�1 − 
2. �A9�

Although the above spin-wave analysis is only a crude ap-
proximation, we see that the quantum effect lowers the spin-
flop field by a factor of S / �S+1� or �S / �S+1�, depending on
which classical approximation one uses. The case with 

=2/3 and S=1/2 has been studied with quantum Monte
Carlo simulations.36 Its phase diagram shows that the spin-
flop field is at approximately h /Jxy =1.8, i.e., Hc=1.2J in our

notation here. The above spin-wave approximation gives
Hc=1.49J, and the two classical approximations give Hc
=4.47J and Hc=2.58J, respectively. Clearly, the classical ap-
proximations overestimate the spin-flop field. The difference
from the real spin-flop field is large as we expect the quan-
tum fluctuation to have a strong effect for S=1/2. For larger
spins, such as S=5/2 which is studied in this paper, the
classical approximation should work better. However, we
still expect it to overestimate the spin-flop field by a notice-
able amount.
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