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The Curie temperatures for the Heusler compounds Co2TiAl, Co2VGa, Co2VSn, Co2CrGa, Co2CrAl,
Co2MnAl, Co2MnSn, Co2MnSi, and Co2FeSi are determined ab initio from the electronic structure obtained
with the local-density functional approximation and/or the generalized gradient approximation. Frozen spin
spirals are used to model the excited states needed to evaluate the spherical approximation for the Curie
temperature. The spherical approximation is found to describe the experimental Curie temperatures very well
which, for the compounds selected, extend over the range from 95 to 1100 K; as a function of the valence
electron count, they show an approximately linear trend which finds an explanation by our calculations.
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I. INTRODUCTION

Heusler compounds have been known for more than
100 years.1 Recently, they had an astonishing comeback be-
cause of their high spin polarization and their possible appli-
cation in the field of spin-electronics and magnetoresistive
devices. An important subset of the Heusler compounds at-
tracting special interest are the Co2-based Heusler com-
pounds with the formula Co2XY, where X may be Ti, V, Cr,
Mn, or Fe and Y may be Al, Ga, Si, or another main group
metal.2–5 The reason is that a large number of these
Co2-based compounds appear to be half-metallic ferromag-
nets in electronic structure calculations. This means that their
minority-spin electrons possess a sizable gap around the
Fermi energy, thus resulting in 100% spin polarization.2,3,6–9

The half-metallicity is advantageous for spintronic devices in
terms of achieving high tunnel magnetoresistance �TMR� ra-
tios in tunnel junctions or efficient spin injection from ferro-
magnetic electrodes into semiconductors. The first significant
magnetoresistive effect in Heusler compounds was observed
in Co2Cr0.6Fe0.4Al powder compacts.6 This alloy exhibits in
thin film devices a TMR ratio of 317% at 4 K.10 Large TMR
ratios were recently reported for Co2FeAl0.5Si0.5 with more
than 175% at room temperature.11 A TMR ratio of 570% at
4 K was reported for Co2MnSi.12

The success of the local spin-density functional approxi-
mation �LSDA�13 for the determination of the electronic
structure of the ground state of solids need not be empha-
sized here.14 Even though some important many-body effects
require special attention and corrections to the LSDA are
necessary, it is clear that the LSDA together with suitable
computer codes provides a very powerful tool to understand
ground-state properties.

The determination of the energies of excited states to ob-
tain finite-temperature properties is somewhat more prob-
lematic. For magnetic systems, one invokes the adiabatic
approximation15 and freezes noncollinear spin arrangements
that are assumed to give the energies necessary for a thermo-
dynamic treatment. For the latter, one may follow Moriya’s

approach16 and derive17 an approximation for the Curie tem-
perature of itinerant-electron magnets within the LSDA or
the generalized gradient approximation �GGA�.18 This treat-
ment of thermodynamics is called the spherical approxi-
mation16 and is superior to the well-known mean-field ap-
proximation. In Sec. II and the Appendix, we give a brief
exposition of our treatment of the thermodynamic problem
and list some details concerning the numerical work. In
Sec. III, we apply the theory to the compounds Co2TiAl,
Co2VGa, Co2VSn, Co2CrGa, Co2CrAl, Co2MnAl,
Co2MnSn, Co2MnSi, as well as Co2FeSi. These were se-
lected from a larger set of Co2-based Heusler compounds in
order to study a wide range of Curie temperatures extending
from 95 to 1100 K with magnetic moments ranging from
1 �B to 6�B per formula unit. After discussing the trend in
the Curie temperatures, we summarize our results in Sec. IV.

II. COMPUTATIONAL DETAILS

The theoretical basis for calculating the Curie temperature
of an itinerant-electron ferromagnet in the spherical approxi-
mation has been described in Ref. 17. Thus, only some sa-
lient facts need be collected here.

The LSDA or the GGA is employed to obtain low-lying
excited states from the total energies of frozen spin spirals
having wave vectors q.19–21 The total energies are expressed
as exchange energies or exchange functions, j����q�, which
depend on two basis vectors of the constituent magnetic at-
oms, � and ��, and on wave vectors that span the irreducible
part of the Brillouin zone �BZ�. If the total energy due to a
spin spiral is written as E�q�, then the exchange functions are
defined through �E�q�=E�q�−E�0� with

E�q� = �
���

M�M���j����q�sin �� sin ��� cos��� − ����

+ j����0�cos �� cos ���� , �1�

where �� and �� are the polar coordinates for the magnetic
moment vector of atom � possessing the moment M�. A
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choice has to be made for the angles �� and ��. Kleinman
and co-workers22,23 showed for ferromagnets, ferrimagnets,
and antiferromagnets in the adiabatic approximation that the
spin-wave energy is given by the energy increase divided by
the reduction of the total spin z component due to the exci-
tation of the spins. This means that small angles of tilt ��

give a reliable estimate for the low-energy excitations �see,
for instance, Eq. �14� of Ref. 22�. It is not clear whether
higher spin-wave branches are obtained accurately.23 The
choice of the angles �� is made such that the exchange func-
tions can be extracted from Eq. �1� as shown in the Appen-
dix.

The total energy is computed using the force theorem,24,25

i.e., the band energies are summed up to the Fermi energy for
a given spin configuration using for these calculations the
self-consistent ground-state potential.

The numerical work done in this paper was done with the
augmented-spherical-wave �ASW� method,33 where the
atomic sphere approximation is used for the construction of
the effective crystal potential and the von Barth–Hedin34 ap-
proximation for exchange and correlation. The GGA calcu-
lations were carried out with the full-potential method de-
rived from the ASW method by Knöpfle et al.,35 which
employs the GGA potentials of Perdew et al.18 The crystal
structure used was L21 with the experimental lattice con-
stants listed in Table I.

The spherical approximation �sometimes also called ran-
dom phase approximation� for obtaining an estimate of the
Curie temperature is valid for itinerant-electron magnets cov-
ering the whole range from weak ferromagnetism to the
local-moment �Heisenberg� limit.16 The Curie temperature in
this approximation is given by

kBTc
SP =

2

3�
�

L�
2� 1

N
�
qn

1

jn�q��−1

. �2�

Here, the three exchange functions jn�q� are eigenvalues of a

secular equation and are given in the Appendix in terms of
the four quantities sufficient for the description of the mag-
netism of Heusler compounds, Co2XY: j11�q� describes the
exchange interaction between the magnetic X atoms, j22�q�
between the Co atoms having the same basis vectors, j12�q�
between the Co and X atoms, and j23�q� between the Co
atoms with different basis vectors. They are extracted from
Eq. �1� by means of the algorithm described in the Appendix.
The quantity L� in Eq. �2� describes the local moment of the
atom at site �. In principle, it must be determined self-
consistently �see Eq. �12� in Ref. 17�, but an acceptable ap-
proximation for Heusler compounds is L�=M�, where M� is
the zero temperature moment of the atom at site �. This is
so because Heusler compounds possess rather localized mo-
ments.2

FIG. 1. Calculated versus measured Curie temperatures.

TABLE I. Collection of pertinent experimental and calculated data for nine representative Co2-based
Heusler compounds. The quantity NV is the number of valence electrons, and the magnetic moments Mexpt

and Mcalc are given in �B per unit cell. The local moment for Co is denoted by LCo and those of the other
magnetic atoms in the cell by LX, all in units of �B. The Curie temperatures TC

SP were calculated by means
of Eq. �2�, given in K.

Compound NV

a
�Å� Mexpt Mcalc LCo LX TC

SP TC
expt

Co2TiAla 25 5.847 0.74 1.00 0.570 −0.139 157 134

Co2VGaa 26 5.779 1.92 2.00 0.914 0.172 368 352

Co2VSna 27 5.960 1.21 1.80 0.677 0.445 103 95

Co2CrGab 27 5.805 3.01 3.06 0.575 1.911 362 495

Co2CrAla 27 5.727 1.55 3.00 0.669 1.661 341 334

Co2MnAla 28 5.749 4.04 4.05 0.590 2.877 609 697

Co2MnSia 29 5.645 4.90 5.00 0.669 3.061 990 985

Co2MnSna 29 5.984 5.08 5.02 0.885 3.254 899 829

Co2FeSic 30 5.640 6.00 5.38 1.307 2.762 1185 1100

aLattice constant and experimental Curie temperature from Refs. 26–29.
bLattice constants and Curie temperature from Ref. 30.
cLattice constant and Curie temperatures from Refs. 8, 31, and 32.
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III. RESULTS AND DISCUSSION

We begin by showing the calculated Curie temperatures
plotted versus the measured values in Fig. 1. This figure is a
strong indication that the spherical approximation applied
here is useful and supplies, with only few exceptions, rather
precise estimates. As indicated in the figure, the GGA was
used for the compounds Co2TiAl, Co2VGa, Co2CrGa, and
Co2FeSi; in all other cases, the LSDA gave more satisfactory
results. It should be noted that the need to apply the GGA
arises for the border cases of low and high numbers of va-
lence electrons, NV �see Table I which contains all pertinent
data for the Co2-based Heusler compounds�.

It has been recognized earlier4,8,31,32 that the Curie tem-
peratures of the Co2-based Heusler compounds follow an
approximately linear trend when viewed as a function of the
magnetic moments. With only few exceptions, this estab-
lishes also an approximately linear trend as a function of the

number of valence electrons, NV, since the magnetic mo-
ments of these Heusler compounds follow the Slater-Pauling
curve.3,14 This connection is shown in Fig. 2�a�, where the
calculated and the measured Curie temperatures are dis-
played as a function of NV, and in Fig. 2�b�, where a section
of the Slater-Pauling curve is shown, using both measured
and experimental values for the magnetic moments per unit
cell.

All straight lines in Fig. 2 are meant to guide the eye; the
linear trends in Figs. 2�a� and 2�b� are clearly visible and
well understood in the Slater-Pauling case �Fig. 2�b��; the
exceptions for NV=27 as well as the borderline cases will be
discussed below.

The linear trend in the Curie temperatures is obviously
broken if the number of valence electrons is NV=27. An
explanation by means of Fig. 2�c� is as follows.

We assume that Eq. �2� is a good starting point. A glance
at this equation reveals that two rather simple mechanisms

FIG. 2. �Color online� �a� Calculated �squares� and measured �circles� Curie temperatures versus the number of valence electrons. �b�
Calculated �squares� and measured �circles� magnetic moments versus the number of valence electrons. �c� Calculated Curie temperatures
�squares� versus the number of valence electrons. The insets give the computed values of the two parts of Eq. �2�, the prefactor and the
exchange average.
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need be discussed to understand the desired trend, one is
contained in the prefactor ��L�

2, the other in the exchange
average ��1/N��qn1/ jn�q��−1. Computed values for the pref-
actor are easily obtained with the data given in Table I and
are shown in the upper left-hand inset of Fig. 2�c�; the cal-
culated exchange average is given in the lower right-hand
inset obtained by setting the prefactor in Eq. �2� equal to 1.
Multiplying these two quantities, we obtain the calculated
Curie temperatures shown as squares in Fig. 2�c�. Clearly
seen is the changeover of two trends at NV=27. Quite re-
markably, the exchange average is largest for NV=25, de-
creasing for increasing NV to as low a value as 66 K for
Co2MnAl at NV=28. By virtue of the low value of the pref-
actor, the calculated Curie temperature of Co2VSn is only
103 K, in contrast to Co2CrGa and Co2CrAl for which the
calculated local moment of Cr is nearly 2�B �see Table I�,
resulting in values of the Curie temperature larger than
300 K. The changeover is also supported by experimental
observations. The largest deviation from the linear trend of
the Curie temperatures and from the Slater-Pauling behavior
is observed for 27 valence electron compounds.4,32 Co2CrAl
together with Co2Cr0.6Fe0.4Al �Ref. 6� are among the best
investigated Heusler compounds. The instability of Co2CrAl
moment is related to B2-like disorder and an antiferromag-
netic coupling of Cr with its neighbors, leading to ferrimag-
netic behavior36 which is not obtained by the calculations in
the L21 structure �see Table I�. In spite of this, the Curie
temperature is estimated within 2% of the experimental
value. This could be taken to mean that the disorder-
produced low moment has no large influence on the long-
range order.

There are two more cases in Table I where the computed
moments are noticeably lower than the experimental ones
but the estimated Curie temperatures are within 17% and 8%
of the measured values; these are, respectively, Co2TiAl and
Co2VSn. We speculate that this may have an explanation
similar to the case of Co2CrAl.

The larger picture one sees in Fig. 2�c� is the induced
magnetism of Ti and V for NV=25–27. Overlapping at NV
=27 is the pronounced magnetism of Cr. For larger numbers
of valence electrons, the magnetism of Mn and Fe dominates
that of Co. The exchange average increases but reaches only
108 K at NV=30, the upward trend in the Curie temperatures
being due to the large local moments that boost the exchange
average.

We will show now that the electronic structure of the
Heusler compounds reveals the reason for the trend in the
exchange average. A selected set of spin-resolved density-of-
states �DOS� curves is given in Figs. 3–5 where the Fermi
energy is at the origin and the majority-spin states �up-spin�
are at the upper halves, the lower halves giving the minority-
spin states �down-spin� and show the gap which is typical for
the Co2-based Heusler compounds.

In an itinerant-electron ferromagnet like those considered
here, the up- and down-spin electrons move independently at
T=0.14 At finite temperatures, the nature of the states and
thus the fate of the gap are discussed controversially and still
under investigation,37 but it is clear that noncollinear states
as those used here to obtain the exchange functions will hy-
bridize, leading to states of both spin directions in the gap.

Figures 3�a� and 3�b� each show a large gap in the down-spin
states at and just below the Fermi energy. Keeping in mind
that the total-energy differences which give the exchange
functions for each value q are obtained from integrals over
the DOS up to the Fermi energy EF, one understands quali-
tatively that the largest changes are sampled when the inte-
gral extends over all or most of the gap as is the case in Figs.
3�a� and 3�b�.

The large values of the exchange averages shown in Fig.
2�c� for NV=25 and 26 are thus most likely due to the gap
below EF where hybridization adds spin-down states to Eq.
�1�. The two density-of-states curves shown in Fig. 4 for
NV=27 support this picture. The low value of the exchange
average for NV=28 finds an explanation in Fig. 5�a� where
the fully spin-polarized states are above EF and thus not
available for the total-energy differences. The increase of the
exchange average for NV=29 and NV=30 finds the same ex-
planation in Figs. 5�b� and 5�c�, albeit on a different scale
because the density of states at and near EF is smaller.

The closing remark brings us to Co2FeSi for which the
calculated magnetic moment in Table I is smaller than the
measured one, in contrast to the other cases studied here.
According to Refs. 8, 31, and 32, the total magnetic moment
is 6�B and the compound is half-metallic. Both the LSDA
and the GGA do not succeed in describing this state cor-

FIG. 3. �Color online� Spin-resolved density of states �DOS� of
�a� Co2TiAl where the number of valence electrons is NV=25 and
�b� Co2VGa with NV=26.

KÜBLER, FECHER, AND FELSER PHYSICAL REVIEW B 76, 024414 �2007�

024414-4



rectly, instead they place the Fermi energy above the gap and
give a magnetic moment of at most 5.4�B �see Fig. 5�c��.
Effects of electron-electron correlation are so important here
that the LSDA+U needs to be employed to achieve agree-
ment with the measured data.4,8 A glance at the calculated
DOS of Wurmehl et al.8 shows that EF is now at the lower
portion of the gap, which will reduce the exchange average
compared with the LSDA and GGA calculations for which
Fig. 5�c� shows the gap to be below EF. Therefore, it is not
surprising that the calculated Curie temperature of 1185 K is
that close to the measured value of 1100 K in spite of the
larger prefactor expected in the LSDA+U, for which, unfor-
tunately, we cannot yet carry through the detailed calcula-
tions necessary for the Curie temperature.

IV. SUMMARY

The Curie temperatures for a set of Co2-based Heusler
compounds have been determined ab initio from the ground-
state band structure obtained with the local-density func-
tional approximation and/or the generalized gradient ap-
proximation. For this purpose, the low-lying excited states
were modeled by means of spin spirals characterized by vari-
ous wave vectors q that determine the relevant exchange

energies as a function of q; these are needed to evaluate the
spherical approximation for the Curie temperature given in
Eq. �2�. The results agree well to very well with experiments
and allow us to relate the observed trends to the electronic
structure and understand them qualitatively in terms of prop-
erties of the density of states. Furthermore, the kind of accu-
racy achieved will enable predictions to be made for those
magnetic compounds for which the Curie temperature has
yet to be measured.

FIG. 4. �Color online� Spin-resolved density of states �DOS� of
�a� Co2VSn and �b� Co2CrGa. The number of valence electrons is
27.

FIG. 5. �Color online� Spin-resolved density of states �DOS� of
�a� Co2MnAl, �b� Co2MnSi, and �c� Co2FeSi with 28, 29, and 30
valence electrons, respectively.
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APPENDIX

The total energy is obtained as a function of the spin-
spiral q vector in eight BZ scans with the following choice of
the variables: one scan for �=20° and �=0 for all atoms,
labeled �E0�q�, and another one for �=0 for atom X and �
=20° as well as �=0 for all atoms, labeled �E00�q�. Four
more scans, labeled �Ei�q�, i=1–4, are done with ��−���
=q� · ��−��� choosing q�=q+Ki with K1=0 and K2 to K4

being the reciprocal lattice vectors �0,2,0�, �1,1 ,−1�, and
�1,1,1� in units of 2� /a. Finally, �E5 and �E6 are obtained
with �=0 for atom X and �=20° for the other atoms using
��−���=q� · ��−��� with K5=0 and K6= �1,1 ,1�. One scan
consists of 60 spiral q vectors chosen in the irreducible part
of the BZ such that the integrals �sums� in Eq. �2� are ob-
tained reliably.

If we define

Sa�q� =
1

4�
i=1

4

�Ei�q�

and

Sb�q� =
1

2�
i=5

6

�Ei�q�

together with

f1 = 4M1M2�1 − cos ��

and

f2 = f1 cos � ,

then one derives

j23�q� = ��E00�q� − Sb�q��/2M2
2 sin2 �

and

j12�q� = ��E0�q� + Sb�q� − Sa�q� − �E00�q��/4M1M2 sin2 �

as well as

j11�q� = j11�0� + �Sa�q� − Sb�q� + j12�0�f2�/M1
2 sin2 �

and

j22�q� = j22�0� + j23�0� + �Sb�q� + j12�0�f1�/M2
2 sin2 � .

A sum rule for the constants j11�0� and j22�0� allows one to
adjust these such that the lowest branch of eigenvalues is
zero for q=0 �Goldstone mode�. The three branches are
given for each wave vector q by the eigenvalues jn=1�q�
= j22�q�− j23�q� and

jn=2,3 = �j11 + j22 + j23�/2 ± �2j12
2 + �j11 − j22 − j23�2/4,

where, for simplicity in writing, the q dependence of the
exchange functions is implied. A special case of this algo-
rithm was given in Ref. 17.
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