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Thermal properties of an extensive set of fcc metals �Al, Pb, Cu, Ag, Au, Pd, Pt, Rh, and Ir� have been
studied using density-functional theory in combination with the quasiharmonic approximation. Systematic
convergence checks have been performed to ensure an accuracy greater than 1 meV/atom in the free energies.
Phonon dispersion relations, Grüneisen parameters, free energies, thermal expansions, and heat capacities have
been calculated for the two popular exchange-correlation functionals: Local density approximation and
Perdew-Burke-Ernzerhof generalized gradient approximation �Phys. Rev. Lett. 77, 3865 �1996��. The results
are found to be in excellent agreement with both experimental and CALPHAD data.
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I. MOTIVATION

The collection of thermodynamically stable phases in the
form of phase diagrams is one of the fundamental tools for
engineers when determining processing routes �road maps1�
to design materials. A well established approach for obtain-
ing such phase diagrams is the CALPHAD �calculations of
phase diagrams; Refs. 2 and 3� method. It is, however, based
on experimental input and therefore suffers from the fact that
the required sample preparation and high precision measure-
ments are often challenging and expensive. Further, from a
principle point of view, some necessary input �e.g., energet-
ics of metastable phases� is missing due to the lack of corre-
sponding samples. A possible approach to address these chal-
lenges is to employ ab initio methods to provide the missing
experimental data.

A very promising tool is density-functional theory4

�DFT�, which has succeeded over the last decades in accu-
rately predicting physical, chemical, and mechanical proper-
ties for a wide range of materials.5 Based exclusively on
fundamental physical concepts, no experimental input is
needed. Solely the specific material has to be defined by
providing the chemical species. The only �currently� uncon-
trollable approximation in DFT is the exchange-correlation
�XC� functional, since its exact form is unknown and no
practical way to systematically improve it exists.6 Therefore,
a critical evaluation of the predictive performance of XC
functionals is crucial.7–9

As stated in a recent review,10 the idea of coupling
CALPHAD with ab initio methods has been debated almost
since its original development. Traditionally, the main use of
ab initio methods for CALPHAD calculations has been the
computation of T=0 K energies.11 This is due to the fact that
DFT was originally developed as a ground state theory and
its extension to T�0 K is accompanied by a heavy increase
in computational effort, due to the dramatically increased
phase space. However, in order to derive complete phase
diagrams employing ab initio techniques, the extension to
T�0 K is unavoidable and crucial.

The main contributions to the free energy determining the
temperature dependence of phase stabilities of nonmagnetic

alloys are electronic, configurational, and vibrational entro-
pies. The electronic contribution can be taken into account
with relatively low computational effort using the finite tem-
perature extension to DFT developed by Mermin.12 A fully
coupled treatment of the configurational and vibrational con-
tribution, which can be of equal magnitude,13 is a formidable
task. In order to calculate the configurational entropy contri-
bution, two major approaches are used: The cluster
expansion14 and the coherent-potential approximation.15

An appealing approach to account for the vibrational en-
tropy is the combination of DFT and the quasiharmonic
approximation.16–18 Within this approach, a set of ab initio
calculated thermodynamic properties �phonon dispersion,
thermal expansion, heat capacity� can be obtained and com-
pared to experimental data. So far, such an extended com-
parison has been performed only for a few selected elements
�e.g., Cu, Ag, Al�.8,16,17 Furthermore, except for Cu, these
studies have been restricted to the local density approxima-
tion �LDA� XC functional and in none of these studies a
comparison between the calculated results and CALPHAD re-
sults has been performed.

The aim of this paper is therefore to investigate a repre-
sentative and extensive set of �nonmagnetic� materials hav-
ing the same crystal structure. Specifically, we consider nine
elementary face-centered-cubic �fcc� metals: Al, Pb, Cu, Ag,
Au, Pd, Pt, Rh, and Ir. In order to provide a systematic basis
for the evaluation of the accuracy and predictive power of
common DFT functionals, we calculate phonon dispersions,
thermal expansions, and heat capacities for the LDA and
generalized gradient approximation �GGA� functional. Fur-
ther, we compare our ab initio free energies to free energies
obtained with the CALPHAD method. Our study follows in
many aspects the pioneering work of Moruzzi et al.,19 who
performed a systematic study of fcc and bcc metals combin-
ing DFT-LDA and a Debye treatment of the lattice dynamics.
The essential difference, however, is the replacement of the
empirical Debye treatment by a fully consistent ab initio
approach to treat the temperature dependence of the free en-
ergy.
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II. THEORY

The basic quantity, from which we will derive all thermo-
dynamic properties, is the free energy F as a function of the
crystal volume V and the temperature T. For an elementary
nonmagnetic crystal, electronic �el� excitations as well as
ionic vibrations �vib� contribute to F and within the adiabatic
approximation20 F reads

F�V,T� = Fel�V,T� + Fvib�V,T� . �1�

Within finite temperature DFT,12 Fel is given by

Fel = Etot�T� − TSel, �2�

where Etot is the total energy of the crystal and Sel the elec-
tronic entropy.21

Within the harmonic approximation, Fvib per elementary
�single atom� unit cell reads20

Fvib =
1

N
�

i

3N �1

2
��i + kBT ln�1 − exp�−

��i

kBT
	
� , �3�

with the reduced Planck constant �, the Boltzmann constant
kB, and phonon frequencies �i. The sum in Eq. �3� runs over
the complete set of 3N phonon states, with N being the num-
ber of atoms inside the crystal cell obeying Born–von Kar-
man periodic boundary conditions. The phonon frequencies

�i are the eigenvalues of the dynamical matrix D̂. For a
periodic system, it is convenient to use the dynamical matrix
in reciprocal space, which, for a crystal with a single basis
atom, reduces to a 3�3 matrix with elements

D�,��q�� =
1

M
�

I

N

�I�,� exp�iq� · R� I� . �4�

Here, M is the mass of the species, q� is a wave vector within

the Brillouin zone, R� I is a primitive unit-cell vector, � and �

represent the three spatial dimensions x, y, and z, and �̂ is
the force constant matrix consisting of elements

�I�,� =
�2Fel

�uI��u�

=
�F̃I�

HF

�u�

, �5�

with the displacement uI� of atom I in direction � and the

displacement u� in direction �. F̃I�
HF is the �th component of

the Hellmann-Feynman force22,23 acting on atom I. Due to
translational symmetry, the displacement u� can be per-
formed on an arbitrary but fixed atom in the crystal. For
convenience, the chosen atom is shifted to the origin.

The electronic free energy Fel entering Eq. �5� depends on
the volume and determines thus the volume dependence of
the phonon frequencies and eventually of the vibrational free
energy Fvib in Eq. �3�. Fel also depends explicitly on the
�electronic� temperature T via Eq. �2� and hence

Fel = Fel�V,T� → �i = �i�V,T� → Fvib = Fvib�V,T� . �6�

In principle, it would be straightforward to calculate this
temperature dependence within DFT using Eq. �5�. However,
since we expect the effect of the electronic temperature on
the force constant matrix to be small, we replace Fel by

Eel�T=0 K� in Eq. �5�. This removes the explicit temperature
dependence in the phonon frequencies: �i=�i�V�. This cor-
responds to the quasiharmonic approximation.

Having computed the thermodynamic potential F�V ,T�, it
can be utilized to determine all relevant thermodynamic ma-
terial properties. For instance, the temperature dependence of
the equilibrium volume Veq�P ,T� at a given pressure P can
be obtained by finding a volume Veq, which obeys the fol-
lowing condition:

− � �F�V,T�
�V

	
V=Veq

= P . �7�

Using Veq�P ,T�, the �implicit� pressure and temperature de-
pendence of the phonon frequencies �i can be formulated. A
further material property, which can be readily calculated, is
the heat capacity20 CV at constant or fixed volume as well as
CP at constant pressure.

III. METHOD

The total energy and force calculations have been per-
formed within the projector-augmented wave24 �PAW� plane
wave approach. We have used the software package VASP

�Ref. 25� in combination with the provided PAW potentials.26

The plane wave energy cutoffs used in this study are listed in
Table I. These choices ensure the free energy F to be con-
verged to within 1 meV/atom. In order to evaluate the accu-
racy of the PAW potentials, we have additionally performed
case studies with an all-electron method �WIEN2K,27 see Sec.
V A�. For the XC functional, the LDA as well as the GGA
have been considered. We have chosen the scheme of Cep-
erley and Alder28 as parametrized by Perdew and Zunger29

for LDA and the Perdew-Burke-Ernzerhof30 �PBE� param-
etrization for GGA.

A. Electronic free energy

The electronic free energy Fel has been calculated em-
ploying the finite temperature formulation of DFT by
Mermin.12 Further, we have used the Monkhorst-Pack31

scheme to sample the Brillouin zone. A mesh of
32�32�32 k points �kp’s� corresponding to
33�103 kp·atom32 guarantees Fel�V ,T� to be converged
well below 1 meV/atom.

TABLE I. Plane wave energy cutoffs �in eV� employed in the
total energy and force calculations.

Al 250

Rh 270

Ir 250

Pb 150

Pd 270

Pt 250

Cu 290

Ag 270

Au 250
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For the evaluation of the thermodynamic quantities, we
have parametrized Fel with respect to V and T. In particular,
we have found a separation of Fel into the total energy

Etot�V� at T=0 K and a remaining part F̄ with a linear de-
pendence on V most suitable:

Fel�V,T� = Etot�V,T = 0 K� + F̄el�V,T� . �8�

Interpolating F̄el linearly in V,

F̄el�V,T� = ael�T� + bel�T�V , �9�

gives an error well below 1 meV/atom within the volume
range considered in this study. The temperature dependence
of ael and bel has been parametrized by fitting to fourth-order
polynomials in T:

ael�T� = �
i=1

4

	iT
i, bel�T� = �

i=1

4


iT
i. �10�

The total energy Etot�V ,T=0 K� has been parametrized by
a least-squares fit to the Murnaghan equation of state:33

E�V� = E�Veq� +
BV

B�2 − B�
�B��1 − x� + xB� − 1� . �11�

Here, x=Veq/V .Veq is the equilibrium volume �in the follow-
ing, we also use the equilibrium lattice constant, which
for the considered cases is given by a= �4Veq�1/3�,
B=−V��P /�V�T the bulk modulus, and B� its derivative with
respect to pressure. In Eq. �11�, Veq, B, and B� correspond to
P=0 Pa.

B. Vibrational free energy

The force constant matrix �̂ has been calculated using the
�direct� force constant method34 �also referred to as the small
displacement method35,36�. A displacement of 0.0053 Å
�0.01 Bohr radius� has been used to obtain the Hellmann-
Feynman forces. This choice ensures that the forces on all
atoms in the supercell are linear with respect to the displace-

ment. As pointed out in Sec. II, �̂ has been calculated with
respect to Eel�T=0 K� rather than Fel�T�. For that purpose,
we have replaced the Fermi-Dirac broadening with the
Methfessel-Paxton scheme37 in first order. A broadening pa-
rameter of 0.1 eV ensures that the fictitious electronic en-
tropy term does not exceed the value of 1 meV/atom
�see Ref. 38�. For the Brillouin zone sampling of the
electronic dispersion, we have used 7�103 kp·atom
�3�3�3 kp mesh; 256 atoms� for the transition metals,
16�103 kp·atom �4�4�4 kp mesh; 256 atoms� for Al, and
32�103 kp·atom �4�4�4 kp mesh; 500 atoms� for Pb, re-
sulting in Fvib converged to �1 meV/atom �see Sec. IV B�.

The convergence criterion for the electronic loop has been
set to 10−7 eV. The mesh size for the calculation of the aug-
mentation charges has been set to 432�103 grid points/atom
�see Sec. IV A�. We have used a 5�5�5 �henceforth abbre-
viated by 53� supercell �in units of the conventional fcc unit
cell consisting of four atoms� for Pb and 43 supercells for the
other elements �see Sec. IV C�. For the calculation of aver-

aged quantities depending on the full phonon dispersion ��q��
inside the Brillouin zone, we have used an equidistantly
spaced q-point mesh of dimensions 16�16�16. Finally, in
analogy to Fel, we have also parametrized Fvib linearly in V,

Fvib�V,T� = avib�T� + bvib�T�V , �12�

with the T dependence given analytically by Eq. �3�. All
these choices have been carefully checked to give errors in
the free energy well below 1 meV/atom for all elements in-
vestigated in this study.

IV. CONVERGENCE CHECKS: SPECIAL TOPICS

In order to perform a critical evaluation of the predictive
power of XC functionals, it is important to rule out the in-
fluence of further �controllable� approximations. Since some
parameters strongly affect thermodynamic quantities, careful
convergence checks with respect to these values turned out
to be crucial. Below, we describe selected checks, with a
focus on the GGA functional. Case studies with the LDA
functional yield similarly converged results.

In order to quantify the rate of convergence, we will focus
on two quantities: The vibrational free energy Fvib and the
averaged �phonon� Grüneisen parameter20 � defined as

� = −
V

3N
�

i

3N
1

�i

d�i�V�
dV

. �13�

A high accuracy of � is crucial, since an error in � produces
an error of the same order of magnitude in bvib �Eq. �12�� and
thus affects the resulting thermodynamic properties. Both
quantities have been computed at the equilibrium volume at
P=0 Pa and T=0 K. Fvib has been calculated at a fixed tem-
perature of T=400 K. In the following, the convergence rate
is shown relative to the converged �conv� values. Absolute
values of Fvib and � at these conditions can be inferred from
Fig. 9.

For two convergence parameters, the k-point mesh and
the supercell size, we will additionally discuss their effect on
the phonon dispersions ��q��.

A. Grid for augmentation charges

A quantity we have identified to be crucial for achieving a
high accuracy in thermodynamic calculations is the size of
the grid used to calculate the augmentation charges �hence-
forth labeled “augGrid”� in the PAW method employed here.
To allow a proper investigation of the augGrid, we have
performed the augGrid convergence tests by keeping the well
converged cutoffs from Table I fixed. This decouples the
augGrid from the grid used to store the wave function and
charge density coefficients �henceforth labeled “basicGrid”�,
which is determined by the plane wave energy cutoff.

The influence of the augGrid size on � is demonstrated in
Fig. 1 for two elements with hard, i.e., strongly localized,
augmentation charges, Cu and Ag. The example of Cu shows
that working with an augGrid eight times larger than the
basicGrid39 �line L1 in Fig. 1� results in a −10.3% error in the
� value. Even by making the augGrid 64 times larger than
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the basicGrid40 �line L2 in Fig. 1�, the error reduces only
slightly �7.1%�. In the case of Ag, the larger equilibrium
lattice constant yields a larger basicGrid. For this case, an
augGrid 64 times larger than the basicGrid reduces the error
in � to −1.4%.

A direct calculation of the augGrid convergence rate em-
ploying a well converged supercell size for all investigated
elements is computationally highly expensive. Using, for in-
stance, a 33 supercell �see Sec. IV C� for all elements would
require more than 10 000 CPU hours on an AMD Opteron
with a clock speed of 2.4 GHz.

We have therefore employed a scaling procedure, which
allows an efficient and accurate determination of the conver-
gence rate. The key idea of this approach is as follows: Let
us assume a physical target quantity 	 and two convergence
parameters c1 and c2. We are interested in the convergence
rate of 	 with respect to c1 at a converged value of c2
=c2

conv, i.e., 	�c1 ,c2
conv�. For most cases, computing

	�c1 ,c2
conv� directly is highly expensive. However, we have

found that in many cases the following approximation can be
utilized to obtain an accurate description of 	�c1 ,c2

conv�:

	�c1,c2
conv� 
 	�c1

a,c2
conv� + s�	 ,

�	 = 	�c1,c2
small� − 	�c1

a,c2
small� . �14�

Here, s is a scaling parameter defined as

s =
	�c1

b,c2
conv� − 	�c1

a,c2
conv�

	�c1
b,c2

small� − 	�c1
a,c2

small�
�15�

and c1
a, c1

b �c1
a�c1

b�, and c2
small are fixed �but not fully con-

verged� parameters. The idea is then to study in a first step
the convergence of 	�c1 ,c2

small� in detail. Therefore, c2
small is

chosen to provide a computationally inexpensive calculation.
In a second step, the scaling parameter s is calculated by
performing only two �expensive� calculations for c2

conv:

	�c1
a ,c2

conv� and 	�c1
b ,c2

conv�. Finally, 	�c1 ,c2
conv� is approxi-

mated by Eq. �14�.
To be more specific, let us consider 	 to be the averaged

Grüneisen parameter �, c1 to be the augGrid size, and c2 to
be the supercell size. Further, c2

small corresponds to a 13 su-
percell and c2

conv to a 33 supercell. We set c1
a=28�103 grid

points/atom �gp/atom� and c1
b=54�103 gp/atom. As a repre-

sentative example, Fig. 2�a� shows the results we have ob-
tained for Ag. As can be seen, the computed values closely
follow the scaling relation according to Eq. �14�. Thus, to
obtain a densely sampled convergence study for large super-
cells, only two expensive calculations are needed and a gain
in computational efficiency of at least 1 order of magnitude
can be easily achieved.

We have studied how the scaling parameter depends on
the chemical species and the supercell size. Our results show
a small chemical dependence �
10% �. The supercell size
dependence shows a significant scaling parameter only when
increasing a 13 to a 23 supercell. We have also verified that
the same approach can be applied to determine the plane
wave energy cutoff convergence of large supercells �Fig.
2�b��. For this case, a scaling parameter generally close to 1
is found.

The convergence rate of � with respect to the augGrid
size is summarized in Fig. 3 for all metals studied here. For
some of the elements, we had to extend the range of the
augGrid sizes to even larger values than shown in Fig. 1. An
inspection of Fig. 3 shows that the convergence rate corre-
lates inversely with the hardness �localization� of the aug-
mentation charge of the specific element: Among the transi-
tion metals, � converges slower when filling up the d shell
and when reducing the atomic radius. Thus, Cu, having the
hardest augmentation charge, is the most sensitive element.
In contrast, Al and Pb, where only s and p electrons form the
chemical bonds, exhibit a relatively low dependence on the
augGrid.

B. k-point sampling

A second convergence parameter, which we have found to
be crucial in predicting thermodynamic properties of metals
with extremely high accuracy, is the kp sampling of the elec-
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FIG. 1. �Color online� Convergence of the averaged Grüneisen
parameter � with respect to the augGrid �see text� in terms of grid
points per atom �gp/atom� for Cu and Ag. The lines L1 �similar for
Cu and Ag on this scale� and L2,Cu/Ag correspond to grid sizes being
8 and 64 times larger than the basic grid at a converged cutoff �see
Table I�. The values were obtained using a 33 supercell and a kp
mesh of 7�103 kp·atom.
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FIG. 2. �Color online� �a� AugGrid convergence of the averaged
Grüneisen parameter � for Ag for the 13 and 33 supercells �sc�. The
black squares show the convergence of the 13 sc after rescaling it
using Eq. �14�. �b� Similar to �a� but with the plane wave energy
cutoff Ecut as the convergence parameter.
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tronic dispersion within the Brillouin zone. To systematically
investigate the kp-sampling dependence of � and Fvib, we
utilize again the scaling approach �Eq. �14��. In this case,
starting from a 13 supercell �parameter c2

small in Eq. �14�� is
not sufficient to guarantee a reasonable approximation, but a
23 supercell is needed. The scaling parameter is �1.

The results of the convergence study are shown in Fig. 4.
The main conclusion is that Al and Pb exhibit a strikingly
worse convergence behavior for � and Fvib than the transi-
tion metals. For Al, the convergence of both quantities shows
a significant gradient even at the largest considered kp mesh
�190�103 kp·atom�. Hence, in contrast to all other ele-
ments, the given error bar for the averaged Grüneisen param-
eter of Al has to be taken with care. For Pb, the smallest kp
sampling considered here of 2�103 kp·atom yields an error
in � as large as −25%.

In addition to the convergence of the averaged quantities,
� and Fvib, we have analyzed in detail the convergence of the
phonon dispersion ��q��. For this convergence study, shown

in Fig. 5, the 43 supercell has been used. The results will be
discussed for three representative cases.

Among the transition metals, the dispersion of Ir shows
the slowest convergence. Nevertheless, the convergence is
rapid and no qualitative changes are observed. In contrast to
all transition metals, the convergence of Al and Pb is more
complex: For some kp meshes, an anomalous behavior in the
vicinity of the � point appears �indicated by the circles in
Fig. 5�. In these regions, the phonon frequencies are imagi-
nary. For convenience, the imaginary frequencies are shown
as negative frequencies in Fig. 5.

In principle, the presence of imaginary frequencies indi-
cates that the structure is unstable against deformations along
the corresponding phonon wave vector. The imaginary fre-
quencies found for some kp samplings are, however, not re-
lated to a genuine structural instability, but are unphysical
and caused by not fully converged parameters. In the case of
Al, the instability occurring at 7�103 kp·atom can be re-
moved by enlarging the kp sampling to 16�103 kp·atom,
while for Pb, the instability is more persistent and occurs
even for large samplings �16�103 kp·atom�. To ensure that
the instability is not caused by a too small kp sampling, we
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FIG. 3. �Color online� AugGrid convergence of the averaged
Grüneisen parameter � and the vibrational free energy Fvib for all
investigated elements. The lines L1 �falls together with the y axis on
this scale� and L2 �dashed line� are defined as in Fig. 1. Line L3

�dot-dashed line� corresponds to the augGrid size used in the
present study �Sec. V�. The numbers inside each graph show the
error range of the Grüneisen parameter at line L1 ,L2 ,L3. The values
have been obtained using a kp mesh of 7�103 kp·atom and a 13

supercell. The scaling procedure �Eq. �14�� has been employed to
rescale the values to correspond to large supercells. Al and Pb are
separated to distinguish them from the transition metals.
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FIG. 4. �Color online� kp convergence of the averaged Grü-
neisen parameter � and the vibrational free energy Fvib for all in-
vestigated elements. The line L1 �falls together with the y axis on
this scale� corresponds to the smallest investigated kp mesh of
2�103 kp·atom and the line L2 �dot-dashed line� to the kp meshes
used for the calculations presented in Sec. V. The numbers inside
each graph show the error range of � at lines L1,L2. The values have
been obtained using a 23 supercell.
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have further increased the kp sampling �55�103 kp·atom;
not shown�, but found no changes in the phonon dispersion.
In Sec. IV C, it will be shown that the instability is indeed
fictitious; however, it is not related to the kp convergence but
to a �still� insufficient supercell size.

The occurrence of imaginary frequencies due to insuffi-
cient convergence requires special care when calculating
thermodynamic quantities. A possible approach would be to
calculate the thermodynamic quantities exclusively for
highly converged parameters, for which the unphysical insta-
bility is fully absent. However, even in the presence of these
instabilities sufficiently converged thermodynamic quantities
can be obtained by neglecting all imaginary frequencies
when calculating Fvib according to Eq. �3�. We have found
this approximation to have little effect on the free energy and
derived quantities in most cases, since the phase space
around the � point is negligible compared to the full Bril-
louin zone. An example of how well this approach works is
given in the following section in Fig. 8, where the conver-
gence of � and Fvib for Al, Pb, and Pd has been calculated
using this approach.

C. Supercell size

Let us now focus on the remaining critical convergence
parameter, the supercell size. An extensive analysis for all
elements shows a qualitatively similar behavior as for the kp
sampling. In particular, for Pd and Pb certain �unconverged�
supercell sizes give rise to an unphysical phonon instability
in the vicinity of the � point.

The supercell size convergence of the phonon dispersion
for Pd is shown in Fig. 6 for the 23, 33, and 43 supercell.
Figure 6 reveals that using a 23 supercell results in a “well-
behaved” phonon dispersion without any instabilities. Thus,
one might be easily misled and consider these results as con-
verged. However, increasing the supercell size to 33, a small
instability occurs in the vicinity of the � point along the L

direction and a larger one along the X direction. The insta-
bility disappears again for the 43 supercell.

A closer inspection of this feature reveals that it is caused
by an intricate interplay between the sampling of the phonon
Brillouin zone and the occurrence of anomalies in the pho-
non dispersion as a consequence of long-range interactions.
The sampling of the phonon Brillouin zone is determined
and restricted by the size of the supercell. For the investi-
gated elements, a supercell consisting of N atoms can repre-
sent only N phonon wave vectors q� . These are commonly
termed exact q points.34 At these points, marked in Fig. 6 by
red ticks, the phonon frequencies are exact, i.e., these fre-
quencies would also be obtained for a �large� fully converged
supercell. Frequencies at the remaining �nonexact� q points
are merely interpolated by a Fourier expansion with a limited
q basis set and may change and/or improve when increasing
the supercell size.

For the case of the large 43 Pd supercell �Fig. 6�, the
q-point mesh is sufficiently fine to resolve the anomaly,
which has also been observed experimentally �see Ref. 41
and Fig. 11�. For the 33 supercell, the q-point mesh is too
coarse to fully resolve the anomaly. Nevertheless, the exact q
point next to the � point is strongly affected by the anomaly
and causes the q interpolation to make a “dip” with imagi-
nary frequencies in between the two exact q points. The ex-
act q mesh for the 23 supercell is so coarse that the exact q
point neighboring � is too far away to be affected by the
anomaly.

For Pb, the supercell size convergence of the phonon dis-
persion �Fig. 7� shows no phonon instability for the 23 and 33

supercells. Increasing the size to 43, an instability occurs in
the same region as for Pd. The magnitude of the instability
is, however, significantly smaller. Increasing the supercell
size further to 53 �corresponding to 500 atoms� almost com-
pletely removes the imaginary frequencies. We expect a
complete disappearance of the imaginary frequencies when
going to even larger supercells, since previous calculations42

based on the linear response method and experiment41 report
no instability.

The convergence of the averaged quantities � and Fvib is
shown in Figs. 8 and 9 for all investigated elements. In Fig.
8, it becomes apparent that there is a significant increase in
the quality of both quantities for almost all elements when
enlarging the supercell to the size of 23. In contrast, the su-
percells 23, 33, and 43 yield similar values with a scattering
of about ±2%. Moreover, the convergence of both quantities
exhibits a satisfactory behavior for most elements �Pt being
one exception�, i.e., the slope in the error dependence de-
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creases monotonously with the supercell size.
Figure 9 shows the supercell size convergence of the ab-

solute theoretical values of � and Fvib. It also includes ex-
perimental data of � obtained from CV data. As can be seen,

for most elements the theoretical error bars due to conver-
gence are smaller than the scattering in the experimental
data. Actually, including all available experimental data of �
�e.g., obtained from compressibility or shock wave experi-
ments; not shown here� would significantly increase the in-
terval of experimental scatter.43 We note, however, that a
comparison between the theoretical and experimental � val-
ues should be taken with care, since they are derived from
different definitions. The theoretical Grüneisen parameter
�Eq. �13�� containing only vibrational contributions is an av-
erage over all q-dependent Grüneisen parameters. The ex-
perimental �, shown in Fig. 9, is a derived quantity from the
heat capacity at constant volume and corresponds to the the-
oretical one only if the approximate Mie-Grüneisen equation
of state is valid.44,45 Further, the experimental data contain
additionally an electronic contribution, which is negligible
for Al, Cu, Ag, and Au, has a value of �0.1 for Rh, Ir, and
Pb, and has a value of �0.2 for Pd and Pt.43

V. COMPARISON BETWEEN THEORY AND EXPERIMENT

A. Potential and free energy at T=0 K

The T=0 K energy-volume dependence �Etot�V ,T=0 K�;
Eq. �8�� has been calculated for all elements and fitted to the
Murnaghan equation of state �Eq. �11��. The results obtained
from the fits for the equilibrium lattice constant a, bulk
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modulus B, and its derivative with respect to pressure B� are
listed in Table II. The subscript e indicates that zero-point
vibrations are excluded. Reference calculations for the T
=0 K energy surface performed with an all-electron method
�WIEN2K �Ref. 27� �L�APW+lo: �linearized� augmented
plane wave � local orbital46� show only negligible devia-
tions from the PAW calculations �see Table II�.

A direct comparison between values excluding zero-point
vibrations and experimental data being extrapolated to
T=0 K would neglect that the experimental data correspond
to a free energy at T=0 K, F�V ,T=0 K�, and thus contain a
contribution due to zero-point vibrations. To estimate the in-
fluence of zero-point vibrations, we have calculated the
T=0 K free energy and parametrized F�V ,T=0 K� using Eq.

TABLE II. Results for the equilibrium lattice constant a, bulk modulus B, and its derivative with respect to pressure B� at T=0 K and
P=0 Pa for the projector-augmented wave �PAW� and all-electron �ae� approach. The index e �i� indicates whether zero-point vibrations are
excluded �included�. The deviation from experiment is labeled �ai and �Bi. All-electron values marked with an asterisk are estimated values
obtained using the �relative� zero-point contributions from the PAW results. All experimental lattice constants are taken from Ref. 47
�T=5 K�. The experimental bulk moduli are taken from Ref. 20 �low temperature values� for Al, Pb, Cu, Ag, and Au and from Ref. 48
�Pd, T→0 K�, Ref. 49 �Rh, T→0 K�, and Ref. 50 �Pt, Ir, T→0 K�. The available experimental B� are taken from Ref. 51 �collection of
experimental T→0 K data�.

Al Pb Cu

LDA

Exp.

GGA LDA

Exp.

GGA LDA

Exp.

GGA

ae PAW ae PAW ae PAW ae PAW ae PAW ae PAW

ae �Å� 3.987 3.986 4.044 4.041 4.881 4.875 5.047 5.030 3.522 3.524 3.638 3.637

ai �Å� 4.001* 3.999 4.032 4.057* 4.054 4.885* 4.879 4.905 5.052* 5.034 3.529* 3.530 3.602 3.645* 3.644

�ai �%� −0.8* −0.8 0.6* 0.6 −0.4* −0.5 3.0* 2.6 −2.0* −2.0 1.2* 1.2

Be �GPa� 81 84 76 77 52 53 39 40 188 183 141 136

Bi �GPa� 78* 80 79 73* 74 51* 52 49 39* 40 183* 178 142 137* 132

�Bi �%� −1.8* 1.3 −7.4* −6.3 13.2* 15.6 −13.5* −11.1 28.5* 25.4 −3.4* −7.0

B� 4.3 4.6 4.7 4.3 4.7 4.7 5.0 5.5 4.2 5.6 5.1 5.1 5.3 5.1 5.1

Rh Pd Ag

LDA

Exp.

GGA LDA

Exp.

GGA LDA

Exp.

GGA

ae PAW ae PAW ae PAW ae PAW ae PAW ae PAW

ae �Å� 3.762 3.767 3.839 3.842 3.847 3.854 3.949 3.954 4.008 4.016 4.152 4.165

ai �Å� 3.766* 3.770 3.798 3.844* 3.847 3.851* 3.858 3.879 3.954* 3.959 4.014* 4.022 4.061 4.159* 4.172

�ai �%� −0.8* −0.7 1.2* 1.3 −0.7* −0.5 1.9* 2.1 −1.2* −1.0 2.4* 2.7

Be �GPa� 321 313 260 252 230 223 169 165 140 136 91 88

Bi �GPa� 316* 308 269 255* 248 226* 219 195 166* 162 137* 133 109 89* 86

�Bi �%� 12.8* 10.0 −8.8* −11.4 20.2* 16.5 −11.5* −13.8 26.8* 23.1 −17.6* −20.4

B� 5.3 5.2 5.4 5.3 5.7 5.5 5.7 5.7 5.8 5.7 5.9 5.8 5.9

Ir Pt Au

LDA

Exp.

GGA LDA

Exp.

GGA LDA

Exp.

GGA

ae PAW ae PAW ae PAW ae PAW ae PAW ae PAW

ae �Å� 3.819 3.819 3.879 3.877 3.900 3.906 3.976 3.977 4.054 4.062 4.163 4.174

ai �Å� 3.822* 3.821 3.835 3.882* 3.880 3.903* 3.909 3.909 3.978* 3.980 4.057* 4.066 4.065 4.167* 4.179

�ai �%� −0.3* −0.3 1.2* 1.2 −0.2* 0.0 1.8* 1.8 −0.2* 0.0 2.5* 2.8

Be �GPa� 406 401 349 342 308 301 246 245 193 189 139 134

Bi �GPa� 402* 397 366 345* 338 304* 297 288 243* 242 190* 186 180 136* 131

�Bi �%� 8.7* 7.3 −6.8* −8.6 4.7* 2.4 −16.3* −16.6 5.1* 2.8 −25.0* −27.6

B� 5.2 5.1 5.2 5.2 5.5 5.5 5.4 5.6 5.9 5.8 5.9 6.0 6.0
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�11�. The results are given in Table II �indexed with a sub-
script i�.

Table II shows that including zero-point vibrations has
only a minor effect on the lattice constant. The average
change is �0.1%. For the bulk modulus, the effect is signifi-
cantly stronger ��2% �. In particular, the Al GGA bulk
modulus softens considerably by about 4%. In general, the
inclusion of zero-point vibrations improves �worsens� the
agreement between the LDA �GGA� results and experiment.

In principle, the experimental ambient pressure conditions
�100 kPa� should also be taken into account for a fully con-
sistent comparison with experiment. However, the effect of
pressure on the lattice constant and bulk modulus is consis-
tently found to be more than an order of magnitude smaller
than the changes due to zero-point vibrations. Therefore, we
discuss here and in the following sections only values ob-
tained at 0 Pa.

The comparison between experiment and theory shows
that LDA �GGA� underestimates �overestimates� the experi-
mental value of the lattice constant a and overestimates �un-
derestimates� the value of the bulk modulus B. This behavior
is a well established trend observed in numerous previous
studies. For the set of metals investigated in this study, we
find that LDA underestimates a on average by −0.7% and
GGA overestimates it on average by 1.8%. The error in B,
which is a second-order derivative, is much larger in magni-
tude �LDA average, 11.6%; GGA average, −13.7%� and in-
versely correlated to the error in a �Fig. 10�. The inverse
relation can be explained by the volume dependence of the
total energy �Eq. �11�� causing a monotonous decrease of B
with increasing volume. Particularly for GGA, an increase of
the error with the number of d electrons among the 4d and
5d transition metals is apparent.

B. Phonon dispersion

In order to allow an accurate and consistent comparison
between the experimental and our theoretical phonon disper-

sions, the theoretical phonon dispersions have to be com-
puted at the experimental temperature. We have therefore
calculated temperature dependent phonon dispersions. The
results are shown in Fig. 11.

Generally, both functionals show a good agreement with
experimental data. LDA, yielding larger phonon frequencies
than GGA, overestimates the experimental data in most
cases, while GGA underestimates it. A major conclusion we
can therefore draw is that the LDA �GGA� results can be
considered as an upper �lower� limit with respect to experi-
mental data and thus as error bars for theoretical calculations.
Small deviations between LDA and GGA, as, e.g., for Al,
thus indicate small error bars and hence a high predictive
power, while larger deviations as for Ag or Au indicate lower
prediction accuracy.

The phonon dispersion of Cu, Ag, and Au is compara-
tively “simple” and can be described accurately already with
nearest neighbor interactions. The dispersion of these ele-
ments has been the subject of previous theoretical studies
�Cu,8,9,52,53 Ag,16 and Au �Refs. 54 and 55��. For Ag and Au,
however, only the LDA formalism has been used. The avail-
able data from the literature are in good agreement with our
results.

The remaining elements exhibit more complex phonon
dispersions. Anomalies, i.e., deviations from the simple de-
pendence, are caused by interactions of the phonons with the
electronic Fermi surface. To resolve these anomalies in the
phonon dispersion, force constants including long-range in-
teratomic interactions need to be captured, i.e., large super-
cells are crucial. As pointed out in Ref. 56, the dispersion
relations of these elements “constitute a severe test for any
theoretical treatment.”

We first focus on Pd and Pt. The anomalies in the vicinity
of the � point �enlarged in the insets of Fig. 11� have been
attributed to virtual Kohn transitions.41 Figure 11 shows that
the anomalies are strong for the GGA-calculated dispersions,
whereas the LDA-calculated dispersions show almost no de-
viation from linearity. In order to identify why LDA behaves
differently, we have repeated the calculations of the phonon
dispersion at the same �experimental� lattice constant for
LDA and GGA. For Pt, both functionals yield under these
conditions a comparable anomaly. We therefore conclude
that for Pt the XC-functional dependence is mainly related to
an effect of the atomic structure on the Fermi surface rather
than due to changes in the Fermi surface caused by LDA
and/or GGA. For Pd, however, this argument does not hold,
since calculating the phonon dispersion at the same lattice
constant yields a stronger pronounced anomaly for GGA
than for LDA. Previous theoretical studies on Pd �Refs. 52
and 57� based on the linear response method have not re-
ported the anomaly. However, in a recent theoretical study58

on the electron-phonon coupling in Pd, the anomaly has been
resolved and correlated to a distinct peak in the phonon line-
widths.

The phonon dispersion of Rh and Ir shows anomalies in
almost all branches. These pronounced anomalies originate
from sharp peaklike features �caused by the d states� in the
electronic Fermi surface. Both elements have been the sub-
ject of only a few experimental and theoretical �LDA�
investigations.56,59,60 Our LDA phonon dispersions agree
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well with the LDA results from Refs. 59 and 60, where a
sophisticated supercell approach has been used to include
long-ranged force constants.

The phonon dispersion of Al has been in the focus of
numerous studies.9,17,52,55,61 It is, at first glance, similar to the
phonon dispersion of Cu, Ag, and Au. However, a detailed
inspection reveals anomalies for most branches. This is con-
sistent with theoretical findings in Ref. 20. Our results for the
LDA and GGA phonon dispersion of Al in Fig. 11 accurately
reproduce these anomalies. It is noteworthy that a 43 super-
cell is the minimum cell size to resolve these anomalies.

Pb exhibits the most complex phonon dispersion among
the investigated elements. This “complexity” became already
apparent in Sec. IV C when inspecting the convergence with
respect to the supercell size. The theoretical phonon disper-
sions computed for a large 53 supercell �500 atoms� excel-
lently reproduce the experiment. We finally note that our

LDA results for Pb agree well with a previous LDA linear
response study.42

C. Thermal expansion

The thermal expansion can be calculated by employing
Eq. �7�. The linear thermal expansion � and its coefficient 	
are defined as

��T� =
a�T� − a�Tref�

a�Tref�
and 	�T� =

1

a�T�
�a�T�

�T
, �16�

with a the equilibrium lattice constant. As reference tempera-
ture, we chose Tref=0 K. The results are shown in Fig. 12.
One should keep in mind, when comparing theory and ex-
periment, that a comparison of � and 	, which are differen-
tial quantities, masks errors in the absolute values of the
lattice constants. These deviations are listed in Table II.
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On average, we find a better agreement with experiment
for the LDA than for the GGA results with GGA predicting a
too large expansion. Moreover, the deviation between the
GGA results and experiment shows a chemical trend among
the transition metals. Filling up the d shell and increasing the
atomic radius enlarges the error. The two most prominent
examples are Ag and Au, where, in particular, the GGA 	
shows a significant deviation from experiment. The discrep-
ancy of the Al 	 at temperatures below the melting point for
LDA and GGA, which is due to anharmonic effects, will be
discussed in more detail in the following section with a focus
on the heat capacity.

In general, however, the probability that the experimental
data lie in between or on the theoretical curves is high. Thus,
similar to the results obtained for the phonon dispersions
�Sec. V B�, the deviation between LDA and GGA can be
used to estimate the theoretical error bars and thus to obtain
a fully ab initio confidence interval.

Previous ab initio studies on the thermal expansion of
metals are rare. For the elements investigated here, we have
found LDA studies for Al,17,18 Cu,8 and Ag.16 In Ref. 8, a
combined LDA and GGA study of thermodynamic properties
for Cu has been performed. All these data are in good agree-
ment with our corresponding LDA and/or GGA data.

D. Heat capacity

We now focus on the heat capacity at constant pressure
CP and fixed volume CV. Experimentally, CP is typically
measured. Both of the calculated heat capacities and the ex-
perimental data taken from literature are shown in Fig. 13.

For CP, which can be directly compared with experimen-
tal data, similar conclusions as in the previous section �ther-
mal expansion� can be drawn: LDA yields an �astonishingly�
good agreement with experiment. The GGA error has not
such a clear chemical trend as in the case of the thermal
expansion. However, we find again the largest deviations for
the noble metals Ag and Au.

Our approach allows us to directly determine the elec-
tronic contributions to the heat capacity CP

el �see dashed lines
in Fig. 13�. For Al, Pb, Cu, Ag, and Au, the electrons make
only a small contribution to the heat capacity in the consid-
ered temperature range. For instance at 900 K, the contribu-
tion for Al, Cu, Ag, and Au is �0.1kB and �0.2kB for Pb. For
Pb, however, already at 600 K the melting point is reached.
The contribution at 600 K is �0.1kB. This order of magni-
tude agrees, for instance, with the findings in Ref. 8 �for Cu�
and Ref. 16 �for Ag�. In contrast to these elements, CP

el be-
comes significant for Pd, Pt, and Rh ��0.4kB at 900 K� and
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for Ir ��0.3kB at 900 K�. For Pd, Pt, Rh, and Ir, the origin of
the significant electronic contribution are large electronic en-
tropy effects due to a high electronic density of states near
the Fermi level caused by partially occupied d states. Results
for the electronic density of states of Pd, Pt, Rh, and Ir can be
found, for instance, in Ref. 63.

Another noteworthy feature is observed for Al and Pb,
which both reach the melting temperature already within the
investigated temperature range. The LDA and GGA heat ca-
pacities for both elements are in good agreement up to tem-
peratures �70% of the melting point. For higher tempera-
tures, the experimental heat capacity increases almost
exponentially, while LDA and GGA heat capacities almost
coincide and show a linear behavior. A similar dependence is
observed also for the other elements at temperatures well
above the upper temperature limit of 950 K considered here.
We tentatively attribute this behavior to anharmonic effects,
which become apparent at temperatures in the vicinity of the
melting point. This conclusion is consistent with recent mo-
lecular dynamics and Monte Carlo studies employing empiri-
cal potentials for Al.64 Within the quasiharmonic approach
employed here, such anharmonic contributions are not in-
cluded and will be a focus of a future study.

Finally, we note that our heat capacity results compare
well with available previous calculations �Cu �Ref. 8� and Ag
�Ref. 16��.

E. Free energy

Having computed the equilibrium volume Veq�P ,T� as a
function of pressure and temperature, it is straightforward to
obtain the free energy F�P ,T� from F�V ,T�. The results are
shown in Fig. 14 in comparison with values obtained from
the CALPHAD approach.2 For the elementary materials con-
sidered here, CALPHAD interpolates calorimetrically mea-
sured free energies as a function of temperature. In order to
compare our DFT free energies FDFT�P ,T� to the CALPHAD

free energies FCA�P ,T�, we shift both

F̄DFT�P,T� = FDFT�P,T� − FDFT�P,Tref� , �17�

F̄CA�P,T� = FCA�P,T� − FCA�P,Tref� . �18�

We follow the CALPHAD approach and choose a finite tem-
perature as the reference �Tref=200 K�. The reason of using a
temperature different from 0 K is the lack of accurate experi-
mental data at low temperatures.

The results for the free energy �Fig. 14� follow closely the
trends found for the thermal expansion and the heat capacity.
For all elements, the LDA results are in good agreement with
the CALPHAD data, whereas the GGA error exhibits the same
chemical trend among the transition metals: Filling up the d
shell and increasing the atomic radius, the GGA deviation
from experiment increases and cumulates again in significant
errors for the noble metals Ag and Au. Similar to the heat
capacity, a considerable contribution to the free energy of Pd,
Pt, Rh, and Ir stems from electronic excitations �electronic
entropy�.

VI. COMPARISON BETWEEN THEORY
AND EXPERIMENT: MIXED APPROACH

When analyzing the �small but often not negligible� errors
between theory �in particular, GGA� and experiment, the
question arises to what degree these are related to the con-
siderable errors in the T=0 K quantities �Sec. V A�. To ad-
dress this issue, we have used different approaches depend-
ing on the quantity to be analyzed.

For the phonon dispersion, we simply have to replace the
ab initio calculated equilibrium lattice constant �Sec. V B�
by the experimental lattice constant at a given
temperature.9,65,66 Figure 15 shows the effect for Rh as an
example. The difference between the LDA and GGA results
is reduced and thus the averaged deviation from experiment
decreases slightly, in particular, for GGA. A further interest-
ing consequence is that replacing the fully theoretical lattice
constants by the experimental lattice constants flips the LDA
and GGA results, i.e., while in Fig. 15�a� �theoretical lattice
constant� the LDA �GGA� results give rise to an upper
�lower� bound of the experimental data, in Fig. 15�b� �experi-
mental lattice constant� the opposite behavior is found. We
find that this behavior can be generalized to all other ele-
ments in this study. The same trend has been reported for Al
�Ref. 9� and Cu �Refs. 8 and 9�.
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In order to estimate the effect of the error in the T=0 K
quantities on thermodynamic properties such as the thermal
expansion, heat capacity, and free energy, we have applied
the following approach: We have split the free energy
F�V ,T� into

�19�

Here, Ezero=Ezero�V� is defined to be the energy contribution

of zero-point vibrations and F̄el is given by Eq. �8�. With the
decomposition of Eq. �19� at hand, we have been able to
parametrize the T=0 K energy surface Eexp�V ,T=0 K� ac-
cording to Eq. �11� using the experimental data for a, B, and
B� and to calculate Fth�V ,T� fully ab initio. For elements,
where no experimental data were available for B�, we have
used the average of the LDA and GGA value given in Table
II. In the following, we call this approach of combining the
experimental T=0 K potential energy surface with the fully
ab initio thermal energy contribution Fth as mixed approach.

We have applied this approach to the thermal expansion,
heat capacity, and free energy �Figs. 16–18, respectively�.
These figures show general trends for all properties. Most
remarkable is the significant reduction of the discrepancy
between GGA results and experiment and the largely reduced
difference between the LDA and GGA results. The only ex-
ception is Pb, where the difference between LDA and GGA
becomes slightly larger. This effect is strongest for the ther-
mal expansion �Figs. 12 and 16� and the heat capacity �Figs.
13 and 17�, but also applies to the free energy �Figs. 14 and
18�.

Let us now focus on specific characteristics of the differ-
ent quantities: The GGA thermal expansion parameters are
shifted downward for all elements, resulting in a significantly
improved agreement with experiment. The main source of
this downshift is the replacement of the �too soft� GGA bulk
modulus �see Table II� by the correct experimental modulus.
For the same reason, the mixed approach reduces the GGA
heat capacity and the GGA free energy. The effect is most
significant for Ag and Au. The trend for LDA is inverse and
smaller in its magnitude. The reason is that the �slightly too
hard� LDA bulk modulus is replaced by the correct experi-
mental one.

VII. CONCLUSIONS

Based on extensive convergence checks, we have studied
the accuracy of two popular DFT XC functionals �LDA and

GGA-PBE� in predicting a wide range of thermodynamic
material properties. The study has been performed for a sys-
tematic and comparable set of materials: elementary non-
magnetic metals that are thermodynamically stable at T
=0 K in the fcc crystal phase. The large set of nine elements
allows us to derive systematic trends, which we expect to
hold also for related elements and alloys.

For the phonon dispersion, which is a key quantity to
calculate thermodynamic properties, no general preference of
LDA or GGA exists. Some of the investigated metals �Au,Ir�
are better described by LDA, others �Pb� by GGA. However,
the experimental data for most elements lie in between the
LDA and GGA results. For the thermodynamic quantities,
such as thermal expansion, heat capacity, or the free energy,
which effectively average over the phonon dispersion, LDA
generally yields a �slightly� better agreement with experi-
ment than GGA. Exceptions are Al and Pb, for which both
functionals give almost identical results. An interesting ob-
servation of these studies is that LDA and GGA give a ge-
neric upper and lower bound to the experimental data. This
allows us to construct fully ab initio error bars for the theo-
retically computed thermodynamic data. An analysis of the
error bars allows us to quickly identify problematic cases
like the noble metals Ag and Au �full d shell�, for which
comparatively large deviations between LDA and GGA have
been found for all quantities considered. The thus identified
problematic cases might be used to construct and/or validate
further XC functionals.
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We believe that the property of LDA and GGA to bound
experimental thermodynamic data holds not only for the el-
ements studied here, but is a general feature valid also for
other crystal structures and alloys. In this case, the availabil-
ity of ab initio error bars could be used to quantify the pre-
dictive accuracy of DFT even for materials for which experi-
mental data are incomplete or lacking.

An in-depth analysis of the deviation between theory and
experiment has shown that the errors are largely due to the
limited accuracy of the T=0 K potential energy obtained
from the LDA and GGA functionals. These errors, which are
caused, e.g., by the overbinding in LDA �yielding slightly
too small lattice constants and too hard bulk moduli�, are
well known and have been extensively studied. Removing
this source of error by replacing the T=0 K energy surface
by experimental data leads to a large and systematic reduc-
tion in the error between DFT and experiment. It also largely
reduces the difference between the LDA and GGA results.
Since, as discussed above, this difference can be regarded as
an ab initio error bar, the predictive accuracy significantly

increases. This opens an interesting route to systematically
�and fully theoretically� improve the accuracy of thermody-
namic data: The T=0 K potential energy can be described by
using the elementary unit cell. Since this cell contains typi-
cally only a few atoms �for the metals studied here only a
single atom�, ab initio approaches going beyond the LDA
and/or GGA level should be feasible and provide an accurate
description of the T=0 K surface. The finite temperature
contributions, requiring larger system sizes to capture long-
range force constants, can then be calculated with sufficient
accuracy with LDA and/or GGA DFT.
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