
Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials

Jonathan R. Yates
Cavendish Laboratory, Cambridge University, 19 JJ Thomson Avenue, Cambridge CB3 OHE, United Kingdom

Chris J. Pickard
School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, Scotland

Francesco Mauri
Institut de Minéralogie et de Physique des Milieux Condensés, Université Pierre et Marie Curie, 4 Place Jussieu,

75252 Paris Cedex 05, France
�Received 15 January 2007; revised manuscript received 23 March 2007; published 2 July 2007�
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pseudopotentials. It uses the gauge-including projector augmented wave method �C. J. Pickard and F. Mauri,
Phys. Rev. B 63, 245101 �2001�� to obtain all-electron accuracy for both finite and infinitely periodic systems.
We consider in detail the calculation of NMR chemical shieldings. The approach is successfully validated first
for molecular systems by comparing calculated chemical shieldings for a range of molecules with quantum
chemistry results and then in the solid state by comparing 17O NMR parameters calculated for silicates with
experiment.
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I. INTRODUCTION

Solid-state nuclear magnetic resonance �NMR� spectros-
copy is a powerful experimental probe of structure and dy-
namics on an atomic scale. It has been widely applied to
problems in chemistry, material science, biology, physics,
and geology. However, there is no simple theorem which
allows the measured spectrum to be related to the underlying
chemical structure. For simple organic molecules and certain
crystal structures, empirical rules have been found, but for
more complex systems, interpretation of the experimental
spectra can be difficult and often ambiguous.

First principles quantum mechanical calculations of NMR
parameters have the potential to provide the vital missing
link between NMR spectra and the underlying microscopic
structure. Traditional quantum chemical techniques1 have
been successfully applied to assign the solution-state NMR
spectra of molecular systems and establish key conforma-
tional and structural trends.2 In order to apply these tech-
niques to solid-state NMR, it has been necessary to devise
finite clusters of atoms which model the local environment
around a site of interest in the true extended structure. While
this has led to successful studies of NMR chemical shifts in
systems such as molecular crystals,3 supramolecular
assemblies,4 and organometallic compounds,5 it is clear that
there are advantages in an approach that inherently takes
account of the long-range electrostatic effects in extended
systems. Mauri et al.6 and Sebastiani and Parrinello7 have
presented approaches to calculate NMR chemical shieldings
for systems with periodic boundary conditions. While both
of these methods were formulated for an all-electron Hamil-
tonian, they were applied in the context of calculations based
on norm-conserving pseudopotentials. The methods took no
account of the complications introduced by the use of
pseudopotentials and as a result were limited to light ele-
ments in which the pseudization error could be made to be
small. Nevertheless, some valuable applications have been

presented.8–10 Recently, Pickard and Mauri introduced the
gauge-including projector augmented wave �GIPAW�
method11 to correctly account for the use of pseudopoten-
tials. This is an adaption of Blöchl’s projector augmented
wave12 �PAW� method to respect the translational invariance
of a system in a magnetic field. The GIPAW method enables
NMR parameters to be calculated within the plane-wave
pseudopotential formalism of density functional theory with
all-electron accuracy. The technique has been applied, in
combination with experimental NMR spectroscopy, to sys-
tems such as minerals,13–15 glasses,16,17 and molecular
crystals.18–20 The GIPAW method was originally imple-
mented using norm-conserving pseudopotentials �NCPs�;
however, first row elements, transition, and rare-earth metals
require very large numbers of plane waves to accurately de-
scribe the valence wave functions. As both the calculation
time and the memory requirement scale as roughly the three-
halves power of the maximum plane wave cutoff energy, it is
clearly desirable to use softer and hence more efficient
pseudopotentials. In this respect, the current “state of the art”
are Vanderbilt’s “ultrasoft” pseudopotentials �USPs�.21 These
are designed to be as soft as possible in the core region and
require a minimum number of plane waves for full conver-
gence. This softness is achieved at the cost of relaxing the
property of norm conservation and so the pseudo-wave-
functions obey a generalized orthonormality condition.

In this paper, we develop the necessary computational
tools to calculate magnetic resonance parameters in extended
systems with USPs and examine the particular case of NMR
chemical shieldings. The response of a system to an external
magnetic field is treated within density functional perturba-
tion theory �DFPT�. DFPT expressions with USPs have pre-
viously been reported in connection with band curvature,22

phonon dispersion spectra,23 and dielectric tensors.24 Our ex-
pressions can be applied with local and semilocal density
functionals such as local density approximation �LDA� or
generalized gradient approximation.
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The paper is organized as follows: In Sec. II, we briefly
review the use of the GIPAW method to reconstruct all-
electron properties from a pseudopotential calculation. In
Secs. III and IV, we obtain expressions for the all-electron
induced current density; first for molecular systems and then
for infinitely periodic systems. Details of the practical imple-
mentation of the method and its use to calculate NMR
chemical shielding tensors are presented in Sec. V. Finally, in
Sec. VI, we present a validation of the method for a variety
of systems.

II. ULTRASOFT PSEUDOPOTENTIALS AND THE GIPAW
METHOD

When a diamagnetic material is placed in magnetic field,
electronic currents will be induced in the material. These
induced currents cause a small variation in the local mag-
netic field which can be detected in a NMR experiment, giv-
ing rise to the so called chemical shielding effect. The chemi-
cal shielding tensor �� �r� is defined as the ratio between a
uniform external magnetic field Bext and the induced mag-
netic field Bin

�1��r�,

Bin
�1��r� = − �� �r�Bext =

1

c
� d3r�j�1��r�� �

r − r�

�r − r��3
, �1�

where j�1� is the first-order induced electric current. It is clear
from Eq. �1� that the question of calculating chemical shield-
ing is essentially that of calculating the induced current. It
can also be seen from Eq. �1� that the chemical shielding is
strongly dependent on the induced current close to the
nucleus. This is problematic for calculations based on the use
of pseudopotentials as is precisely in this region that the
pseudo-wave-functions have an unphysical form. The now
well established approach to deal with such a problem is the
PAW method introduced by Blöchl12 in which the all-
electron wave function � is derived from the pseudo-wave-

function �̃ by means of a linear transformation. The PAW
method has been used to calculate electron paramagnetic
resonance �EPR� hyperfine parameters,12 electric field gradi-
ent tensors,25 and electron energy loss spectroscopy26 from
calculations based on norm-conserving pseudopotentials. Al-
though the PAW scheme could be applied to a system in a
magnetic field, it is not a computationally feasible approach.
In a uniform magnetic field, a rigid translation of all the
atoms in the system by a vector t causes the wave functions
to pick up an additional field-dependent phase factor, which
can we written as, using the symmetric gauge for the vector
potential, A�r�=1/2B�r,

�r��n�� = e�i/2c�r·t�B�r − t��n� . �2�

In the original PAW approach, a large number of projectors
would be required to describe the oscillations in the wave
functions due to this phase. Pickard and Mauri introduced11 a
field-dependent transformation operator which, by construc-
tion, imposes the translational invariance exactly. In their
GIPAW approach for an all-electron operator O, the corre-

sponding pseudo-operator Ō is given by

Ō = O + 	
R,n,m

e�i/2c�r·R�B�p̃R,n�

����R,n�e−�i/2c�r·R�BOe�i/2c�r·R�B��R,m�

− ��̃R,i�e−�i/2c�r·R�BOe�i/2c�r·R�B��̃R,m���p̃R,m�e−�i/2c�r·R�B.

�3�

��Rn� , ��̃Rn� are all-electron and pseudo-partial-waves and
�p̃Rn� are a set of projectors such that �p̃Rn � �̃R�m�=�RR��nm.
Each projector and partial wave is an atomiclike function
centered on an atomic site R, and n is a composite index
which refers to both the angular momentum quantum num-
bers and to an additional number which is used if there is
more than one projector per angular momentum channel.
Pickard and Mauri commented the connection between the
GIPAW approach and the gauge-including atomic orbital27

�GIAO� and the independent gauge for localized orbital28

�IGLO� methods. They also noted that in the GIPAW ap-
proach, the phase required to maintain translational invari-
ance is carried by the operators, while in the GIAO and
IGLO approaches, the field-dependent phase is attached to
the basis functions and to the occupied electronic orbitals,
respectively. Following Ref. 11, we indicate with a bar op-
erators obtained using the GIPAW transformation, Eq. �3�.
Operators obtained with the PAW transformation �the B=0
limit of Eq. �3�� are indicated with a tilde.

III. THEORY

We now derive each of the ingredients necessary to cal-
culate the induced current. We will need to expand quantities
as a power series in the applied magnetic field and we intro-
duce a notation such that O�0� and O�1� represent quantities to
zeroth and linear orders in the field.

A. Ultrasoft Hamiltonian in zero magnetic field

The key ingredient of the ultrasoft scheme is that norm of
the pseudo-partial-waves in the augmentation region is dif-
ferent from that of the corresponding all-electron partial
waves. We can thus define a nonzero charge augmentation
term qR,n,m:

qR,nm = ��R,n��R,m� − ��̃R,n��̃R,m� . �4�

The norm of a pseudo-wave-function can be computed as

expectation value of the pseudo-operator 1̃=S�0�. Using Eq.
�1�,

S�0� = 1 + 	
R,n,m

�p̃R,n�qR,nm�p̃R,m� = 1 + 	
R

QR. �5�

As a result, a normalized eigenstate of the pseudo-
Hamiltonian obeys the generalized equations:

H̃�0���̃o
�0�� = �o

�0�S�0���̃o� , �6�

and

��̃o
�0��S�0���̃o�� = �o,o�. �7�
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B. First-order GIPAW Hamiltonian

The pseudo-Hamiltonian in the presence of a uniform
magnetic field can be obtained from the all-electron Hamil-
tonian and the GIPAW transformation �Eq. �3�� �see Appen-
dix A�. The contribution to zeroth order in the field is given

by Eq. �6� and the first-order term, H̄�1�, is

H̄�1� =
1

2c
L + 	
R

R �
1

i
�r,VR

nl� + 	
R

LRQR� · B , �8�

where LR is the angular momentum operator centered on the
atomic site R �LR= �r−R��p� and VR

nl is the nonlocal
pseudopotential operator at the atomic site R.

C. Translational invariance of the S operator

For the eigenenergies in Eq. �6� to be invariant under a
translation in the presence of a uniform magnetic field, it is
not sufficient to consider just the field dependence of the

pseudo-Hamiltonian; the S=1̄ overlap operator, obtained
with the GIPAW transformation, Eq. �3�, also shows a depen-
dence on B,

S = 1 + 	
R

e�i/2c�r·R�BQRe−�i/2c�r·R�B. �9�

The zeroth order term is given by Eq. �5� and the term linear
in the field may be written as

S�1� =
1

2c
	
R

R �
1

i
�r,QR� · B . �10�

For later convenience, we introduce what we will call the
augmented velocity operator

v��o
�0�� =

1

i
�r,�H̄�0� − �o

�0�S�0���

=
1

i
� +

1

i
	
R

�r,�VR
nl − �o

�0�QR�� . �11�

D. Current operators

We can apply the GIPAW transformation to obtain an ex-
pression for the gauge invariant current pseudo-operator. In
this case, we can use directly the result obtained in Ref. 11
for norm-conserving pseudopotentials. Indeed, the norm-
conservation condition was not used to derive this result. We
recall that the all-electron current operator, J�r��, is

J�r�� = Jd�r�� + Jp�r�� , �12�

where the diamagnetic current, Jd�r��, is given by

Jd�r�� =
1

c
A�r���r���r�� �13�

and the paramagnetic current, Jp�r��,

Jp�r�� = −
p�r���r�� + �r���r��p

2
. �14�

Using the GIPAW transformation and expanding in powers
of the magnetic field the resulting current pseudo-operator,
one obtains11

J̄�r�� = J̄�0��r�� + J̄�1��r�� + O�B2� , �15�

with

J̄�0��r�� = Jp�r�� + 	
R

�JR
p �r�� , �16�

and

J̄�1��r�� = −
B � r�

2c
�r���r�� + 	

R
��JR

d �r��

+
1

2ci
�B � R · r,�JR

p �r��� , �17�

where

�JR
p �r�� = 	

n,m
�p̃R,n����R,n�Jp�r����R,m� − ��̃R,n�Jp�r����̃R,m��

��p̃R,m� �18�

is the paramagnetic augmentation operator, and

�JR
d �r�� = −

B � �r� − R�
2c

	
n,m

�p̃R,n����R,n�r���r���R,m�

− ��̃R,n�r���r���̃R,m���p̃R,m� �19�

is the diamagnetic augmentation operator.

E. Current within DFPT

In the NCP formalism, the only contribution to an observ-
able, such as the current density, arises from components of
the first-order wave function projected into the unoccupied
subspace.29 In the USP formalism, components of first-order
wave function in the occupied subspace may also contribute
to an observable. As shown in Appendix B, this gives rise to
an additional term in the expression for current density as
compared to the NCP case. The total induced valence current
can be written as

j�1��r�� = 4	
o

Re���̄o
�0��J̄�0��r��G��o

�0���H̄�1� − �o
�0�S�1����̄o

�0���

− 2	
oo�

��̄o
�0��J̄�0��r����̄o�

�0����̄o�
�0��S�1���̄o

�0��

+ 2	
o

��̄o
�0��J̄�1��r����̄o

�0�� , �20�

�21�

where the sums over o and o� are sums over the set of oc-
cupied states. The Green’s function operator projected onto
the empty subspace is given by
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G��� = 	
e

��̄e
�0����̄e

�0��
� − �e

, �22�

with the sum running over the empty orbitals e.

IV. INDUCED CURRENT

We now possess all the ingredients necessary to obtain an
expression for the all-electron induced current in terms of
properties from a calculation using ultrasoft pseudopoten-
tials. In Ref. 11, three distinct approaches to calculate the
induced current are outlined; two applicable only to finite
systems and one that is valid for infinitely periodic systems.
We now present equations for each of the three methods
within the USP formalism; we follow the method of Ref. 11

but use the expressions for H̄�1�, S�1�, and j�1� given in the
previous section.

Following Ref. 11, we order the contributions to j�1��r��
into a contribution from the pseudized valence wave func-
tions jbare

�1� �r�� and two terms, one diamagnetic j�p
�1��r�� and

one paramagnetic j�p
�1��r��, which account for the deviation of

the pseudized valence wave function from the true all-
electron wave function close to the nucleus,

j�1��r�� = jbare
�1� �r�� + j�p

�1��r�� + j�d
�1��r�� . �23�

A. Molecular approaches

The first approach is to directly substitute Eqs. �8� and
�10� in Eq. �20�. The resulting expressions define what we
call the molecular method. The contribution jbare

�1� �r�� is

jbare
�1� �r�� = 4	

o

Re���̄o
�0��Jp�r��G��o

�0���H̄�1� − �o
�0�S�1����̄o

�0���

−
1

2c
�soft

ps �r��B � r� − 2	
oo�

��̄o
�0��Jp�r����̄o�

�0��

���̄o�
�0��S�1���̄o

�0�� , �24�

where �soft
ps �r��=2	o��̄o

�0� �r���r� ��̄o
�0�� is the soft ground

state pseudodensity formed from the pseudo-wave-functions
without the addition of the hard atom centered augmentation
charges. The paramagnetic augmentation to the current is

j�p
�1��r�� = 	

R�,o


4 Re���̄o
�0���JR�

p �r��G��o
�0��

��H̄�1� − �o
�0�S�1����̄o

�0���

+ 2��̄o
�0�� 1

i2c
�B � R� · r,�JR�

p �r�����̄o
�0���

− 2	
oo�

��̄o
�0���JR�

p �r����̄o�
�0����̄o�

�0��S�1���̄o
�0�� , �25�

and the diamagnetic augmentation is

j�d
�1��r�� = 2	

R,o
��̄o

�0���JR
d �r����̄o

�0�� . �26�

We cannot apply Eqs. �24� and �25� directly to extended
systems as they contain expectation values of the position
operator. However, we can use Eqs. �24�–�26� to calculate
the induced current for molecules, within the supercell ap-
proximation, by applying the position operator as a smooth
sawtooth function. We note that in the all-electron limit, the
molecular method is equivalent to Eq. �3� of Ref. 30 �i.e., the
“single gauge origin approach”�.

Equation �24� has both diamagnetic and paramagnetic
components. As the diamagnetic component is related to the
ground state charge density, it will converge faster with re-
spect to the basis set than the paramagnetic contribution
which contains a sum over unoccupied states. This is the
so-called “gauge origin problem” which leads to a depen-
dence of the chemical shift on a change in the gauge origin.
The problem is less acute for a plane-wave basis compared to
localized basis sets; however, it is still desirable to reformu-
late Eq. �24� and correspondingly Eq. �25� so that both terms
converge at the same rate. We use the generalized f-sum rule
established in Appendix C, Eq. �C8�. Noting that the opera-
tors Jp�r�� and �JR�

p �r�� are odd and r even under time re-
versal symmetry, we obtain

jbare
�1� �r�� = 4	

o

Re���̄o
�0��Jp�r��G��o

�0���H̄�1� − �o
�0�S�1����̄o

�0�� −��̄o
�0��Jp�r��G��o

�0��	
R

B � r�

2c
· v��o

�0����̄o
�0��

− 	
Roo�

��̄o
�0��Jp�r����̄o�

�0����̄o�
�0���R − r�� �

1

2ci
�r,QR� · B��̄o

�0�� , �27�

and

j�p
�1��r�� = 4 	

R�,o

Re���̄o
�0���JR�

p �r��G��o
�0���H̄�1� − �o

�0�S�1����̄o
�0�� −��̄o

�0���JR�
p �r��G��o

�0��	
R

B � R�

2c
· v��o

�0����̄o
�0��

− 	
RR�oo�

��̄o
�0���JR�

p �r����̄o�
�0����̄o�

�0���R − R���
1

2ci
�r,QR� · B��̄o

�0�� . �28�
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In the all-electron limit, Eqs. �27�, �28�, and �26� are equiva-
lent to Eq. �8� of Ref. 30 �i.e., a set of gauge transformation31

method with a vector potential A�r��=1/2B� �r�−r��.
Again, we note that Eqs. �27� and �28� contain expectation
values of the position operator and so may only be applied to
finite systems. However, both Eqs. �27� and �28� contain a
term which is valid in extended systems. These contributions

to Eqs. �27� and �28� arise from the final term of H̄�1� �Eq.
�8�� and for later use, we write them as

jbare,QR

�1� �r�� =
2

c
	
Ro

Re���̄o
�0��Jp�r��G��o�B · LRQR��̄o

�0���

�29�

and

j�p,QR

�1� �r�� =
2

c
	

o

Re���̄o
�0���JR�

p �r��G��o�B · LRQR��̄o
�0��� .

�30�

As QR is localized within the augmentation region centered
on atomic site R, the terms jbare,QR

�1� �r�� and j�p,QR

�1� �r�� can be
applied to both finite and extended systems.

B. Infinitely periodic systems

Finally, we present expressions for the induced current
applicable to infinitely periodic systems. Note that these ex-
pressions may also be applied to nonperiodic systems
through a supercell approximation. We write the electronic

states as Bloch functions, ��̄n,k
�0� �=eik·r�ūn,k

�0� �, where k is a
reciprocal space vector within the first Brillouin zone and the
corresponding eigenvalues are �n,k. The cell-periodic func-
tion �r � ūn,k

�0� � is normalized within the unit cell. We introduce
the following k-dependent quantities. The Green’s function,
Gk���,

Gk��� = 	
e

�ūe,k
�0���ūe,k

�0� �
� − �e,k

�0� , �31�

the paramagnetic current operator, Jk,k�
p �r��,

Jk,k�
p �r�� = −

�− i � + k��r���r�� + �r���r���− i � + k��
2

,

�32�

the augmented velocity operator, vk,k���o,k�
�0� �,

vk,k���o,k�
�0� � = − i � + k� +

1

i
�r,Vk,k�

nl − �o,k�
�0� Qk,k�� , �33�

and the commutator of the position operator and S�0�,

sk,k� =
1

i
�r,Qk,k�� . �34�

Vk,k�
nl , is the generalized form of the nonlocal pseudopotential

operator,

Vk,k�
nl = 	

	
	
n,m

�p̃	,n
k �Dn,m

	 �p̃	,m
k� � , �35�

and Qk,k� is the charge augmentation operator,

Qk,k� = 	
	

	
n,m

�p̃	,n
k �qn,m

	 �p̃	,m
k� � = 	

	

Q	,k,k�. �36�

The k-dependent projectors are given in terms of �p̃R,n�, the
real space projectors,

�p̃	,n
k � = 	

T
e−ik·�r−T−	��p̃T+	,n� , �37�

where the T are lattice vectors and the � are the internal
coordinates of the atoms. The operators vk,k���o,k�

�0� � and sk,k�
can be evaluated numerically following the procedure out-
lined in Ref. 22.

With these definitions, the bare current can be expressed
as

jbare
�1� �r�� = lim

q→0

1

2q
�Sbare�r�,q� − Sbare�r�,− q�� + jbare,QR

�1� �r�� ,

�38�

where

Sbare�r�,q� =
2

cNk
	

i=x,y,z
	
o,k

Re�1

i
�ūo,k

�0� �Jk,k+qi

p �r��Gk+qi
��o,k�B

� ûi · vk+qi,k
��o,k��ūo,k

�0� �

− 	
o�

�ūo,k
�0� �Jk,k+qi

p �r���ūo�,k+qi

�0� �

��ūo�,k+qi

�0� �B � ûi · sk+qi,k
�ūo,k

�0� �� . �39�

ûi are unit vectors in the three Cartesian directions and qi
=qûi. Nk is the number of k points included in the summa-
tion. In a similar fashion to Eq. �38�, the paramagnetic aug-
mentation current can be written as

j�p
�1��r�� = lim

q→0

1

2q
�S�p�r�,q� − S�p�r�,− q�� + j�p,QR

�1� �r�� ,

�40�

where

S�p�r�,q� =
2

cNk
	

i=x,y,z
	

T,	,o,k
Re�1

i
�ūo,k

�0� ��JT,	,k,k+qi

p �r��

�Gk+qi
��o,k�B � ûi · vk+qi,k

��o,k��ūo,k
�0� �

− 	
o�

�ūo,k
�0� ��JT,k,k+qi

p �r���ūo�,k+qi

�0� �

��ūo�,k+qi

�0� �B � ûi · sk+qi,k
�ūo,k

�0� �� , �41�

and we have introduced the k-dependent paramagnetic aug-
mentation operator, �JT,	,k,k�

p �r��,
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�JT,	,k,k�
p �r�� = 	

n,m
�p̃	,n

k ����T+	,n�Jp�r����T+	,m�

− ��̃T+	,n�Jp�r����̃T+	,m���p̃	,m
k� � . �42�

Together, Eqs. �19�, �38�, and �40� define the crystal ap-
proach to calculate the all-electron current in infinitely peri-
odic systems. It can be seen that in the norm-conserving limit
�S=1�, they reduce to the expressions given in Ref. 11.

V. PRACTICAL IMPLEMENTATION

We could calculate the total valence current by summing
the three contributions jbare

�1� �r��, j�p
�1��r��, and j�d

�1��r��. Appli-
cation of the Biot-Savart law would then give the chemical
shielding at each atomic site due to the valence electrons.
Such an approach would be computationally expensive as an
extremely fine grid would be needed to store the highly os-
cillatory augmentation currents. Instead, we take advantage
of the linearity of the Biot-Savart law and calculate the in-
duced magnetic field due to each of jbare

�1� �r��, j�p
�1��r��, and

j�d
�1��r��, giving Bbare

�1� �R�, B�p
�1��R�, B�d

�1��R� and �bare�R�,
��d�R�, ��p�R�, respectively. In doing this, we follow Ref.
11 and make the approximation that the augmentation cur-
rent at one atomic site only affects the chemical shielding at
that site, i.e., that it gives no contribution to the chemical
shielding at neighboring sites. This on-site approximation is
a less good approximation in the USP case as the augmenta-
tion currents are generally larger than with NCP. However, in
both cases, the close agreement with all-electron results has
demonstrated the validity of this approximation. Within this
approximation the diamagnetic augmentation field, B�d

�1��R�,
is given by combining Eqs. �1� and �19�, we obtain

B�d
�1��R� = 2 	

o,n,n�

��̄o
�0��p̃R,n�em,n

R �p̃R,m��̄o
�0�� , �43�

where

em,n
R = ��R,n� �R − r� � �B � �R − r��

2c2�R − r�3
��R,m�

− ��̃R,n� �R − r� � �B � �R − r��
2c2�R − r�3

��̃R,m� . �44�

A corresponding expression can be found for B�p
�1��R�. To

evaluate the contribution of the bare current to the chemical
shielding, we apply the Biot-Savart law in reciprocal space

Bbare
�1� �G� =

4


c

iG � jbare
�1� �G�

G2 . �45�

We cannot apply this equation at G=0 �Ref. 32� as the G
=0 component is related to the macroscopic magnetic sus-
ceptibility �. For a spherical sample, we can write33

Bin
�1��G = 0� =

8


3
�B . �46�

We follow Refs. 11 and 32 and use

�bare = lim
q→0

F�q� − 2F�0� + F�− q�
q2 , �47�

where Fij�q�= �2−�ij�Qij�q�, i and j are Cartesian indices,

Q�q� = −
1

c2NkVc
	

i=x,y,z
	
o,k

Re��ūo,k
�0� �ûi � �− i � + k�

�Gk+qi
��o,k�ûi � vk+qi,k

��o,k��ūo,k
�0� �� , �48�

and Vc is the unit cell volume. The total chemical shielding
�tot is given by the sum of these three terms plus a contribu-
tion from the core electrons �core. �core has been shown30 to
be chemically invariant and we can calculate it for each
nuclear species using an atomic code. Finally, we comment
on the projectors used for the GIPAW reconstruction. In the
norm-conserving GIPAW approach, it was found to be nec-
essary to use two projectors for each angular momentum
channel, even though norm-conserving pseudopotentials give
accurate ground state properties with a single projector in
each channel. Ultrasoft pseudopotentials typically use two
projectors for each channel, and we find that the recon-
structed chemical shieldings are sufficiently accurate with
two projectors per angular momentum channel. Generally,
the projectors for the GIPAW augmentation are identical to
the pseudopotential projectors; however, when a chemically
relevant channel is described by a local potential, it is nec-
essary to augment this channel. As an example, consider Si
which can be described by an ultrasoft pseudopotential with
two projectors for each of s and p and a local potential to
represent the d states. For the GIPAW reconstruction, it is
necessary to have two projectors for each of s, p, and d.

VI. VALIDATION

In order to show the validity of the approaches outlined in
the previous sections, we first benchmark the method against
existing quantum chemical techniques. In Ref. 30, chemical
shieldings were presented for a range of small molecules
calculated with the individual gauges for atoms in molecules
�IGAIM� �Ref. 34� approach using large Gaussian basis sets.
This same set of molecules was used to test the original
GIPAW implementation based on norm-conserving
pseudopotentials11 and we begin by also considering this set
of molecules.

We compute isotropic chemical shieldings ��iso

=1/3Tr��� �� for this set of molecules using LDA and large
supercells. We first compare the three approaches presented
in this work: molecular, molecular sum rule, and crystal. We
find that the chemical shielding computed with the three
methods agrees closely across the set of molecules; the dif-
ferences in isotropic chemical shieldings are less than
0.01 ppm for H and C, 0.1 ppm for Si, and 0.3 ppm for P.

In Fig. 1, we compare the isotropic chemical shieldings
computed using the crystal method with the IGAIM all-
electron values from Ref. 30. The upper figure shows the
importance of the GIPAW augmentation terms; without these
terms, most of the sensitivity to chemical environment is
lost. This becomes increasingly significant as we descend the
Periodic Table. From the lower figure, we can see that when
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the GIPAW augmentations are included, the agreement with
the all-electron results is excellent. As for the norm-
conserving case,11 the largest absolute deviations are for
phosphorus. However, these represent a small fraction of the
total range of phosphorus chemical shieldings.

We next consider silicate compounds. In Ref. 15, O and Si
chemical shielding tensors were computed for a small cluster
derived from the �-quartz structure, both using the GIPAW
approach with NCP and with the IGAIM approach with a
large �pentuple zeta� Gaussian basis. In Table I, we compare
isotropic chemical shieldings, chemical shielding anisotropy
�aniso, and chemical shielding asymmetry  computed with
the three approaches. The agreement between the approaches
is good. We also use this silicate cluster to examine the con-
vergence of the chemical shielding with the size of the plane-
wave basis. Clearly, the rate of convergence depends on the
size of the pseudopotential augmentation region; a larger
augmentation region allows for a softer pseudopotential and
hence fewer plane waves are required for numerical conver-
gence. However, the augmentation region should not be so
large that neighboring augmentation regions have significant
overlap; otherwise, errors will be introduced. The relatively
large Si–O bond lengths in silicates allow for a large aug-
mentation region for an oxygen pseudopotential and we con-
sider values of 1.3 and 1.5 bohr. We note that for the shorter
oxygen bonds found in organic materials, only the smaller
augmentation region will be appropriate. In Fig. 2, we plot

the convergence of the isotropic O chemical shielding
against maximum plane-wave energy for NCPs and USPs
with augmentation regions of both 1.3 and 1.5 bohr. The
faster convergence rate of USPs is apparent. We also note
that for both NCPs and USPs, the final converged result is
independent of the size of augmentation region, demonstrat-
ing the stability of the GIPAW approach.

Finally, we consider truly crystalline systems, for which
we compare to existing GIPAW calculations using NCP, and
experiment. We now use the PBE density functional36 which
has been shown to give chemical shifts in good agreement
with experiment.15,19 In Table II, we present 17O NMR pa-
rameters calculated using USPs for three silicate materials,
together with results from Ref. 15 using NCP and experi-
mental results. The structures of the materials and the details
of the Brillouin zone integration are the same as used in Ref.
15. Plane waves up to a maximum energy of 40 Ry are used.
The agreement of the parameters computed with USPs, both
with the existing NCP results and experiment, is excellent. In
particular, the assignment of the oxygen sites in coesite is
consistent between the two sets of computational results. For
these materials, we find that the use of USPs gives a 50%
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FIG. 1. �Color online� Isotropic chemical shielding for nuclear
sites in a range of molecules �Ref. 35�. The graphs show shieldings
obtained with the GIPAW-USP method plotted against all-electron
shielding �Ref. 30�. The straight line represents perfect agreement.
The upper figure �a� shows the contribution without GIPAW aug-
mentation ��bare+�core�; the lower figure �b� plots the total
contribution.

TABLE I. Chemical Shielding parameters for a O-�SiH3�2 clus-
ter derived from the �-quartz structure. The all-electron calculations
�Ref. 15� use the IGAIM method with cc-pCVxZ basis sets for O
and Si. The GIPAW-NCP calculations �Ref. 15� use Troullier-
Martins pseudopotentials with a 120 Ry plane-wave cutoff. The
plane-wave cutoff for the GIPAW-USP calculation is 60 Ry.

USP NCP All-electron

O �iso 317.62 315.62 316.49

�aniso −109.75 −111.12 −109.25

 0.02 0.02 0.03

Si�1� �iso 340.55 345.23 340.98

�aniso 150.61 147.89 151.07

 0.08 0.09 0.08

Si�2� �iso 339.28 343.84 339.60

�aniso 149.53 147.01 150.24

 0.08 0.08 0.08
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FIG. 2. Convergence with plan-ewave cutoff energy of the 17O
isotropic chemical shielding in a O-�SiH3�2 cluster derived from the
�-quartz structure. The all-electron result is taken from Ref. 15.
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reduction in the amount of RAM required, and a 33% reduc-
tion in the overall CPU time, compared with NCPs.

VII. CONCLUSIONS

In conclusion, we have presented a scheme to compute
NMR chemical shieldings in both finite and extended mate-
rials using ultrasoft pseudopotentials. The GIPAW approach
is used to obtain chemical shieldings with all-electron accu-
racy and we describe the additional terms which must be
included to account for the relaxation of norm conservation
central to the ultrasoft formalism. This work allows NMR
chemical shieldings to be calculated at reduced computa-
tional cost, extending the range of systems that can be stud-
ied both on large supercomputers and on personal desktop
computers. Several applications of this technique, to
perovskites13 and to molecular crystals,37,38 have already ap-
peared.

Finally, we note that the formalism developed in this work
allows other magnetic resonance parameters, such as the
EPR g tensor39 and NMR J couplings,40 to be computed with
ultrasoft pseudopotentials.
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APPENDIX A: FIRST ORDER GIPAW HAMILTONIAN

In a uniform magnetic field, the all-electron Hamiltonian
is

H =
1

2
�p +

1

c
A�r��2

+ V�r� . �A1�

We use the GIPAW transformation, Eq. �3�, and the identity,

e−�i/2c�r·R�B�p +
1

c
A�r��n

e�i/2c�r·R�B = �p +
1

c
A�r − R��n

,

�A2�

and, choosing the Coulomb gauge, we arrive at the corre-
sponding GIPAW pseudo-Hamiltonian

H̄ =
1

2
p2 + Vloc�r� + 	

R
e�i/2c�r·R�BVR

nle−�i/2c�r·R�B +
1

2c
L · B

+
1

8c2 �B � r�2 + 	
R,n,m

e�i/2c�r·R�B��1 + �2�e�i/2c�r·R�B,

�A3�

where

�1 =
1

2c
B · �p̃R,n����n�LR��m� − ��̃n�LR��̃m���p̃R,m�

�A4�

and

�2 =
1

8c2B · �p̃R,n����n��B � �r − R��2��m�

− ��̃n���B � �r − R��2��̃m���p̃R,m� . �A5�

LR is the angular momentum operator with respect to the
atomic position R. We consider the term �1. Without loss of
generality, we consider a field in the direction of the z axis,
B=Bzẑ, giving

�1 =
1

2c
Bzmz�p̃R,n����R,n��R,m� − ��̃R,n��̃R,m���p̃R,m�

=
1

2c
Bzmz�p̃R,n�qR,nm�p̃R,m� =

1

2c
LR · BQR, �A6�

where mz is the magnetic quantum number of the projector

�p̃R,n�. Expanding H̄ to first order in the applied field gives

H̄�1� =
1

2c
L + 	
R

R �
1

i
�r,VR

nl� + 	
R

LRQR� · B .

�A7�

The final term in Eq. �A7� represents the augmentation
of the L operator resulting from the relaxation of norm
conservation.

TABLE II. 17O NMR chemical shift and electric field gradient parameters for some silicate materials. Comparison of GIPAW calculations
with USPs �this work� and NCPs �Ref. 15� with experiment �see references within Ref. 15�.

GIPAW USP GIPAW NCP Expt.

�iso

�ppm�
CQ

�MHz� 
�iso

�ppm�
CQ

�MHz� 
�iso

�ppm�
CQ

�MHz� 

Coesite O1 26.3 6.213 0.044 25.8 6.24 0.040 29 6.05 0.000

O2 40.0 5.571 0.196 39.2 5.56 0.190 41 5.43 0.166

O3 55.9 5.493 0.200 56.0 5.45 0.190 57 5.45 0.168

O4 52.3 5.614 0.172 52.4 5.73 0.166 53 5.52 0.169

O5 58.2 5.232 0.300 57.8 5.23 0.296 58 5.16 0.292

Cristobalite 39.0 5.30 0.145 39.3 5.30 0.145 37.2 5.21 0.13

Quartz 44.3 5.31 0.202 44.3 5.31 0.202 40.8 5.19 0.19
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APPENDIX B: DFPT EXPRESSION FOR CURRENT
DENSITY

If we denote the current operators to zeroth and first order

in the magnetic field as J̄�0��r�� and J̄�1��r��, we can express
the first-order induced current as

j�1��r�� = 2	
o

���̄o
�1��J̄�0��r����̄o

�0�� + ��̄o
�0��J̄�0��r����̄o

�1��

+ ��̄o
�0��J̄�1��r����̄o

�0��� . �B1�

Here, the factor of 2 accounts for spin degeneracy and the
sum runs over the occupied orbitals o. The last term of Eq.
�B1� represents the diamagnetic contribution to the current,
arising from the unperturbed wave functions. The first two
terms are the paramagnetic current response arising from the

perturbed wave function, ��̄o
�1��. It will be convenient to di-

vide the paramagnetic current response into a contribution

from the component of ��̄o
�1�� projected in the empty sub-

space ��̄o
�1e�� and the occupied subspace ��̄o

�1o��. We intro-
duce Po and Pe projectors into the occupied and empty sub-
spaces, respectively

Po = 	
o

��̄o
�0����̄o�S�0�,

Pe = 	
e

��̄e
�0����̄e�S�0�, �B2�

where the sum over o and e runs over the occupied and
empty states, respectively. Since Po+ Pe=1,

��̄o
�1�� = �Po + Pe���̄o

�1�� = ��̄o
�1o�� + ��̄o

�1e�� . �B3�

1. Empty subspace

We first obtain the current response arising from ��̄n
�1e��.

We start with the wave equation

H��̄o� = �nS��̄o� �B4�

and take its first-order variation

��o
�0�S�0� − H̄�0����̄o

�1�� = �H̄�1� − �o
�0�S�1� − �o

�1�S�0����̄o
�0�� .

�B5�

By acting on both sides with Pe, we obtain the following
linear equation;

��o
�0�S�0� − H̄�0����̄o

�1e�� = Pe�H̄�1� − �o
�0�S�1����̄o

�0�� . �B6�

As Pe+ Po=1, we can write this in terms of occupied states
only,

��o
�0�S�0� − H̄�0����̄o

�1e�� = �1 − Po��H̄�1� − �o
�0�S�1����̄o

�0�� .

�B7�

Formally, the first-order wave functions can be written in
terms of the Green’s function projected on the empty sub-
space �Eq. �22�� as

��̄o
�1e�� = G��o

�0���H̄�1� − �o
�0�S�1����̄o

�0�� . �B8�

The contribution to j�1��r�� from the projection of ��̄o
�1�� into

the empty subspace, jemp
�1� �r��, can thus be written as

jemp
�1� �r�� = 2	

o

���̄o
�0��J̄�0��r��G��o

�0���H̄�1� − �o
�0�S�1����̄o

�0��

+ ��̄o
�0���H̄�1� − �o

�0�S�1��G��o
�0��J̄�0��r����̄o

�0���

�B9�

=4	
o

Re���̄o
�0��J̄�0��r��G��o

�0���H̄�1� − �o
�0�S�1����̄o

�0��� .

�B10�

In the practical implementation, we obtain ��̄n
�1e�� by mini-

mizing via a conjugate gradient method the following func-
tional of �:

F��� = ����H̄�0� − �o
�0�S�0� + �oS�0�Po����

+ ����1 − Po��H̄�1� − �o
�0�S�1����̄o

�0��

+ ��̄o
�0���H̄�1� − �o

�0�S�1���1 − Po���� , �B11�

where �o� ��o−�1� assures that the functional stationary

point is a minimum. Indeed, at the minimum, ���= ��̄o
�1e��.

2. Occupied subspace

The contribution to j�1��r�� from the projection of ��̄o
�1��

into the occupied subspace, jocc
�1� �r��, may be written as

jocc
�1� �r�� = 2	

o

���̄o
�0��J̄�0��r����̄o

�1o�� + ��̄o
�1o��J̄�0��r����̄o

�0���

= 2	
o

	
o�

���̄o
�0��J̄�0��r����̄o�

�0����̄o�
�0��S�0���̄o

�1��

+ ��̄o
�1��S�0���̄o�

�0����̄o�
�0��J̄�0��r����̄o

�0��� , �B12�

where the sum o� runs on the occupied states. Rearranging
the last term and swapping the dummy indices give

jocc
�1� �r�� = 2	

oo�

���̄o
�0��J̄�0��r����̄o�

�0����̄o�
�0��S�0���̄o

�1��

+ ��̄o�
�0��J̄�0��r����̄o

�0����̄o
�1��S�0���̄o�

�0���

= 2	
oo�

���̄o
�0��J̄�0��r����̄o�

�0����̄o�
�0��S�0���̄o

�1��

+ ��̄o
�0��J̄�0��r����̄o�

�0����̄o�
�1��S�0���̄o

�0��� . �B13�

From the first-order variation of the generalized orthogonal-
ity condition �Eq. �7��, we obtain the relation

��̄i
�0��S�0���̄ j

�1�� + ��̄i
�1��S�0���̂ j

�0�� = − ��̄i
�0��S�1���̄ j

�0�� .

�B14�

Substituting this into the expression for jocc
�1� �r��, we arrive at

the final expression
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jocc
�1� �r�� = − 2	

oo�

��̄o
�0��J̄�0��r����̄o�

�0����̄o�
�0��S�1���̄o

�0�� .

�B15�

Equations �B1�, �B15�, and �B9� together form an expression
for the total induced current density. We note that similar
expressions have been obtained in Ref. 23. The equations
presented here are somewhat simpler for two reasons. First,
we have restricted our derivation to insulating systems. Sec-
ond, unlike the cases of a phonon displacement or applied
electric field for an applied magnetic field, there is no change
in charge density to linear order in the perturbation. It is
therefore not necessary to consider the variation of the Har-
tree and exchange-correlation terms in the Hamiltonian �at
least for the case of an exchange-correlation functional
which depends solely on the charge density and its deriva-
tives�.

APPENDIX C: THE GENERALIZED f-SUM RULE

We must generalize the f-sum rule outlined in Ref. 11
such that it is valid for a Hamiltonian based on ultrasoft
pseudopotentials. The generalized f-sum rule holds for any
pair of Hermitian operators O and E, where O and E are,
respectively, odd and even on time reversal, i.e.,

���O���� = − ����O��� �C1�

and

���E���� = ����E��� �C2�

for any ��� and ���� such that �r ��� and �r ���� are real. It is
straightforward to verify that p, L, v, vR

nl, Jp�r��, and �JR
p �r��

are odd and that r and operators that are a function of r are
even. To derive the sum rule, we consider the quantity

s = − 4	
o

Re���̄o
�0��OG��o

�0��
1

i
�E,H̄�0� − �o

�0�S�0����̄o
�0�� .

�C3�

The sums over o and o� �below� run over the occupied or-
bitals, and those over e� over the empty ones. Using the fact
that H̄�0���̄n

�0��=�n
�0�S�0���̄n

�0��, we can write

s = − 4	
oe�

Re���̄o
�0��O1

i
��̄e����̄e��S

�0�E��̄o
�0��� .

�C4�

Using 	e�S��̂e����̄e��=1−	o�S
�0���̄o����̄o��, the expression

for s may be rewritten as

s = − 4	
o

Re�1

i
��̄o

�0��OE��̄o
�0���

+ 4	
o,o�

Re�1

i
��̄o

�0��O��̄o�
�0����̄o�

�0��S�0�E��̄o
�0��� .

�C5�

This may be expressed as

s = 2	
o
��̄o

�0��1

i
�E,O���̄o

�0�� + 2	
o,o�

1

i
��̄o

�0��OS�0���̄o�
�0��

���̄o�
�0���S�0�,E���̄o

�0�� . �C6�

From this expression, we finally obtain the generalized
f-sum rule for an ultrasoft Hamiltonian:

2	
o
��̄o

�0��1

i
�E,O���̄o

�0��
− 2	

o,o�

1

i
��̄o

�0��O��̄o�
�0����̄o�

�0���E,S�0����̄o
�0��

= − 4	
o

Re���̄o
�0��OG��o

�0��
1

i
�E,H̄�0� − �o

�0�S�0����̄o
�0��� .

�C7�

1 See, e.g., T. Helgaker, M. Jaszuski, and K. Ruud, Chem. Rev.
�Washington, D.C.� 99, 293 �1999�; J. Gauss and J. F. Stanton,
Adv. Chem. Phys. 123, 355 �2002�.

2 Calculation of NMR and EPR Parameters: Theory and Applica-
tions, edited by M. Kaupp, M. Bühl, and V. G. Malkin �Wiley
VCH, Weinheim, 2004�.

3 J. C. Facelli and D. M. Grant, Nature �London� 365, 325 �1993�.
4 C. Ochsenfeld, S. P. Brown, I. Schnell, J. Gauss, and H. W.

Spiess, J. Am. Chem. Soc. 123, 2597 �2001�.
5 R. Salzmann, C. J. Ziegler, N. Godbout, M. T. McMahon, K. S.

Suslick, and E. Oldfield, J. Am. Chem. Soc. 120, 11323 �1998�.
6 F. Mauri, B. G. Pfrommer, and S. G. Louie, Phys. Rev. Lett. 77,

5300 �1996�.

7 D. Sebastiani and M. Parrinello, J. Phys. Chem. A 105, 1951
�2001�.

8 A. Hoffmann, D. Sebastiani, E. Sugiono, S. Yun, K. S. Kim, H.
W. Spiess, and I. Schnell, Chem. Phys. Lett. 388, 164 �2004�.

9 B. G. Pfrommer, F. Mauri, and S. G. Louie, J. Am. Chem. Soc.
122, 123 �2000�.

10 D. Sebastiani and U. Rothlisberger, J. Phys. Chem. B 108, 2807
�2004�.

11 C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 �2001�.
12 C. G. Van de Walle and P. E. Blöchl, Phys. Rev. B 47, 4244

�1993�.
13 S. E. Ashbrook, L. L. Polles, R. Gautier, C. J. Pickard, and R. I.

Walton, Phys. Chem. Chem. Phys. 8, 3423 �2006�.

YATES, PICKARD, AND MAURI PHYSICAL REVIEW B 76, 024401 �2007�

024401-10



14 I. Farnan, E. Balan, C. J. Pickard, and F. Mauri, Am. Mineral. 88,
1663 �2003�.

15 M. Profeta, F. Mauri, and C. J. Pickard, J. Am. Chem. Soc. 125,
541 �2003�.

16 M. Benoit, M. Profeta, F. Mauri, C. J. Pickard, and M. E. Tuck-
erman, J. Phys. Chem. B 109, 6052 �2005�.

17 T. Charpentier, S. Ispas, M. Profeta, F. Mauri, and C. J. Pickard,
J. Phys. Chem. B 108, 4147 �2004�.

18 C. Gervais, R. Dupree, K. J. Pike, C. Bonhomme, M. Profeta, C.
J. Pickard, and F. Mauri, J. Phys. Chem. A 109, 6960 �2005�.

19 J. R. Yates, T. N. Pham, C. J. Pickard, F. Mauri, A. M. Amado, A.
M. Gil, and S. P. Brown, J. Am. Chem. Soc. 127, 10216 �2005�.

20 J. R. Yates, C. J. Pickard, M. C. Payne, R. Dupree, M. Profeta,
and F. Mauri, J. Phys. Chem. A 108, 6032 �2004�.

21 D. Vanderbilt, Phys. Rev. B 41, 7892 �1990�.
22 C. J. Pickard and M. C. Payne, Phys. Rev. B 62, 4383 �2000�.
23 A. DalCorso, Phys. Rev. B 64, 235118 �2001�.
24 P. Umari, X. Gonze, and A. Pasquarello, Phys. Rev. B 69, 235102

�2004�.
25 H. M. Petrilli, P. E. Blöchl, P. Blaha, and K. Schwarz, Phys. Rev.

B 57, 14690 �1998�.
26 C. J. Pickard and M. C. Payne, Inst. Phys. Conf. Ser. 153, 179

�1997�.
27 R. Ditchfield, J. Chem. Phys. 56, 5688 �1972�.
28 W. Kutzelnigg, U. Fleischer, and M. Schindler, NMR Basic Prin-

ciples and Progress �Springer-Verlag, Berlin, 1990�, Vol. 23, pp.

165–263.
29 S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev.

Mod. Phys. 73, 515 �2001�.
30 T. Gregor, F. Mauri, and R. Car, J. Chem. Phys. 111, 1815

�1999�.
31 T. Keith and R. Bader, Chem. Phys. Lett. 210, 223 �1993�.
32 F. Mauri and S. G. Louie, Phys. Rev. Lett. 76, 4246 �1996�.
33 J. D. Jackson, Classical Electrodynamics �Wiley, New York,

1999�.
34 T. Keith and R. Bader, Chem. Phys. Lett. 194, 1 �1992�.
35 Calculations were performed using a supercell of 6000 bohr3, the

LDA, and a maximum plane-wave energy of 80 Ry. The mol-
ecules are CH4, CH3F, CH3NH2, C6H12, C6H6, CF4, C5H5N,
SiF4, SiH3F, SiH4, Si2H4, HCP, PF3, P2, and P4. The ultrasoft
pseudopotentials were constructed with augmentation regions of
radius �in bohr�: 0.8 �H�, 1.4 �C�, 1.5 �N�, 1.3 �O�, 1.4 �F�, 1.8
�Si�, and 1.8 �P�.

36 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 �1996�.

37 R. K. Harris, S. Cadars, L. Emsley, J. R. Yates, C. J. Pickard, R.
Jetti, and U. J. Griesser, Phys. Chem. Chem. Phys. 9, 360
�2006�.

38 R. K. Harris, S. A. Joyce, C. J. Pickard, S. Cadars, and L. Emsley,
Phys. Chem. Chem. Phys. 8, 137 �2006�.

39 C. J. Pickard and F. Mauri, Phys. Rev. Lett. 88, 086403 �2002�.
40 S. A. Joyce, J. R. Yates, C. J. Pickard, and F. Mauri �unpublished�.

CALCULATION OF NMR CHEMICAL SHIFTS FOR… PHYSICAL REVIEW B 76, 024401 �2007�

024401-11


