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The orbital contribution to the magnetic properties of Fe in systems of decreasing dimensionality �bulk,
surfaces, wire, and free clusters� is investigated using a tight-binding Hamiltonian in an s, p, and d atomic
orbital basis set including spin-orbit coupling and intra-atomic electronic interactions in the full Hartree-Fock
�HF� scheme, i.e., involving all the matrix elements of the Coulomb interaction with their exact orbital
dependence. Spin and orbital magnetic moments and the magnetocrystalline anisotropy energy �MAE� are
calculated for several orientations of the magnetization. The results are systematically compared with those of
simplified Hamiltonians which give results close to those obtained from the local spin density approximation.
The full HF decoupling leads to much larger orbital moments and MAE which can reach values as large as 1�B

and several tens of meV, respectively, in the monatomic wire at the equilibrium distance. The reliability of the
results obtained by adding the so-called orbital polarization ansatz �OPA� to the simplified Hamiltonians is also
discussed. It is found that when the spin magnetization is saturated, the OPA results for the orbital moment are
in qualitative agreement with those of the full HF model. However, there are large discrepancies for the MAE,
especially in clusters. Thus, the full HF scheme must be used to investigate the orbital magnetism and MAE of
low dimensional systems.
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I. INTRODUCTION

The magnetic properties of reduced dimensionality sys-
tems are an area of growing interest both for experimentalists
and theoreticians. Indeed, the spin magnetic moment of an
atom is strongly dependent on its environment, in particular,
on its coordination number. It usually increases when the
latter decreases and may even appear in small clusters for
some transition metals which are not magnetic in the bulk
phase.1–4 Another quantity playing a key role in technologi-
cal applications, such as magnetic recording, is the magne-
tocrystalline anisotropy energy �MAE� which is responsible
for the tendency of the magnetization to align along particu-
lar directions. It is well known that this MAE is very small in
the bulk phase �some �eV� of ferromagnetic transition
metals5,6 but may increase by several orders of magnitude
when the dimensionality or the symmetry of the system is
reduced7,8 �some meV for a free monolayer�. The most strik-
ing specific property of low dimensional systems is perhaps
the appearance of a sizable orbital contribution to the mag-
netic moment9 which, on the contrary, is practically
quenched in bulk systems. Obviously, the influence of intra-
atomic Coulomb interactions and spin-orbit coupling, re-
sponsible for Hund’s rules in the free atom, become more
and more important when the bandwidth due to electron de-
localization decreases and both the spin and orbital moments
should tend to their atomic values. Furthermore, the interest
for the orbital moment has been stimulated by a newly ac-
quired physical technique, the x-ray magnetic circular di-
chroism �XMCD�, which is able to resolve spin and orbital
moments.10 Such experiments have been carried out by
Gambardella et al.11,12 who have indeed measured orbital
moments as large as 0.68�B for Co chains on Pt�997� and
1.1�B for a Co adatom on Pt�111�, the corresponding MAE
being 2 and 9 meV per Co atom, respectively. More recently,

using the same technique, Lee has obtained an orbital mo-
ment of about 0.6�B for Fe monatomic chains on Pt�997�.13

Moreover, XMCD experiments carried out on iron
clusters14,15 have shown that the orbital moment is much
more enhanced than the spin moment as the size is reduced.

From the theoretical point of view, the spin moment can
be obtained in the local spin density approximation �LSDA�
or with a Stoner-like tight-binding �TB� Hamiltonian16 but
the spin orientation is arbitrary. This is not true when spin-
orbit coupling is taken into account and, consequently, the
MAE and the orbital moment no longer vanish. Pioneering
works in which the spin-orbit coupling is treated as a pertur-
bation have been carried out by Bruno17 and Wang et al.,7 for
example. However, in these schemes the Hamiltonian de-
pends only on the total spin density �LSDA� or spin popula-
tion at each site �TB� and not on their repartition between the
orbital states. In other words, electronic interactions are av-
eraged, which yields underestimated values of MAE and or-
bital moments, even though these quantities increase when
the dimensionality is reduced.18,19 Eriksson et al.20 have pro-
posed to correct this drawback by adding to the total energy
a term proportional to − 1

2 �L�2 which will be referred to as the
orbital polarization ansatz �OPA� in the following. This ob-
viously tends to increase �L� but is not really justified as we
will see below.

A more rigorous way of obtaining the correct distribution
of electrons between the d orbital states of opposite magnetic
quantum numbers m is to take into account all intra-atomic
terms in the Hartree-Fock �HF� decoupling of the two-body
operators representing electron-electron interactions in the
Hamiltonian with the exact expression of the matrix ele-
ments U�1�2�3�4

of e2 / �r−r�� as a function of the three Racah
parameters A, B, and C relative to d atomic orbitals ��.6

Note that when using L�S�DA or a TB Hamiltonian param-
etrized by fits on L�S�DA calculations, some electronic inter-
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actions are implicitly already included. This is usually ac-
counted for by assuming that on each atom all spin-orbitals
�all spin-orbitals with the same spin� are equally populated in
LDA �LSDA�.

Some attempts have been made in this direction. How-
ever, most often the terms involving three and four different
orbitals have been neglected, which destroys the rotational
invariance of the interaction Hamiltonian21 unless appropri-
ate averages of the matrix elements with two different orbit-
als are done.22,23 Nevertheless, there exist in the literature
some scarce calculations in which all matrix elements of the
Coulomb interactions were taken into account6,24,25 but, at
least to our knowledge, no systematic study comparing this
complete HF scheme to the OPA has been carried out save
for our preliminary work on the Fe monatomic wire26 in the
TB approximation with an atomic orbital basis set restricted
to d orbitals. Such a comparison is indeed very interesting
since Solovyev et al.27 have shown, in an elegant work, that
the OPA cannot be derived analytically from the full HF
Hamiltonian except in some very special cases. In the present
work, we generalize our previous study,26 on the one hand,
by using a realistic description of the electronic states includ-
ing sp-d hybridization in order to get quantitative results and,
on the other hand, by investigating systems with various di-
mensionalities �bulk, surfaces, wire, clusters�.

The paper is organized as follows. The formalism and the
choice of parameters for Fe are described in Sec. II. Sections
III and IV are devoted to bulk and surfaces of bcc iron,
respectively. Our results concerning the monatomic wire and
some clusters are given in Secs. V and VI. Finally, conclu-
sions are drawn in Sec. VII.

II. FORMALISM

The Hamiltonian of the system is written as

H = HTB + HSO + �Hint, �1�

where HTB is a tight-binding Hamiltonian parametrized for
the nonmagnetic state by fitting ab initio calculations in the
local density �LDA� or generalized gradient �GGA� approxi-
mation, HSO is the spin-orbit coupling term, and �Hint de-
scribes the change in electronic interactions with respect to
HTB.

We choose a nonorthogonal basis set made of the real
s, p, and d valence atomic orbitals �i.e., cubic harmonics
for reasons which will become clear in the following�
centered at each site i. They are denoted by � and �
indices �� ,�=1,9� and numbered as follows:
s , px , py , pz ,dxy ,dyz ,dzx ,dx2−y2 ,d3z2−r2 �the x, y, and z coordi-
nates being taken along the crystal axes� with overlap
integrals Sij

�� depending on the bonding direction Rij.
The Hamiltonian HTB is completely determined by its
intra-atomic matrix elements �i.e., the s, p, and d atomic
levels� �i� and its interatomic matrix elements �i.e., the
hopping integrals� �ij

���Rij�. The functions Sij
���Rij� and

�ij
���Rij� are given by the same analytical expressions

as a function of two sets �one for overlap and one
for hopping� of ten Slater-Koster �SK� integrals
�ss	 ,sp	 ,sd	 , pp	 , pp
 , pd	 , pd
 ,dd	 ,dd
 ,dd�� and of

the direction cosines of Rij.
28 Following the scheme devel-

oped by Mehl and Papaconstantopoulos �MP�,29 the atomic
levels depend on the atomic environment �number of neigh-
bors and interatomic distances�, while the SK integrals are
functions of Rij only. The atomic levels and the SK integrals
are written as analytic functions depending on a number of
parameters which are determined by a least mean square fit
of the results of ab initio LDA or GGA electronic structure
�band structure and total energy� calculations. These param-
etrizations will be denoted respectively as TBLDA and
TBGGA in the following: the analytical forms of the func-
tions can be found in Ref. 29 and the numerical values of the
parameters for Fe in Ref. 30.

The spin-orbit coupling Hamiltonian HSO is given by

HSO = �L · S , �2�

where L and S are the orbital and spin momentum operators,
respectively. Due to the local character of this interaction,
only the intra-atomic matrix elements between d spin-
orbitals have been taken into account. For more details, the
reader is referred to Ref. 16 where � has been determined
��=0.06 eV�.

Only the intra-atomic electronic interactions are taken
into account. For d electrons, they are written in the Hartree-
Fock approximation, i.e.,

Hint,dd
HF1 = �

i�1�2�3�4�3�

		�

�U�4�2�3�1
�ni�3�4

		 �ci�2	�
† ci�1	�

− U�4�2�1�3
�ni�3�4

	�	 �ci�2	�
† ci�1	� , �3�

as a function of the net density matrix �ni�1�2

		� �= �ci�2	�
† ci�1	�

when all intra-atomic matrix elements of the Coulomb inter-
actions, i.e.,

U�1�2�3�4
= ��1�r�,�2�r���

e2

�r − r��
��3�r�,�4�r��� , �4�

where �i are a set of atomic d orbitals, are retained �HF1
model of Ref. 26�. These matrix elements can be expressed
as a function of the three Racah parameters A, B, and C.31

This Hamiltonian is rotationally invariant in spatial as well
as in spin coordinates since the spin-flip terms �i.e., with
	��	� arising from spin-orbit coupling are present in Hint,dd

HF1 .
Let us now comment on our choice for the basis set. Ob-

viously, when all terms are present in Hint,dd
HF1 , the results do

not depend on the basis set. This may not be the case when
some matrix elements are omitted. For instance, in a com-
mon approximation, the terms involving three and four dif-
ferent orbitals are neglected.22,32 When using a basis set
made of spherical harmonics denoted by the value of the
quantum number m, the three and four orbital terms are a
function of both B and C. Therefore, if these terms are ne-
glected without changing the one and two different orbital
matrix elements, the rotational invariance is destroyed unless
we set B=C=0, in which case the Coulomb-type integrals
Umm�mm�=A are completely isotropic and the exchange inte-
grals Umm�m�m vanish. This model is thus oversimplified if
we want to study spin and orbital magnetism. On the con-
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trary, when the basis set is built from cubic harmonics, the
three and four orbital matrix elements are a function of B
only.31 When these terms are neglected, the rotational invari-
ance is conserved only if B is set equal to zero. Then, in this
model U����=A+C and U����=C for any pair �, � of dif-
ferent d orbitals. This model can correctly describe spin
magnetism by an appropriate choice of the parameters but
cannot really account for orbital magnetism as shown in Ref.
26 on a simple model. This suggests redefining the param-
eters determining the HF1 Hamiltonian as U, J, B with U
= �1/4���,���U���� and J= �1/4���,���U����, the sums be-
ing independent of �. These average values of Coulomb and
exchange interactions are given by U=A−B+C and J
=5B /2+C. Thus, we expect that in the HF1 model the or-
bital magnetism, which is sensitive to the anisotropy of elec-
tronic interactions, is mainly governed by B similar to what
is assumed in the orbital polarization ansatz.

In the following, we will also consider the HF2 model of
Ref. 26 which is obtained from HF1 by setting B=0 and
sometimes called the U ,J model. Finally, a Stoner-like
model called HF3 can be derived from HF1 under the fol-

lowing assumptions: �i� the net density matrix �ni��
		�� is diag-

onal with elements equal to the net occupation numbers ni�	

and �ii� on each site i the exact ni�	 are replaced by their
average value ni	=1/5��ni�	. Then, it is easily shown �see
Appendix A� that the simplified Hamiltonian can be written
as

Hint,dd
HF3 = �

i�	

�UeffNi,d − 	IddMi,d/2�ci�	
† ci�	, �5�

where Ueff= �9U−2J� /10, Idd= �U+6J� /5 is the d Stoner pa-
rameter, Ni,d�Mi,d� are the net d total population �spin mo-
mentum� at site i, and 	= +1�−1� for majority �minority�
spin. Note that the above conditions are approximately
obeyed for bulk transition metals but become questionable
when the symmetry is lowered.

We must not forget that some electronic interactions are
already included in HTB since this Hamiltonian has been pa-
rametrized by fitting LDA and GGA calculations. This is
taken into account following the treatment done in the
“around mean field” LDA+U theory,32 i.e.,

�Hint,dd = Hint,dd�ni��
		�� − Hint,dd�n̄i����		�� , �6�

with n̄i=��	ni�	 /10, whatever the model �HF1, HF2, or
HF3�.

Finally, the small exchange splittings of the s and p levels
due to the spin polarization of d electrons are treated with a
Stoner-like model and a Stoner parameter Isd= Ipd= Idd /10,
i.e.,

�Hint,s�p�d = − 	Is�p�dMi,d/2, �7�

so that

�Hint = �Hint,sd + �Hint,pd + �Hint,dd. �8�

From the above discussion, it is clear that HF2 differs
from HF1 by terms proportional to B; this is also true for
HF3 as far as this Hamiltonian is justified. Eriksson et al.20

have proposed to introduce an OPA term to account for this

difference. This term is written in mean field �EOP=
− 1

2B�i�Li�2 which reduces to − 1
2B�i�LiZ�2 when the spin and

orbital moment �Li� are collinear with the axis Z which is
verified along high-symmetry directions �in the following, X,
Y, Z will denote the framework in which Z is the spin mag-
netization direction�. The corresponding Hamiltonian is then

HOP = − B �
i��	

�LiZ��LiZ���ci�	
† ci�	, �9�

where �LiZ��� are the matrix elements of the local-orbital
moment operator LiZ. Note that in the basis of cubic harmon-
ics, �LiZ��� is not diagonal.16 In the following, we also com-
pare the results obtained with HF1 to those derived from
HF2 or HF3 to which the OPA term has been added.

As in our previous work,16 we use the HF3 model to
determine the Stoner parameter Idd so as to reproduce as
closely as possible the variation of the bulk spin magnetic
moment as a function of the interatomic distance that can be
obtained from a spin polarized density-functional theory cal-
culation. This gives Idd=1 eV. Finally, from Fig. 1 of the
recent work by Solovyev33 it can be deduced that U	J. As a
consequence, we have taken U=J=5Idd /7=0.71 eV and
similar to most previous works B=0.14J.33

III. SPIN AND ORBITAL MAGNETISM IN BULK
BCC IRON

Let us first consider the bulk bcc phase of Fe and compare
the results obtained with HF1 and HF3 using the TBGGA
parameters. Indeed, we do not expect strong differences be-
tween HF2 and HF3 for the following reasons. First, in the
absence of the small perturbation due to spin-orbit coupling,
the intra-atomic density matrix is diagonal for symmetry rea-
sons in cubic crystals. Second, the populations of the differ-
ent orbitals with a given spin are rather similar in the bulk.

Calculations show that the equilibrium lattice parameter
�5.35 a.u.� is close to the experimental value �5.43 a.u.� and
that the variation of the spin moment with the lattice param-
eter is almost the same with the HF1 and HF3 models. For
instance, the spin moments are 2.34�B and 2.39�B with HF1
and HF3, respectively �see Fig. 1� at the experimental equi-
librium lattice parameter. On the opposite, the orbital
moment is significantly enhanced with the HF1 model �see
Fig. 2� and in very good agreement with experiment
�0.08–0.09�B� �Ref. 34� as well as with the theoretical re-
sults of Xie and Blackman.6

IV. SPIN AND ORBITAL MAGNETISM AT BCC
IRON SURFACES

We have applied the HF1 and HF3 models to the study of
the �001� and �110� surfaces of bcc iron. The surfaces are
modeled by slabs of 15 atomic layers which is sufficient to
avoid interactions between the two surfaces and to recover
the bulk behavior on the central layer. Interlayer relaxations
are neglected in all calculations and the interatomic distance
is set equal to the experimental one �dbulk

exp =4.69 a.u.�. In such
systems, some atoms have a reduced coordination compared
to the bulk and therefore charge transfers are expected. In
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order to avoid unphysically large charge transfers at the sur-
face, we have used a penalty function �see Appendix B�
which consists in adding to the energy functional a term of
the type

ELCN
pen = �LCN

pen �
i

��qi�2. �10�

Here, �qi=qi−q0, where qi is the Mulliken charge of site i
and q0 the valence charge, and �LCN

pen is the penalization factor
which must be taken large enough to ensure local charge
neutrality �in practice, one takes �LCN

pen =2.5 eV which gives
charge transfers below 0.1 electron per atom�. The local
charges qi are expressed as a function of the tight-binding
expansion coefficients Ci�	

n of the eigenfunctions n with re-
spect to the atomic orbitals,

qi = Re 
 �
�j�	

n

fnCi�	
n�Cj�	

n Sij
��� , �11�

where fn is the occupation factor and depends on the type of
system. In periodic systems such as surfaces, a broadening
technique is used and fn= f�n� is equal to the Fermi function
at the energy level n for a given temperature.

A standard iterative scheme is set up until input and out-
put intra-atomic density-matrix elements differ by less than
10−4 electron per atom and the total energy of the slab does
not change by more than 10−4 eV. We have calculated the
spin and orbital moments decomposed on each atomic layer
of the �001� and �110� slabs. The results of our calculations
are shown in Figs. 3 and 4. As expected, the spin magnetic
moment is enhanced in the vicinity of the surface, this rein-
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FIG. 1. Spin magnetic moment of bulk bcc iron as a function of
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and HF3 models. The dashed straight line corresponds to the ex-
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lattice parameter.
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in-plane magnetization, the dependence of the orbital moment on
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forcement being more pronounced for the �001�, for which
the spin moment of the outermost layer is almost saturated,
than for the �110� slab since the �001� surface is more open
than the �110�. The convergence to the bulk spin moment is
also slightly faster for the �110� slab than for the �001� slab.
Finally, apart from a small shift of the bulk spin moment
between HF1 �2.34�B� and HF3 �2.39�B�, the two models
lead to very similar results. Let us also note that we have
verified that the spin moment is almost independent of the
magnetization orientation.

At surfaces, the orbital moment is also strongly enhanced.
However, in contrast to the spin moment the type of model
used is now crucial. Indeed, the enhancement of the orbital
magnetization at the surface is much more pronounced with
the HF1 model than with HF3. For magnetization perpen-
dicular to the surface, one finds values of �LiZ� as large as
0.21�B on the outermost layer of the �001� surface with the
HF1 model, while it is 0.127�B with the HF3 model. Note
that this latter value is in very good agreement with the re-
sults of Eriksson et al.18 derived from LSDA calculations
without OPA, i.e., 0.12�B for a surface atom of a seven layer
slab. The orbital moment is therefore 2.40 times larger at the
surface than it is in the bulk �0.088�B� with HF1, while it is
slightly less than twice larger with HF3. The orbital polar-
ization effect is therefore amplified at the surface: a 63%
increase of the surface orbital moment between HF3 and
HF1 is obtained, which must be compared to 33% in the bulk
�0.088�B with HF1 and 0.066�B with HF3�. This general
trend is also observed on the �110� surface though not so
pronounced. Finally, contrary to the case of the spin moment
the orbital moment �LiZ� depends sensitively on the magne-
tization direction, and moreover the two surfaces behave dif-
ferently. It is found that the orbital moment is noticeably
larger for magnetization perpendicular to the surface in the
case of the �100� slabs, while a slight increase of the orbital
moment is observed for in-plane magnetization in the case of
�110� slabs. In that respect, HF1 and HF3 models lead to
very similar behaviors. Finally, one should point out that for
in-plane magnetization the dependence of the orbital moment
on the orientation in the plane is negligible.

V. MAGNETIC PROPERTIES OF AN IRON
MONATOMIC WIRE

In a preliminary work,26 we already investigated the or-
bital contribution to the magnetic properties of the Fe mon-
atomic wire and checked the ability of the OPA to account
for the existence of large orbital moments in one-
dimensional structures by comparing to the results obtained
from a full Hartree-Fock decoupling of intra-atomic elec-
tronic interactions. To this aim, we used a simple tight-
binding model in which only d electrons were taken into
account. However, in this model only the self-consistent so-
lution�s� of the Hamiltonian could be determined but not the
total energy. Furthermore, the number of d electrons was
fixed. On the contrary, the use of an s, p, d basis set allows a
charge redistribution between sp and d orbitals as a function
of the interatomic distance d and the determination of the
total energy. In the following, we present the results obtained

for a monatomic Fe wire with this realistic basis set using the
TBLDA MP parameters for reasons which have been dis-
cussed in Ref. 16. This will enable us to confirm the quali-
tative trends obtained in the previous model and to get quan-
titative results.

We have computed the total energy, the spin and orbital
magnetic moments, the band structure, and the electronic
transmission factor as a function of the interatomic distance
for the different models, i.e., HF1 and HF2 or HF3 without
and with OPA. The results show that the equilibrium distance
is quite insensitive to the model chosen and is close to
4.05 a.u. �2.14 Å� with a slight dispersion smaller than
0.02 a.u. The spin magnetic moment is quite independent of
the direction of magnetization. This moment is also almost
unchanged when the OPA term is added to HF2 or HF3.
Finally, the spin moment saturates between 3.7 and 3.8 a.u.
for HF1 and HF2, and this saturation occurs at a shorter
distance �between 3.6 and 3.7 a.u.� with HF3. Note that these
latter results are in much better agreement with ab initio
calculations �3.8 a.u. �Ref. 16�� than in the pure d-band
model.

Let us now compare the orbital magnetic moments and
MAE obtained with the various models. The models HF2
and HF3 with �Fig. 5� or without OPA give very similar
results save for 3.6�d�3.8 a.u., i.e., the domain of dis-
tances for which at least one of these models leads to an
unsaturated spin moment. As a consequence, we will now
limit ourselves to the comparison between the HF1, HF3,
and HF3+OPA Hamiltonians for magnetizations parallel ��
=0� and perpendicular ��=
 /2� to the wire. A glance at Fig.
6 confirms, as expected, that HF3 largely underestimates the
orbital moment �LZ� for both magnetization directions and
the MAE. Adding the OPA to HF3 obviously increases these
quantities; however, for the orbital moment the difference
with the result derived from HF1 does not keep the same
sign as a function of the interatomic distance and is rather
large in relative value when the spin is not saturated. Never-
theless, the overall agreement between HF1 and HF3+OPA
is qualitatively satisfying. Note that if the OPA term were
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 /2� to the wire and �right� the corre-
sponding magnetocrystalline anisotropy energy.
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multiplied by 3 as suggested in a recent work by Narita and
Higuchi35 based on atomic structure calculations for the
maximal spin multiplet, this agreement would be destroyed.

It is worthwhile to discuss the results given by HF1 in
more detail. First, at �=0 a sharp change of slope occurs for
�LZ� at d=3.9 a.u. Let us recall26 that at �=0 the wire eigen-
functions corresponding to the almost flat � bands located
near the Fermi level are a linear combination of d spherical
harmonics �with m=2 or m=−2� centered at each site. When
d increases from 3.6 a.u., the population of the highest en-
ergy band m=−2 decreases and vanishes for d	3.9 a.u. This
explains the change of slope in the �LZ� curve. Note also that
for d�4.3 a.u., two self-consistent solutions are found cor-
responding to an empty band either with m=2 or m=−2
character and nearly opposite values of �LZ�. However, the
solution in which the m=−2 band is empty and �LZ��0 is
always the most stable one. On the contrary, at �=
 /2 the
character of the eigenfunctions of the � bands near the Fermi
level is dxy or dx2−y2. Up to d=4. a.u., these two bands are
quasidegenerate. Then, when d�4.1 a.u., two self-consistent
solutions are found for which either dxy or dx2−y2 are empty
but, contrary to what occurs at �=0, they have almost the
same total energy and very similar values of �LZ�. The
change of slope at d=4.5 a.u. corresponds to the switch of
the ground state from one case �empty dx2−y2 band� to the
other �empty dxy band�. Finally, let us comment about the
structure around d=3.7 a.u. As stated above, the spin mo-
ment saturates in this region, more precisely between d
=3.75 a.u. and d=3.76 a.u. and, around these values, two
self-consistent solutions are also found: an unsaturated one
with a rather large value of �LZ� and a saturated one with a
low value of �LZ�, which are the ground states for d
�3.75 a.u. and d�3.76 a.u., respectively.

It is interesting to compare our results with those of our
previous works. The most striking result is perhaps the very
high value that is reached by the MAE. This is in contrast
with the case of Fe wires embedded in bulk Cu �Ref. 36� in
which the MAE is only slightly enhanced compared to the
case of bulk iron. This shows that the geometrical environ-
ment of the wire is crucial in determining its orbital magnetic

properties, as also revealed in the work of Ederer et al.37 for
the orbital moment. In Ref. 16 we showed, using a Stoner-
like Hamiltonian, that the proportionality relation between
the MAE and the anisotropy of the orbital moment proposed
by Bruno,17 by treating the spin-orbit coupling by means of
perturbation theory, is almost strictly verified when the inter-
atomic distance in the wire is such that the spin moment is
saturated. It is clear from Fig. 6 that this law is not satisfied
with HF1 even though the MAE has the same sign as
�LZ��=0��− �LZ��=
 /2��.

To illustrate the departure from the perturbation theory,
we have found useful to study the variation of the MAE and
orbital magnetization with the angle between the monatomic
wire and the magnetization axis. If one starts a calculation
from a nonsymmetric magnetic configuration �different from
�=0 or �=
 /2� and let the self-consistent process iterate
until convergency, it should bring the system toward the easy
axis. Therefore, one has to find a way to follow the evolution
with respect to the angle �. In order to constraint the angle �
between the spin moment and the z axis, we add a penalty
functional

Eang
pen = �ang

pen�cos � − cos �0�2 �12�

to the total energy �see Appendix B�. In practice, �ang
pen

=1 eV ensures that the angle � does not deviate by more
than 0.1° from �0. Figure 7 shows the results of our calcula-
tions with the HF1 model. This clearly shows that the orbital
moment and the MAE are strongly modified when the aniso-
tropy of the electronic interactions is taken into account. The
MAE and the orbital moment no longer follow a simple
sin2 � law and moreover present an abrupt variation around
�=80° which corresponds to an electronic transition. Note
that the position of this transition strongly depends on the
interatomic distance. At larger interatomic distances, this
transition occurs for smaller � angles.

We must emphasize that the qualitative trends put forward
in Ref. 26 are also obeyed when the basis set is extended to
include s and p orbitals, namely, �i� the orbital moment and
MAE are largely underestimated with a Stoner-like Hamil-
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tonian but they reach numerical values similar to those ob-
served experimentally in one-dimensional systems when
HF1 is used, and �ii� adding the OPA to HF2 or HF3 leads to
a fair agreement with HF1 for both �LZ� and MAE when the
spin moment is saturated but this agreement deteriorates in
relative value for unsaturated spin polarization.

Finally, we show in Fig. 8 the band structure obtained
with HF1 and HF3 for �=0 and �=
 /2 at the equilibrium
distance from which the electronic transmission factor T�E�
is deduced by a simple counting of the number of eigenfunc-
tions at a given energy.38 Some differences are observed, in
particular, at �=0: around the Fermi level, the energy domain
inside which T�E�=7 is narrowed when HF1 is used instead
of HF3. Such differences should appear in more complex
geometries such as those obtained in the constriction region
of break junctions and could have important consequences
on magnetoresistance properties.39

VI. MAGNETIC PROPERTIES OF SOME IRON
CLUSTERS

In the previous sections, we have studied three- �bulk�,
two- �surface�, and one- �wire� dimensional periodic sys-
tems. To end this work, we have investigated zero-
dimensional structures, i.e., unsupported clusters. We have
considered five clusters with various geometries presented in
Fig. 9.

Three of these clusters �triangle, square, and regular octa-
hedron� are made of geometrically equivalent atoms, while
the two others �cuboctahedron and icosahedron� are built
from a central atom surrounded by 12 atoms forming the
outer shell. Since it was shown in the previous section that
HF2 and HF3 basically give the same results for saturated
systems, we have restricted our study to the three models:
HF1, HF3, and HF3+OPA. In a first step, we have mini-
mized the total energy with respect to the nearest-neighbor
distance. We only consider a homogeneous contraction of the

cluster and ignore Jahn-Teller distortions. Note that the dis-
crete levels of the clusters have been filled with electrons up
to the highest occupied molecular orbital �HOMO�, i.e., the
occupation factor fn=1 or 0 except when the HOMO level is
degenerate and not completely filled. In the latter case, the
different wave functions corresponding to the HOMO level
have been equally populated in order to preserve the cluster
symmetry. Similar to the case of surfaces, a penalization
function has been used to avoid large charge transfers �see
Appendix B�.

As illustrated in Fig. 10, the equilibrium interatomic dis-
tance is almost insensitive to the type of Hamiltonian. We
also checked that the magnetization orientation does not in-
fluence the equilibrium distance either. As a consequence,
the relaxed structures have been determined from HF3 cal-
culations and a magnetization along a high-symmetry direc-
tion �see Fig. 9�. The results are summarized in Table I. For
all clusters, a contraction of the equilibrium bond length with
respect to the calculated bulk one �dbulk=4.63 a.u.� is ob-
tained and the general trend stating that the contraction de-
creases with the average coordination is well obeyed. The
interatomic distance of the triangle and square is contracted
by 11%, the octahedron by 7%, and the cuboctahedron by
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3% with respect to the bulk. In the case of the icosahedron,
one should distinguish between the radial dr and intrashell dt
nearest-neighbor distance, the latter being about 5% larger
than the former �dt=1.051dr�. At equilibrium, one finds that
the average value �dt+dr� /2=4.53 a.u. is very close to the
interatomic distance of the cuboctahedron.

We have then carried out a detailed study of the MAE and
of spin and orbital moments for these equilibrium structures
with the three Hamiltonians. The spin moment is almost in-
sensitive to the Hamiltonian used. We also found that the
spin moment is carried by d electrons and is almost satu-
rated. Indeed, in spite of the contraction of interatomic dis-
tance relative to the bulk one which would tend to suppress
magnetism, the strong decrease of coordination which favors
spin polarization overcomes the first effect. Consequently,
the d spin moment Mi,d on a given site i can approximately
be obtained from the number of d electrons Ni,d by the rela-
tion Mi,d=10−Ni,d. This simple rule is rather well obeyed for
all clusters �see Table II� save for the cuboctahedron and
icosahedron in which the central atom is depleted in d elec-
trons and is not saturated. Since it is well known from theo-
retical works that fcc iron has a tendency to form compli-
cated magnetic structures, we have tried to start the self-
consistent scheme for the cuboctahedron and icosahedron
from an antiferromagnetic magnetic configuration. We were
not able to find any antiferromagnetic solution except when
allowing charge transfers by setting �LCN

pen to zero. In that
case, a rather large charge transfer is obtained �especially in
the case of the icosahedron� from the inner atom to the outer
shell, and one can find a self-consistent solution where the
central atom has a spin magnetic moment opposite to that of
outer-shell atoms. The ferromagnetic solution, however, re-
mains the most stable solution.

Let us now discuss the MAE. First, it is worth noting that
the MAE is quite sensitive to the interatomic distance. For
illustration, we have calculated the MAE of a triangular iron
cluster �see Fig. 11� as a function of the interatomic distance.
As expected, the HF3 model systematically leads to smaller

MAE than the HF1 or HF3+OPA model. Moreover, the
MAE may change sign when the interatomic distance in-
creases as seen in Fig. 11 where the easy axis switches from
out of plane �positive MAE� to in plane �negative MAE� at
d=4.06 a.u. with the HF3 model. It is also found that the
in-plane anisotropy is extremely small and of the order of
some hundredths of meV. The results are given in Table III
for the five clusters at equilibrium. The behavior of the
square cluster is very different from the triangular one since
the three models agree to find an out-of-plane easy axis and
a strong in-plane anisotropy �the diagonal axis being strongly
unfavorable�, but the numerical values are very dependent on
the model �see Table III�. The octahedron is the only cluster
for which the three models agree to predict an absence of
anisotropy �smaller than 2�10−5 eV�. Finally, the compari-
son of the cuboctahedron and icosahedron is instructive since
these two structures only differ by small atomic
displacements.40 The cuboctahedron shows a rather large an-
isotropy in favor of the direction denoted as F3, while the
icosahedron shows a very weak anisotropy due to its more
spherical shape. For both structures, the addition of the OPA
term to HF3 does not lead to a significant improvement com-
pared to HF1.

Since noncollinear magnetism is always a possible issue
in clusters, we have checked for the five clusters that the
most stable spin configuration is the ferromagnetic collinear
one. To this aim, we have initialized our calculation by arbi-
trary noncollinear magnetic configurations and iterated until
convergency. In most cases, a ferromagnetic collinear con-
figuration is obtained. However, depending on the initial
conditions, several collinear and noncollinear antiferromag-
neticlike configurations, �i.e., with zero total magnetic mo-
ment� are sometimes found, but their energy is always above
the ferromagnetic one. Interestingly, when the calculation
converges toward the ferromagnetic configuration, the self-
consistent scheme proceeds as follows: in the first iterations,
the magnetic moments tend to align along a given direction
�depending on the initial condition�, then once the moments
are almost aligned, it takes a long time for the system to

TABLE I. Equilibrium first nearest-neighbor distance of various iron clusters from HF3 calculations. Note
that these values are almost identical to those obtained with HF1 calculations, and are almost independent of
the magnetization axis. In the case of the icosahedron, deq is the radial first nearest-neighbor distance dr.

Triangle Square Octahedron Cuboctahedron Icosahedron

deq �a.u.� 4.14 4.16 4.31 4.50 4.42

TABLE II. Number of d electrons Ni,d, d, and total spin moments Mi,d and Mi �in �B� on each site of the
five clusters. Note that these quantities are almost independent of the model, for instance, the spin moments
do not differ by more than 0.01 �B. The two values for the cuboctahedral and icosahedral clusters refer to the
central and peripheral atoms, respectively.

Triangle Square Octahedron Cuboctahedron Icosahedron

Ni,d 7.21 7.24 7.31 6.80/7.14 6.90/7.12

Mi,d 2.68 2.57 2.44 2.42/2.63 2.28/2.63

10−Ni,d 2.79 2.76 2.69 3.20/2.86 3.10/2.88

Mi 2.66 2.50 2.33 2.47/2.62 2.33/2.63
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converge toward the easy axis. For all clusters, we were able
to find the easy axis by this procedure except for the cuboc-
tahedron. In fact, in the latter case, depending on the initial
conditions the calculation sometimes converges toward the S
�apex� configuration, sometimes toward the F3 �center of tri-
angular facet�, meaning that the total energy possesses sev-
eral local minima.

Let us now consider the orbital moment. The results of
our calculations are presented in Tables IV and V. It is seen
that the orbital moment is very sensitive to the magnetization
orientation as at surfaces and in the monatomic wire. Fur-
thermore, two structurally equivalent atoms now become
“magnetically” inequivalent and can bear orbital moments
that differ by a factor of more than 2. For instance, in a
cuboctahedron with a magnetization pointing toward the cen-
ter of the square facet F4, the eight atoms forming the upper
and lower square facets �with respect to the magnetization
axis� have an orbital moment about twice smaller than that of
the four other outer-shell atoms whatever the model. The
orbital moment of the central atom is close to the bulk bcc
value. In contrast, the icosahedron shows a more equally
distributed orbital moment and the orbital moment on the
central atom is significantly larger than in the bulk. More-
over, the difference between the values obtained from the
various Hamiltonians is much less pronounced.

Finally, as expected and contrary to the spin moment, the
type of Hamiltonian has most often a strong influence on the
numerical value of the orbital moment. We find that HF3
systematically predicts the smallest ones. However, contrary
to the case of MAE, there is now a fairly good agreement
between HF1 and HF3+OPA. It should be pointed out that
when two magnetic orientations have almost the same en-
ergy, the total orbital moments in these two directions are
almost identical. This can be verified from Tables III and IV
in the case of the �100� and �010� directions of the triangle.
One should, however, not conclude that in the HF1 model
the MAE is simply related to the orbital moment. Indeed,
with this model, the easy axis of the triangle corresponds to
the highest orbital moment but this is not true for the square.

VII. CONCLUSION

In conclusion, this work presents an extended study of
orbital polarization effects on the magnetic properties of iron
systems with various dimensionalities using an s , p ,d, tight-
binding Hamiltonian with spin-orbit coupling and dd intra-
atomic electronic interactions treated in the Hartree-Fock
scheme at different levels of approximations. The results ob-
tained from the full Hartree-Fock interaction Hamiltonian
HF1, i.e., involving all matrix elements of the Coulomb in-
teractions with their exact orbital dependence as a function
of the three Racah parameters, have been systematically
compared with those of simplified Hamiltonians including or

TABLE III. Magnetic anisotropy energy in meV for various iron
clusters from HF1, HF3, and HF3+OPA models calculated at the
equilibrium interatomic distance. For the cuboctahedron and the
icosahedron, the direction u is determined by the vector joining the
central atom to an apex �S� and to the centers of a triangular facet
�F3� or a square facet �F4�.

Triangle

MAE=Eu−E001 �meV�
u→ �100� �010�

HF1 −1.264 −1.270

HF3 −0.246 −0.246

HF3+OPA −2.225 −2.253

Square

MAE=Eu−E001 �meV�
u→ �100� �110�

HF1 8.911 15.245

HF3 5.378 6.3190

HF3+OPA 20.560 26.346

Octahedron

MAE=Eu−E001 �meV�
u→ �100�

HF1 −0.004

HF3 −0.001

HF3+OPA 0.021

Cuboctahedron

MAE=Eu−EF4
�meV�

u→ S F3

HF1 −1.676 −2.208

HF3 −0.331 −0.441

HF3+OPA −0.358 −0.359

Icosahedron

MAE=Eu−ES �meV�
u→ F3

HF1 0.114

HF3 0.020

HF3+OPA −0.020
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FIG. 11. Magnetic anisotropy energy �MAE� E100−E001 as a
function of the interatomic distance of a triangular iron cluster from
HF1 �full line�, HF3 �dashed line�, and HF3+OPA �dotted line�
models. Note that the MAE curve E010−E001 would be undistin-
guishable from E100−E001 since there is almost no in-plane
anisotropy.
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not the orbital polarization ansatz �OPA�. Indeed, in usual
approximations, the matrix elements of the Coulomb interac-
tion are averaged. This may be a rather poor approximation
when the orbitals are not equally populated since, for in-
stance, the exchange matrix elements U���� may differ by
factor of 2 depending on the considered orbital pair.31 As
expected, it is found that the one-parameter Stoner-like
Hamiltonian HF3 which, similar to the L�S�DA approach,
neglects the orbital dependence of Coulomb interactions
leads to reasonable values of the spin moment but largely
underestimates the orbital moment and the magnetocrystal-
line anisotropy energy �MAE�. The two-parameter �U ,J�
HF2 model, in which three and four orbital matrix elements
are neglected and those with two different orbitals are aver-
aged in the cubic harmonics basis, leads practically to the
same results as the Stoner-like Hamiltonian, at least when the
spin moment is saturated. In both these simplified Hamilto-

nians, the addition of the OPA, which is not really justified
on theoretical grounds, gives largely improved values of the
orbital moment but is much less reliable for the MAE, at
least in clusters or when the spin moment is not saturated.
With the full interaction Hamiltonian HF1, the orbital mo-
ment and the MAE attain numerical values of the same order
of magnitude as those measured experimentally on supported
clusters or chains,11–13 although larger. This is not surprising
since it is expected and confirmed by ab initio LSDA calcu-
lations including an OPA term37 that a free monatomic chain
has an orbital moment around twice as large as when sup-
ported with the same interatomic distance.

Furthermore, HF1 is fully rotationally invariant as well in
spatial and in spin coordinates. The influence of spin-flip

TABLE IV. Local-orbital moments of iron triangular, square,
and octahedral clusters for various spin magnetization orientations
Z �see Fig. 9�, from HF1, HF3, and HF3+OPA Hamiltonians at the
equilibrium distance. The number of sites having the same orbital
moment for symmetry reasons is given in parentheses. In the case
of the �110� direction of the square, the largest value corresponds to
the diagonal of the square perpendicular to the magnetization.

Triangle

�LZ� ��B�
Z→ �001� �100� �010�

HF1 0.133 �3� 0.177 �2� 0.216 �2�
0.236 �1� 0.159 �1�

HF3 0.090 �3� 0.112 �2� 0.129 �2�
0.138 �1� 0.104 �1�

HF3+OPA 0.130 �3� 0.189 �2� 0.229 �2�
0.238 �1� 0.159 �1�

Square

�LZ� ��B�
Z→ �001� �100� �110�

HF1 0.325 �4� 0.337 �4� 0.234 �2�
0.259 �2�

HF3 0.255 �4� 0.164 �4� 0.133 �2�
0.142 �2�

HF3+OPA 0.487 �4� 0.362 �4� 0.249 �2�
0.270 �2�

Octahedron

�LZ� ��B�
Z→ �001� �100�

HF1 0.124 �4� 0.128 �4�
0.133 �2� 0.124 �2�

HF3 0.087 �4� 0.094 �4�
0.101 �2� 0.087 �2�

HF3+OPA 0.128 �4� 0.140 �4�
0.153 �2� 0.128 �2�

TABLE V. Local-orbital moments of iron for cuboctahedral and
icosahedral clusters for various spin magnetization orientations Z
determined by the vector joining the central atom to an apex �S� and
the centers of a triangular facet �F3� or of a square facet �F4�, from
HF1, HF3, and HF3+OPA Hamiltonians at the equilibrium inter-
atomic distance. The number of sites having the same orbital mo-
ment for symmetry reasons is given in parentheses, except for the
direction denoted as F3 for which the orbital moments are very
similar on all the external atoms. In the case of the S direction of the
cuboctahedron, the smallest orbital moment in the outershell corre-
sponds to the two atoms with a binding direction parallel to the
magnetization.

Cuboctahedron

�LZ� ��B�
Z→ F4 S F3

HF1 0.098 �1� 0.101 �1� 0.102 �1�
0.156 �8� 0.246 �8� �0.23 �12�
0.304 �4� 0.153 �2�

0.182 �2�
HF3 0.063 �1� 0.063 �1� 0.064 �1�

0.098 �8� 0.143 �8� �0.13 �12�
0.182 �4� 0.095 �2�

0.104 �2�
HF3+OPA 0.103 �1� 0.105 �1� 0.105 �1�

0.158 �8� 0.255 �8� �0.23 �12�
0.321 �4� 0.162 �2�

0.179 �2�

Icosahedron

�LZ� ��B�
Z→ S F3

HF1 0.202 �1� 0.202 �1�
0.317 �10� �0.32 �12�
0.304 �2�

HF3 0.207 �1� 0.207 �1�
0.222 �10� �0.22 �12�
0.210 �2�

HF3+OPA 0.271 �1� 0.271 �1�
0.312 �10� �0.28 �6�
0.268 �2� �0.32 �6�
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terms is rather weak in the case of iron but is expected to
increase drastically with the spin-orbit coupling parameter.
This could be important for platinum which has been shown
to be magnetic in monatomic wires.41 Finally, it should be
emphasized that it is not much more computer demanding to
deal with the HF1 model. It is thus of prime importance to
work with this model for the study of orbital magnetism and
MAE in low dimensional systems either in a realistic s, p, d,
tight-binding basis set or to implement it in ab initio codes of
the LDA+U type.

APPENDIX A: RELATION BETWEEN HF1 AND HF3
INTERACTION HAMILTONIANS

In this appendix, we show, using the real d orbital basis
set, that the Stoner-like Hamiltonian HF3 can be obtained
from the full Hartree-Fock interaction Hamiltonian Hint,dd

HF1

with the following approximations:
�i� The intra-atomic matrix density is assumed to be diag-

onal with respect to both orbital and spin indices.
�ii� For each spin and at each site, the exact population of

the �	 spin-orbital is replaced by its average value, i.e., ni	
=1/5��ni�	, then the matrix elements of the approximate
electronic interaction Hamiltonian become

Hi�	,i�	 = ni	�
�

�U���� − U����� + ni−	�
�

U����. �A1�

It can be shown31 that the matrix elements U���� vanish
when three indices are equal and that the elements involving
three different orbitals obey the relations ��U����=0 and
��U����=0. Consequently, the approximate Hamiltonian is
diagonal and

Hi�	,i�	 = ni	�
�

�U���� − U����� + ni−	�
�

U����. �A2�

By replacing ni	 by �Ni,d+	Mi,d� /10, we find

Hi�	,i�	 = �
�

U���� −

U����

2
�Ni,d

5
− 	�

�

U����

Mi,d

10
.

�A3�

Carrying out the summations over � leads to

Hi�	,i�	 =
9U − 2J

10
Ni,d −

	

2

U + 6J

5
�Mi,d, �A4�

which are the matrix elements of the electronic interaction
Hamiltonian in the HF3 model.

APPENDIX B: PENALTY FUNCTIONS

The usual way to implement constraints in a variational
problem is to use a Lagrange-multiplier formalism. For ex-
ample, the normalization constraint of the wave functions

leads to the eigenvalue problem, the Lagrange multiplier be-
ing the eigenvalues. However, this approach is not always
very well suited to more general constraints. A very useful
approach is to add a supplementary term to the total-energy
function.42,43 This term called penalty function is equal to
zero when the constraint is fulfilled and large and positive
when it is not. In the present work, we have used a local
charge neutrality �LCN� penalty ELCN

pen and a � angle penalty
Eang

pen. We have taken the following forms for these penalty
functions:

ELCN
pen = �LCN

pen �
i

��qi�2 �B1�

and

Eang
pen = �ang

pen�
i

�cos �i − cos �i0�2. �B2�

Here, �qi=qi−q0, where qi is the Mulliken charge of site i
and q0 the valence charge, �LCN

pen ��ang
pen� is the penalization

factor which must be taken large enough to ensure local
charge neutrality �fixed angle�, �i is the local spin magneti-
zation angle on atom i, and �i0 is the angle that one wants
to impose. Using the expression of qi and cos �i

=Miz /Mix
2 +Miy

2 +Miz
2 in terms of the tight-binding expan-

sion coefficients of the wave functions, the calculation of the
derivative of the penalized total energy with respect to these
expansion coefficients leads to an eigenvalue problem where
the Hamiltonian is now modified by an additional “renormal-
izing” term which matrix elements reads

�LCN
pen ��qi + �qj�	0Sij

��

and

− �ang
pen�Bi

pen + B j
pen� · �Sij

��,

in the case of LCN and angle penalization, respectively,
where 	0 is the identity matrix and � the Pauli matrix vec-
tors. Bi

pen is an effective constraining magnetic field that ex-
erts a torque to bring the magnetization along the �i0 axis
which expression is

Bi
pen = �ang

pen �cos �i − cos �i0�
�Mix

2 + Miy
2 + Miz

2 �3/2� MixMiz

MiyMiz

− Mix
2 − Miy

2 � . �B3�

In practice, �LCN
pen =2.5 eV and �ang

pen=1 eV ensure charge
transfers below 0.1 electron per atom and deviations from
the angle �i0 smaller than 0.1°.

The modified eigenvalue problem has to be solved itera-
tively until convergence of the Mulliken charges �and total
energy�. Finally, it should be noted that if one writes the total
energy as a sum of the occupied eigenvalues, one should not
forget to subtract an additional double-counting term arising
from the penalization function.
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