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The structural stability and the lattice dynamics of the high-pressure bcc phase in zirconium are studied by
the molecular dynamics method at different volumes and a fixed temperature T=500 K. The dispersion curves
of the vibrational spectrum obtained from the molecular dynamics simulations are compared with the phonon
spectra calculated in the harmonic approximation. The frequency shifts and phonon damping obtained from the
spectral density of vibrations at different volumes show that in zirconium the high-pressure bcc phase is
strongly anharmonic. Therewith, not only the particular vibrational modes �N ,L�, but also most of the modes
with wave vectors directed along the high-symmetry lines of the Brillouin zone, are anharmonic. Under
pressure, the anharmonicity-induced frequency shifts can reverse sign. At high pressure the strongest anhar-
monic effects are observed in the vicinity of the H point and the second band of the �110� direction.
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I. INTRODUCTION

In recent decades the structural stability of metals which
have a high-temperature bcc phase region in the P-T phase
diagram has been the subject of much investigation. It has
been found that in such metals the bcc phase stability at high
temperatures is due to strong anharmonicity of the lattice
vibrations,1–6 the anharmonic effects being more pronounced
near the boundary of high-temperature phase transition. Zir-
conium is one of the most suitable elements for theoretical
study of the influence of the vibrational mode anharmonicity
on structural stability of transition metals. At atmospheric
pressure, �-Zr is known to become unstable at temperatures
below 1136 K.7 It has been shown by inelastic slow-neutron
scattering experiments that in bcc Zr near the �→� transi-
tion, as the temperature goes down a considerable decrease
of the vibration frequency �softening� of the transverse T1
mode is observed at the N point of the Brillouin zone �BZ�
with wave vector k=1/2 �110� �NT1 phonon�. Such a non-
standard temperature dependence of the vibration frequency
is accounted for by strong anharmonicity of this mode. Theo-
retically, it was first demonstrated by Chen1 who has calcu-
lated the change of the total energy of crystal in the ground
state with the atomic displacements corresponding to the NT1
mode �the frozen-phonon model�. The effective potential for
the NT1 phonon obtained by Chen had a strongly anharmonic
double-well shape with a maximum of energy at zero dis-
placements corresponding to the perfect bcc lattice. Such a
shape of the effective potential leads to the following: in the
harmonic approximation the square of the phonon frequency
proportional to the second derivative of the energy with re-
spect to the displacement proves to be negative and, as a
result, the bcc lattice is unstable. Using perturbation theory
for anharmonic effects it has been shown2 that allowance for
the contributions from three- and four-phonon processes re-
sults in renormalization of the vibration frequency of the NT1
mode which at T=1400 K becomes positive and coincides
with the experimental value.8 In this case the shift of the
vibration frequency to the positive-value region and hence
the bcc lattice stability at high temperature are provided only

by the fourth-order contributions related to the NT1-phonon
interaction with the other phonons of the T1 branch. Using
the frozen-phonon model proved to be very fruitful to de-
scribe the particular strongly anharmonic vibrational modes
and allowed an understanding of the peculiarities of struc-
tural transformations in Zr at both atmospheric2 and high5

pressures.
Unfortunately, the frozen-phonon model can be applied

only to a limited number of the BZ points and does not
provide the answer to the question concerning the lattice
anharmonicity as a whole. In Ref. 9 the self-energies, fre-
quency shifts of, and characteristic phonon lifetimes, as well
as the inelastic scattering spectra were calculated over the
whole BZ for �-Zr and �-Ti using the phenomenological
Born-Mayer potential and the anharmonic one-phonon Green
functions. It was shown that strong quasielastic scattering
observed in the experiment near the points with vectors k
=1/2 �110� and k=2/3 �111� �L phonon� is explained by
anharmonic line broadening and a reduction of the lifetime
of these low-energy phonons to a value of the order of a
vibrational period. The calculation of the Green functions in
Ref. 9 was restricted to the consideration of the three- and
four-phonon terms only. The higher-order contributions were
not taken into account. Using perturbation theory in analyz-
ing anharmonic corrections implies that the characteristic
amplitudes, d, of the thermal atomic vibrations are consider-
ably less than the lattice period, a, i.e., d /a�1. Neverthe-
less, as shown in Refs. 3 and 10, at high temperature in
zirconium for some modes �e.g., for phonons with k=2/3
�111�� the atomic displacements are comparable to the inter-
atomic distance. In this case a breakdown of the phonon
pattern may occur manifesting itself, in particular, as a com-
plicated multipeak structure of the spectral density of vibra-
tions �SDV�. In Ref. 10 we have shown that even the pres-
ence of only one strongly anharmonic mode gives rise to the
induced anharmonicity in other vibrational modes which are
almost harmonic in the absence of interaction. To describe
such vibrations using the Green functions theory, in the pro-
cess of summing up, one should consider the terms of higher
orders than the third and the fourth ones. However, even for
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simple model interatomic potentials this is very difficult to
realize. One can state that, on the whole, the dynamics of
strongly anharmonic crystals of Zr, Ti, Hf remains still un-
known.

Additional information on the anharmonicity influence
upon crystal stability may be obtained by analyzing the vi-
brational spectra under pressure. The theoretical study of the
pressure dependence of the strongly anharmonic NT1 and L
vibrational modes carried out in Refs. 5 and 6 have shown
that the effective potential calculated in the frozen-phonon
model considerably changes under pressure and may become
almost harmonic upon strong compression. Unfortunately, at
present, both experimental and theoretical investigations of
this kind are lacking excepting the calculations at the �, L,
and N points of the BZ.

In principle, an answer to the question about the pressure
effect on the vibrational spectra of �-Zr may be provided by
molecular dynamics �MD� calculations at various pressures.
At zero pressure similar calculations have been carried out
for �- and �-Zr using the model pair potentials11 and many-
body interatomic potentials.4,12,13 According to the P-T phase
diagram,7 with increasing pressure the temperature stability
boundary of �-Zr goes down, and at 30 GPa bcc Zr remains
stable even at room temperature.16,17 No systematic experi-
mental investigations of the stability boundary of the Zr bcc
phase have been performed at high pressures and various
temperatures. So, it is of particular interest to define the sta-
bility boundary of the bcc phase based on MD calculations at
different pressures and a fixed temperature. In addition to the
standard investigation of the structural stability �see, e.g.,
Refs. 4 and 11–13� the MD calculations can be used in
studying the anharmonic effects near the phase transition. A
method for obtaining the phonon dispersion curves from the
molecular dynamics simulation has been proposed in Ref.
15. Comparing the results of the MD calculation with those
obtained in the harmonic approximation �HA� one can find
the frequency shifts caused by anharmonic effects. It should
be noted that in the MD calculation the interactions of all
lattice atoms are taken into account, which allows one to
avoid the problems connected with the d /a parameter value
and the order of the terms considered when summing up in
anharmonic perturbation theory. Thus, the method of obtain-
ing the vibrational spectrum dispersion from the MD simu-
lation may provide information about the degree of lattice
anharmonicity over the whole BZ even in the case of strong
anharmonicity and atomic displacements of the order of
d /a�1.

In this paper we present the results of MD calculations
carried out at a fixed temperature equal to 500 K and various
volumes ranging from 0.87V0 to 0.73V0 �V0=23.5 Å3 is the
�-Zr equilibrium volume at atmospheric pressure and T
=1136 K�. We have also considered the changes in the dis-
persion curves of the vibrational spectra, calculated the fre-
quency shifts connected with anharmonic effects, and deter-
mined the phonon lifetimes along the high-symmetry
directions of the BZ in bcc Zr.

II. CALCULATIONAL METHODS

A. Molecular dynamics

In our simulation we have built a structurally ideal bcc
crystallite consisting of 24�24�24 unit cells �27 648 at-

oms�. In all calculations, cyclic boundary conditions were
used along the x ,y ,z directions. In the process of simulation
with a thermostat described in Ref. 14 after reaching T
=500 K, the system was held at this temperature freely
evolving to an equilibrium state. Equilibrium was considered
to be attained if the velocity-distribution function did not
vary with time and the main system parameters �the kinetic,
potential, and total energies; the minimum interatomic dis-
tance, etc.� fluctuated, due to the finite size of the system,
near average values that remained unchanged for a time of
the order of 10−12 s. The time step was �t=1�10−15 s in all
calculations. The coordinates of all the atoms of the system
were recorded every 10 time steps for further averaging. The
interatomic interaction was described by an earlier selected
pair potential18 constructed within the Animalu pseudopoten-
tial model for transition metals.19 To fit the pseudopotential
an experimental phonon spectrum of the Zr hcp phase20 was
used. In Ref. 18 with the help of this pair potential using the
molecular dynamics method we succeeded in describing the
hcp-Zr structural stability within a wide temperature and
pressure range, obtaining the transition from the � to the �
phase, and the reverse transition, as well as constructing the
boundaries of the phase transitions in the P-T diagram. Be-
sides, the phonon spectra of the bcc and hcp Zr were calcu-
lated by the dynamical matrix diagonalization, which was in
good agreement with the experimental results on inelastic
neutron scattering.8,20

B. Calculation of dispersion curves in monoatomic lattice
based on MD data

One of the most attractive peculiarities of molecular dy-
namics is the possibility for easy determination of the pho-
non dispersion curves. For monoatomic metals with bcc lat-
tice the time evolution of the atomic displacement in the
normal coordinates can be determined in the following
way:15

�k�t� = �
i

�ri�t� − li�ek cos�k · li� , �1�

where li are the equilibrium positions of the crystallite atoms
obtained by averaging the coordinates of each ith atom over
the considered time interval; ri are the coordinates of the ith
atom at the current moment of time taken from the MD
simulation at a given temperature and pressure. The vectors
of polarization, ek, for the selected mode with wave vector k
were calculated in the HA simultaneously with the phonon
spectrum. The required lattice parameter was taken from the
corresponding MD simulation performed at a given tempera-
ture and pressure.

Since in the MD simulation the crystallite has a finite size,
the wave vector may take only certain discrete values,

k = �2�na

a
,
2�nb

b
,
2�nc

c
� , �2�

where na ,nb ,nc are integers ranging from 1 to a value equal
to the number of unit cells in the crystallite along the respec-
tive a ,b ,c directions �in our case, from 1 to 24�. In the
present paper all calculations were carried out for four high-
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symmetry directions of the BZ of the bcc structure with
wave vectors k1= ���2��, k2= ���0�, k3= �00��, k4= �����.

The spectral density of vibrations for the selected wave
vector was determined by the fast Fourier transform of the
function �k�t�. The averaging of the coordinates was carried
out over a time interval equal to 40 ps.

In the case of harmonic vibrations the Fourier transform
yields the � function at a definite frequency 	k. As the tem-
perature increases, the energy of a particular mode is not
conserved because of anharmonic interaction, and can be
transferred to other vibrational modes. This leads to the
broadening of the SDV peaks, and in the case of strong an-
harmonicity to the appearance of a fine structure or even of
additional peaks in the SDV curve. Besides, anharmonicity
makes itself evident in a shift of the peaks positions in fre-
quency. Additional peaks or the fine structure in the SDV
curve resulting from the anharmonic interactions of the
modes make it difficult to uniquely determine the phonon
energy. In our calculations the frequency at which the SDV
of a given mode with vector k is maximum was chosen as
the frequency of the anharmonic phonon.

Thus, the method presented can be used for theoretical
calculations of the dispersion curves of vibrational spectra at
various temperatures and pressures. The advantage of this
method is that it allows studying not only harmonic but also
strongly anharmonic vibrations which occur at high tempera-
ture and pressure or near the boundary of the phase transition
when the atomic displacements from the equilibrium position
are quite considerable.

III. RESULTS AND DISCUSSION

In our MD simulations with the above-mentioned inter-
atomic potential and crystallite size it was found that at T
=500 K the Zr bcc lattice becomes unstable for V
0.87V0.
This result agrees with the phase diagram calculated in Ref.
6 from which it follows that at T=500 K bcc Zr is unstable
at pressures lower than 18 GPa. According to the equation of
state,6,17 the pressure of 18 GPa corresponds to a volume of
about 0.86V0. In what follows, we discuss the vibrational
properties of bcc Zr obtained from the MD simulation data at
T=500 K and V ranging from 0.87V0 to 0.73V0.

As expected, when the volume goes down the vibration
frequency of each branch of the phonon spectrum increases,
the largest changes in the spectrum occurring at the high-
symmetry points N ,H , P with maximum wave vectors local-
ized at the BZ boundary as well as at the L point with vector
k=2/3 �111�. For example, at the H point the vibration fre-
quency increases by approximately 25% with decreasing vol-
ume from 0.87V0 to 0.73V0.

Figure 1�a� shows the volume dependence of the vibration
frequency at the H , P ,L points for T=500 K. In the har-
monic approximation at the H and P points the three vibra-
tional branches are degenerate, while at the L point only the
second and the third transverse vibrational branches are de-
generate �they are denoted L-2,3 in Fig. 1�a��. Hereafter the
vibrational spectrum branches �or bands� are numbered in
order of increasing frequency. It should be noted that con-
trary to the harmonic approximation, in the MD calculation

there occurs complete splitting of the degenerate vibrational
states due to anharmonic effects. However, this splitting is
not plotted because of it being very small. Its maximum
value �	0.2 meV� is reached at V=0.87V0 at the stability
boundary of the bcc lattice.

In the same figure are presented the results of our ab initio
calculation of the vibrational frequency of the transverse L
mode as a function of volume at T=500 K. As seen, the MD
frequency is somewhat greater than that obtained in Ref. 6.
However, the pressure dependence of this mode is similar in
both calculations. The jump in frequency at V�0.84V0 due
to a change in the character of the L mode vibrations, dis-
cussed in detail in Ref. 6, manifests itself as a slight bend in
the MD calculation.

For convenience, the data calculated for the N point �k
=1/2 �110�� are given singly in Fig. 1�b�. For this point the
most considerable frequency changes are observed in the first
band. Namely, at V=0.87V0 the transverse vibrations fre-
quency of the NT1 mode is practically reduced to zero. As is
known, such a softening of vibrations results in structural
instability, which agrees well with the bcc lattice instability
obtained from the MD simulation at V
0.87V0. The role of
the transverse vibrational NT1 mode in the martensite �→�
phase transition at atmospheric pressure has been thoroughly
studied in a number of works by both ab initio
calculations1,2,5 and the molecular dynamics method.4 It is
currently believed that it is precisely this mode that is re-
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FIG. 1. The volume dependence of the frequency at high-
symmetry points of the Brillouin zone in bcc Zr at T=500 K.
Empty circles denote the results of an ab initio calculation for the
L-2,3 mode from Ref. 6.
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sponsible for this transition in zirconium. Our calculation has
shown that also in the case of high pressures the vibrational
NT1 mode is of considerable importance in structural insta-
bility of the bcc Zr.

A “dip” in the longitudinal vibrations frequency along the
�111� direction characteristic of bcc Zr is observed at each
volume under study. Figure 1�a� shows that the vibration
frequency at the L-1 point with wave vector k=2/3 �111�
changes only slightly in the range 0.73V0�V�0.81V0 and
decreases at V
0.81V0. Such a behavior of the volume de-
pendence of the frequency should point to a change in the
vibration character at V�0.8V0. This conclusion agrees well
with the results of an ab initio study6 of the changes in the
dynamics of this vibrational mode under pressure. The cal-
culations in Ref. 6 have been carried out using the frozen-
phonon model. In particular, it has been shown that as the
pressure increases the effective potential of the longitudinal
L mode changes its shape from the three-well one at atmo-
spheric pressure to a double-well shape at V�0.8V0. As a
result, with decreasing volume the character of atomic mo-
tion in the lattice and the form of the SDV substantially
change.

Note that the frequency 	L=11 meV obtained for this
mode at V=0.87V0 is nearly 2 times as large as both the
experimental value �	L

exp�6 meV� determined at atmo-
spheric pressure and T=1024 K �Ref. 8� and that calculated
in Ref. 6. As known, to this vibrational mode correspond the
atomic chains displacements along the �111� direction. From
ab initio calculations21 it follows that low-frequency vibra-
tions are due to the weak interaction between these chains
which, in turn, results from strong anisotropy of the valence
d-electrons density distribution. For this reason, the use of
the spherically symmetric pair potential in MD simulation is
a relatively rough approximation, which is reflected in a sig-
nificantly overestimated value of vibrational frequency at the
L point �k=2/3 �111�� in our calculation.

The bcc-Zr vibrational spectrum determined at 0.87V0 by
two different methods is presented in Fig. 2. The results of
the MD calculation as described in the preceding section are
denoted by heavy lines with circles. The thin solid lines

show the results obtained in the harmonic approximation.
The HA phonon spectrum was determined by diagonalization
of the dynamical matrix calculated in the pair potential ap-
proximation. It should be emphasized that both the MD and
HA calculations were carried out for the same volume of the
unit cell using the same pair potential. Thus, all distinctions
between the MD and HA dispersion curves in Fig. 2 are due
to the anharmonic effects at T=500 K.

As seen from the figure, on the whole, the MD results
agree rather well with those obtained using the HA. Both
methods yield practically the same vibration frequency for
the first and the second spectral bands along the �-N �112�
direction, for the second band of the N-� �110� direction and
for long-wave vibrations �around the � point�. The most sig-
nificant discrepancies between the MD and HA spectra are
observed for the longitudinal vibrations in the vicinity of the
points k=1/2 �110� �N� and k=2/3 �111� �L� longitudinal
vibrations along the whole �001� ��-H� direction and trans-
verse vibrations around k=1/2 �112� �the third band of the
�-N direction�. Note that for all listed regions except for the
H point the MD vibration frequency is smaller than the HA
one.

The softening of the transverse NT1 mode is observed in
both MD and HA calculations. Contrary to the results ob-
tained in Ref. 2 at zero pressure, in our calculation the vibra-
tion frequency of this mode at V=0.87V0 is positive in both
cases. This implies that even in the HA at this volume bcc Zr
remains stable with respect to the atomic displacements cor-
responding to the transverse NT1 mode. In Ref. 2 with allow-
ance for the anharmonic corrections, as the temperature goes
up, the square of the NT1 vibration frequency increases and
becomes positive at T=1400 K. For V=0.87V0 our MD cal-
culation in which both the intrinsic anharmonicity of the NT1
mode and its interaction with the other modes are taken into
account, yields a smaller vibration frequency for this mode
than the HA calculation. Thus, in the MD calculation the bcc
lattice proves to be less stable with respect to such atomic
displacements than in the harmonic approximation.

Figure 3 presents the anharmonic corrections, i.e., the fre-
quency shifts as a function of the wave vector along the main
symmetry directions of the BZ of bcc Zr calculated at differ-
ent volumes and T=500 K. The corrections were determined
as the difference of the MD and HA frequencies obtained for
all three vibrational branches, �	=	MD�500 K�−	HA�0 K�.

From Fig. 3 it can be seen that at V=0.87V0 the frequency
shift due to anharmonicity is negative for most of the vibra-
tional modes except for the first band along the whole �-H
�001� direction and in the vicinity of the H point. The fre-
quency shift for the third spectrum band, except the H point,
is negative and does not exceed 4.2 meV in magnitude. For
the first and the second band �	 is shifted to the positive-
value region when the crystal is compressed to V=0.81V0.
The frequency renormalization in the vicinity of the H point
increases more than 2 times. At this volume the frequency
shifts are almost completely positive for the first and the
second band except for the P point, at which for all three
bands �	 is negative, even if small �about 0.5 meV� in mag-
nitude. At V=0.78V0 the anharmonic corrections for the first
and the second spectrum bands are completely positive, with
a maximum of 	7.5 meV. Only the frequency shifts for the
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FIG. 2. Phonon dispersion curves of bcc Zr calculated at V
=0.87V0 and T=500 K. The heavy lines with circles denote the
molecular dynamics calculation as described in the text. The thin
solid lines represent the calculation in the harmonic approximation.
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third band remain negative. From the obtained data it can be
concluded that at high pressure the character of the lattice
dynamics of bcc Zr considerably changes. Namely, the NT1
phonon anharmonicity decreases, and the anharmonic correc-
tions for the second band of the N-� �111� direction as well
as for vectors k localized in the vicinity of the H point of the
BZ become substantial.

Figure 4 shows the frequency shifts as a function of vol-
ume at the high-symmetry points N ,H , P ,L point of the BZ.
The individual frequency shifts for the three bands are shown
for the N point in Fig. 4�a� and for the points H ,L , P in Fig.
4�b�. An analysis of the figures shows that as the lattice pa-
rameter decreases the difference of the vibration frequencies
at these points nonmonotonically changes, all the curves
have a more or less pronounced bend which is especially

marked at the N point. At volumes ranging from 0.81V0 to
0.75V0 the frequency shift for the first band remains practi-
cally unchanged and then increases again. Besides, for the
NT1 mode the difference of the MD and HA frequencies de-
creases in magnitude and amounts to zero at V=0.81V0. On
further crystal compression the anharmonic corrections be-
come positive and the MD vibration frequency for the NT1
mode exceeds that calculated in the harmonic approximation.
Thus, the anharmonic corrections for “soft” phonons reverse
sign at high pressures.

Figure 5 presents the phonon damping 
 as a function of
the wave vector in the �110� direction from the N to the �
point calculated for two different volumes of the bcc-Zr unit
cell and T=500 K. The phonon damping was calculated as
the half-width of the previously smoothed SDV for each
value of the wave vector and the three spectrum branches. It
can be seen from the figures that at V=0.87V0 the “soft”
phonons are characterized by a much larger damping than at
V=0.75V0. The phonon damping turned out to be unexpect-
edly large for the first and the third spectrum band along the
N-� direction with wave vectors from 0 to 1/4 �110�. This is
clearly seen on the plot for V=0.87V0 near the structural
instability of the high-pressure bcc phase of zirconium.

Figure 6 shows the volume dependence of the phonon
damping at the points N ,H ,L , P of the BZ at T=500 K. All
the values are calculated as the half-width of the smoothed
SDV for each point and averaged over two independent MD
simulations. As seen from the plots, with decreasing volume
from 0.87V0 to 0.83V0 the phonon damping also diminishes,
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and then most of the dependences have a peak in the volume
range from 0.81V0 to 0.75V0. At V=0.73V0 a slight increase
in the phonon damping is observed at some points. The re-
sults obtained indicate that at V=0.87V0 the vibrations at all
the points considered are characterized by the largest anhar-
monic effects. On further compression their values get al-
most halved. These results are in excellent agreement with
those of Ref. 5, where the change in the effective potential of
the NT1 mode was calculated in the frozen-phonon model
within the electron density functional theory by the full-
potential linearized muffin-tin orbital method.22 In Ref. 5 it
was shown that with decreasing volume the effective poten-
tial from a strongly anharmonic double-well one at V=V0
becomes almost harmonic at V=0.7V0.

Thus, the present calculation shows that as the stability
boundary of bcc Zr is approached, the lattice anharmonicity
increases throughout the BZ, and not only for the wave vec-
tors k=1/2 �110� �N phonon� and k=2/3 �111� �L phonon�
which are usually related to the instability of bcc Zr at low
temperatures. At pressures or temperatures far from the sta-
bility boundary of the bcc lattice the vibrations practically
over the whole BZ �including the above mentioned N and L
modes being strongly anharmonic under normal conditions�
become well defined with a large lifetime, though the anhar-
monic frequency shifts increase.

IV. CONCLUSION

The study of the lattice dynamics and structural stability
of the high-pressure phase of bcc Zr carried out at different
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FIG. 6. Phonon damping as a function of volume at different points of the Brillouin zone in bcc Zr at T=500 K.

V. YU. TRUBITSIN AND E. B. DOLGUSHEVA PHYSICAL REVIEW B 76, 024308 �2007�

024308-6



crystallite volumes and a fixed temperature T=500 K using
MD simulation has shown that the bcc structure is unstable
at volumes larger than 0.87V0. This value corresponds to a
pressure of 	18 GPa, which agrees well with the calculated
value in the Zr phase diagram.6 As might be expected, with
decreasing volume all frequencies of the vibrational spec-
trum increase. Comparing the dispersion curves obtained
from the atomic vibrations in MD simulation and those cal-
culated in the harmonic approximation �by diagonalization of
the dynamical matrix�, the high-pressure phase in zirconium
was found to be strongly anharmonic. Note, that not only the
N and L vibrational modes but also most of the modes with
wave vectors directed along the high-symmetry lines of the
BZ are anharmonic. Anharmonicity manifests itself in both
the vibration frequencies renormalization and the decrease of
the phonon lifetimes obtained from the spectral density of
vibrations of each mode. Near the structural transition
boundary at T=500 K, as well as in the high-temperature �

phase at atmospheric pressure, the softening of the strongly
anharmonic NT1 phonon is of great importance for the struc-
tural instability. Under pressure, as the volume goes down to
V=0.73V0, the anharmonic corrections for this phonon de-
crease almost by one-half. At high pressure anharmonicity
makes itself most evident around the H point and in the
second band along the �110� direction. It should be noted that
on the whole, bcc zirconium remains strongly anharmonic in
the entire volume range considered. Our calculations have
shown that under pressure the frequency shifts may reverse
sign due to anharmonicity. The anharmonic effects are par-
ticularly noticeable for the “soft” phonon modes.
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