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Understanding of the structure and dynamics of liquids and glasses at an atomistic level lags well behind that
of crystalline materials, even though they are important in many fields. Metallic liquids and glasses provide an
opportunity to make significant advances because of its relative simplicity. We propose a microscopic model
based on the concept of topological fluctuations in the bonding network. The predicted glass transition tem-
perature, Tg, shows excellent agreement with experimental observations in metallic glasses. To our knowledge
this is the first model to predict the glass transition temperature quantitatively from measurable macroscopic
variables.
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I. INTRODUCTION

The atomic structure and dynamics of liquids and glasses
are much less understood today compared to those of crys-
talline solids, for which the first-principle theories can an-
swer many questions, and even make some predictions. In
particular the nature of the glass and glass transition is con-
sidered to be one of the most challenging problems.1,2 In
dealing with liquids and glasses we do not enjoy the benefit
of the translational symmetry and resultant Bloch theorem,
and have to face directly the complex many-body interac-
tions. This frustrates most of conventional approaches which
rely on the Bloch theorem. For this reason much of the re-
cent progresses have been made in the theories of mesos-
copic scale, in particular the mode-coupling theory �MCT�.3,4

In the MCT the dynamics of liquid is described by nonlinear
hydrodynamic equations with variables chosen to fit certain
experimental results. While the physics of nonlinear coupling
and feedback effect is very well described by the MCT, the
atomistic underpinning of such interactions is usually disre-
garded as less important details. This may well be unavoid-
able for very complex fluids such as macromolecular sys-
tems, but for simpler liquids it should be possible to improve
and deepen our understanding of the atomic level mecha-
nisms. For this purpose we propose a unique approach based
on the description of topological fluctuations in the atomic
bonding network to describe the thermal evolution of the
structure of metallic liquids and glasses. We show that the
theory leads to expressions of the glass transition tempera-
ture that agree well with experimental observations in metal-
lic glasses. A key idea to this success is to focus not on the
dynamics of each atom but on the collective dynamics of the
nearest neighbor shells, and take into account the depen-
dence on Poisson’s ratio that characterizes the interaction
between local density and shear fluctuations.

In order to describe and understand the atomic structure
of liquids and glasses the choice of the key concepts or pa-
rameters that connect the bare atomic coordinates with the
properties is critical. The most widely used one is the atomic

pair-distribution function �PDF�, which can be directly deter-
mined through diffraction experiments.5 However, the physi-
cal properties usually depend on more collective environ-
ment of atoms. For this purpose the Voronoi polyhedral
analysis is frequently used.6,7 The underlying assumption of
this approach is that the relative positions of the nearest
neighbor atoms are most important in determining the behav-
ior of an atom, and thus we should focus on the topology of
atomic connectivity. This approach is natural for covalent
glasses, but it is also applicable to metallic and ionic liquids
and glasses as well, since the first nearest neighbors are fairly
well defined by the first peak in the pair-density function.8

However, the local properties depends not only on the local
topology but also on the geometrical distortion of the local
polyhedra of nearest neighbor atoms. In order to include this
effect we introduced the method of describing the local
atomic packing in terms of atomic-level stresses.9

In the liquid state the topology of atomic connectivity is
not static, but is fluctuating. Earlier we introduced basic con-
cepts of describing thermal effects by using the fluctuations
in atomic-level stresses and strains as local variables.10,11 In
this way it became possible to connect the local topology to
the local energy landscape. In the present work we make
connections between the local fluctuations and the criterion
of the local topological instability12,13 to discuss the glass
transition. The results are compared to the experimental data,
demonstrating that the theory is capable of quantitatively de-
scribing the glass transition temperature from measurable
quantities �atomic volume and elastic moduli� with minimum
assumptions.

II. LOCAL TOPOLOGY OF ATOMIC LIQUIDS AND
THEIR FLUCTUATIONS

An obvious choice of a parameter to characterize the local
topology of atomic connectivity is the local coordination
number, NC, or the number of first neighbors. In a glass
structure represented, for instance, by the dense random
packed �DRP� structure14 NC varies locally. We note that the
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local variation in NC has a very direct physical meaning:
Consider a void surrounded by a certain number of atoms,
NC. It is obvious that when the void is large NC is also large.
One would simply argue that NC should be proportional to
the square of the radius of the void, rv, since near neighbors
would fill the inner surface of the void with a certain con-
stant packing fraction. Indeed for a system with a short-range
pairwise potential it was possible to derive a quantitative
expression for the ideal coordination number of an impurity
A atom with the radius rA embedded in the metallic glass of
B atoms with the radius rB �Ref. 15�

NC�x� = 4��1 −
�3

2
��1 + x��1 + x + �x�x + 2�� , �1�

where x=rA /rB. This equation was derived by a heuristic
argument and is not meant to be a rigorous mathematic state-
ment. However, its approximate accuracy, as proven by a
computer simulation,15 is sufficient for the purpose of the
argument developed here.

The inverse of Eq. �1�, x�n�=NC
−1�n�, specifies the ideal

size of an atom, x�n�rB, to fit an atomic site, or a void, with
NC. If the radius of an atom is larger than x�n�rB, the atom
will be under compression, while if it is too small it will be
under dilatational �negative� pressure. Thus the misfit be-
tween the local topology and the atomic size can be trans-
lated into a local stress, and then to a local elastic energy. For
instance if an icosahedron cluster is formed with 13 atoms
with an equal size, the central atom will be under compres-
sion, while the peripheral atoms will be under shear stresses,
as expected from the fact that in the icosahedron the distance
from the center to the apex is shorter than the distance be-
tween apexes. Indeed Eq. �1� gives NC

−1�12�=0.958.16 The
fact NC�1��12 reflects the frustration of the icosahedral en-
vironment as discussed, for instance, by Nelson.17

Now the converse of this situation is even more interest-
ing. Note that NC�x� defined by Eq. �1� is a continuous func-
tion of x, while the actual local coordination has to be inte-
gral. This means only at special values of x �=xn� at which
NC�xn�=n, an integer, the Eq. �1� can be satisfied, while in-
between it can be achieved only in the average. For instance
if NC=n+m /k �m�k�, it is possible to achieve the ideal
coordination in the average, by forming a crystal with k-m
number of atomic sites with NC=n and m sites with NC=n
+1. But every site is under some pressure, negative for NC
=n and positive for NC=n+1, costing elastic energies asso-
ciated with local distortion. For a monoatomic system �x
=1�, NC�1�=4�=12.56. . ., an irrational number. Thus this
condition can be satisfied only with a crystal with an infi-
nitely large unit cell, possibly with a quasicrystal, and the
DRP structure becomes a strong competitor as an alternative.

Thus in the DRP structure in which Eq. �1� describes the
ideal coordination number, the local energy landscape of an
atom, E�x�, is an oscillating function of x, with minima at
each value of xn, since only then the actual coordination
number, which is an integer, is ideal. Then if in the Gedan-
ken experiment the size of an atom A is inflated and the
value of x is continuously increased, NC will increase step-
wise since NC is always an integer, and the local topology is

changed every time the coordination number is increased.
This point of topological change defines the critical strain for
the local topological instability, which is related to the Lin-
demann’s criterion for melting.13 It is the strain that corre-
sponds to the change in the equilibrium NC by about 0.5.
This concept of topological instability was successfully ap-
plied to predict the compositional limit for glass formation in
binary glasses.12

In order to describe the misfit between the ideal local
packing and the actual local atomic structure we introduced
the local atomic level pressure of an ith atom, p�i�, as the
local increase in the energy due to volume strain as

p�i� =
1

Vi
�

j

fij · rij, �2�

where Vi is the local atomic volume of the ith atom, fij is the
two-body force, and rij is the separation, between the atom i
and j.9 The local pressure thus defined is indeed correlated
with the local coordination number, NC.10 The local topology
of the atomic bonds can be described not only by the number
of bonds around an atom, NC, but also by the anisotropy of
the bond connectivity. For instance a hoop of atoms in the
x-y plane around a central atom may be different from that in
the x-z plane; the central atom may be bound tightly in the
x-y plane, but loosely in the x-z plane. This gives rise to a
local shear stress, �i.

9 Similarly, local elastic moduli, Bi the
local bulk modulus and Gi the local shear modulus, can be
defined.10

It was found that in the high-temperature liquid state the
fluctuations in local pressure are related to temperature in a
very simple manner

V	p2

2B

=
kT

4
, �3�

where 	¯
 is a thermal and temporal or ensemble average,
V= 	V
, B= 	B
 and k is the Boltzmann constant.11 This
means that the total potential energy of the system, 3NkT /2,
where N is the number of atoms, is well described as the sum
of the local elastic energy due to the atomic level stresses,10

and it is equally divided among the six stress components,
pressure and five shear stresses, that represent local topologi-
cal fluctuations. However, Eq. �3� extrapolates to zero at T
=0, which means that all the atomic bond lengths have to be
equal to the ideal length at T=0, whereas it is impossible to
achieve such a state in real metallic glasses because of topo-
logical frustration.10,17 This means that the system will not be
able to achieve thermal equilibrium at low temperatures and
becomes nonergodic, in other words kinetically freezes into a
glassy structure, below a certain temperature which defines
the glass transition. Thus in our earlier paper13 we used Eq.
�3� to define the glass transition temperature, Tg, by

kTg

4
=

V	pcrit
2 


2B
=

BV

2
	�crit

2 
 . �4�

The basis of Eq. �3� is that the atomic level stresses are
totally localized, and the stresses at neighboring sites are
uncorrelated. However, when the system is frozen this as-
sumption is no longer valid, and the local stress produces a
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long-range stress field to contain it.10,11 This long-range
stress field can be calculated in the continuum approximation
using Eshelby theory.18 For the local pressure the total elastic
energy is given by

Ev =
V	p2


2B
K� =

BV

2K�

	��v
T�2
 , �5�

K� =
3�1 − ��

2�1 − 2��
, �6�

where �v
T is the volume strain before the environment relaxes

�transformation strain�.10 The energy to create such local
density or pressure fluctuation, Ev, must be related to the
glass transition temperature. By combining Eqs. �4� and �5�
we may express Tg by

TABLE I. The Poisson’s ratio, �, atomic volume, V, values of Tg and B for various metallic glasses. The
values of � and B at Tg were evaluated by the procedure described in the Appendix. The data for composi-
tions without a reference are unpublished results.

Metallic glasses
Tg

�K�
V=M /	
cm3/mol ��Tg�

B�Tg�V
�eV/atom� ��RT�

B�RT�V
�eV/atom�

Fe64Cr4Mo5W2Zr8Y2B15 898 7.3 0.291 10.13 0.27 10.74

Fe55Mn10Mo12Er2C15B6 �Ref. 30� 813 6.77 0.295 9.67 0.28 10.17

Ca55Mg18Zn11Cu16 392 18.24 0.310 4.90 0.305 5.08

Ca65Mg15Zn20 375 20.96 0.310 4.84 0.310 5.06

Nd60Al10Fe20Co10 �Ref. 31� 485 15.2 0.313 7.14 0.310 7.32

Ce70Al10Ni10Cu10 �Ref. 32� 359 16.9 0.316 4.68 0.310 4.73

Ca50Mg20Zn30 400 17.19 0.317 5.06 0.311 5.20

Fe48Cr15Mo14Er2C15B6 �Ref. 30� 843 6.72 0.325 12.58 0.310 13.23

Y36Sc20Al24Ni10Co10 650 13.7 0.338 9.17 0.326 9.58

Mg60Cu30Y10 423 12.6 0.339 6.67 0.33 6.81

Mg70Ca5Zn25 �Ref. 33� 393 13.28 0.341 6.48 0.34 6.63

Ti40Zr25Cu12Ni3Be20 �Ref. 34� 604 9.84 0.352 10.27 0.345 10.60

Zr46.75Ti8.25Cu7.5Ni10Be27.5

�Ref.35�
622 9.93 0.358 11.14 0.35 11.52

Zr41.2Ti13.8Cu12.5Ni10Be22.5

�Ref.36�
625 10 0.358 10.51 0.35 10.88

Zr41Ti14Cu12.5Ni10Be22.5 �Ref. 37� 620 10 0.360 11.43 0.35 11.82

Zr48Nb8Cu12Fe8Be24 �Ref. 37� 658 10.2 0.367 11.57 0.36 11.99

Pr60Cu20Ni10Al10 �Ref. 38� 409 9.93 0.367 7.04 0.36 7.16

Zr50Cu37Al10Pd3 706 11.09 0.376 12.44 0.364 12.85

Zr50Cu40Al10 706 10.87 0.378 12.60 0.369 13.21

Cu60Zr20Hf10Ti10 �Ref. 37� 754 9.51 0.379 11.95 0.369 12.61

Zr50Cu30Ni10Al10 710 10.66 0.380 12.67 0.370 13.23

Zr52.5Cu17.9Ni14.6Al10Ti5 686 11.00 0.382 12.77 0.373 13.28

Pd40Cu30Ni10P20 �Ref. 39� 561 8.01 0.400 11.61 0.393 12.06

�Pd0.2Ni0.8�80P20 �Ref. 40� 602 6.95 0.403 11.73 0.396 12.23

Pd39Cu30Ni10P21 �Ref. 41� 586 7.97 0.404 12.58 0.40 13.13

�Pd0.4Ni0.6�80P20 �Ref. 40� 588 7.45 0.406 12.88 0.40 13.39

�Pd0.7Fe0.3�80P20 �Ref. 40� 612 8.0 0.407 12.83 0.401 13.36

�Pd0.6Ni0.4�80P20 �Ref. 40� 585 7.74 0.410 13.64 0.403 14.17

�Pd0.75Fe0.25�80P20 �Ref. 40� 617 8.14 0.410 13.31 0.404 13.87

�Pd0.8Fe0.2�80P20 �Ref. 40� 630 8.32 0.410 13.36 0.404 13.96

�Pd0.85Fe0.15�80P20 �Ref. 40� 643 8.44 0.413 13.22 0.407 13.82

�Pd0.8Ni0.2�80P20 �Ref. 40� 590 8.28 0.415 14.20 0.41 14.75

Pd77.5Cu6Si16.5 �Ref. 40� 636 8.74 0.416 15.24 0.411 15.81

�Pt0.8Ni0.2�75P25 �Ref. 40� 485 8.51 0.423 17.40 0.42 17.81

Pt57.5Ni5.3Cu14.7P22.5 �Ref. 41� 508 8.77 0.424 17.58 0.42 18.05
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kTg

4
= Ev

crit =
BV

2K�

��v
T,crit�2,

kTg

2BV
=

��v
T,crit�2

K�

. �7�

On the other hand it has been suggested that the glass tran-
sition temperature is proportional to the shear modulus G
�Ref. 19� and the Young’s modulus E.20 Below these ideas
are compared to the recent experimental values of the glass
transition temperature and elastic moduli, and we show that
Eq. �7� best describes the glass transition temperature.

III. COMPARISON WITH EXPERIMENTAL DATA

For a long time metallic glasses available were thin rib-
bons produced by rapid quenching, and thus reliable values
of elastic moduli to test these theories were not attainable.
But recently the development of bulk metallic glasses and
the resonant ultrasound spectroscopy �RUS� technique21

made it possible to determine B and G separately with high
accuracy. Using recent data on metallic glasses, supplement-
ing them with our own unpublished data obtained with the
RUS measurements as tabulated in Table I we examined the
relationship between the glass transition temperature and the
elastic moduli. We plot the results as a function of Poission’s
ratio, �, stimulated by the suggestion by Novikov and
Sokolov22 that the fragility coefficient23 is related to �. Usu-
ally the RUS measurements are made at room temperature,
while the elastic moduli that relate to the glass transition
have to be evaluated at Tg by extrapolating the data below
Tg. This effect is small, amounting only to a few percent. But
for the sake of completeness we have estimated the values of
elastic moduli at Tg as described in the Appendix.

First to examine the validity of Eq. �4� we plot the ratio
kTg /2BV against � in Fig. 1. If Eq. �4� is correct the value of
kTg /2BV should be independent of �. Instead, Fig. 1 shows a
strong correlation between kTg /2BV and �, suggesting that

Tg depends not only on B but on both B and G. The plot of
kTg /2GV against � is shown in Fig. 2. This plot shows a
weaker dependence on �, but kTg /2GV is not constant. A
similar plot for kTg /2E is shown in Fig. 3 �above�. However,
for a dimensional reason kTg should be related, if any, to EV
rather than to E. Indeed the plot of kTg /2EV in Fig. 3 �be-

FIG. 1. Glass transition temperature, Tg, multiplied by k / �2BV�,
as Eq. �1�, plotted as a function of the Poisson’s ratio for various
metallic glasses listed in Table I. The values of � and B used here
are evaluated at Tg, corrected by the procedure described in the
Appendix. The solid line indicates ��v

T�2 /K�, as in Eq. �7�, with
�v

T=0.095.

FIG. 2. The same data as Fig. 1, but expressed as kTg /2GV. The
values of � and G used here are at Tg, corrected by the procedure
described in the Appendix. The solid line indicates Eq. �7�, with
�v

T=0.095.

FIG. 3. The same data as Fig. 1, but expressed as Tg /E �above,
in the units of K/GPa� and kTg /2EV �below�. The values of � and E
used here are at Tg, corrected by the procedure described in the
Appendix. The solid line in the lower figure indicates Eq. �7�, with
�v

T=0.095.
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low� shows a much better correlation. Among these plots in
Figs. 1–3 EV shows the strongest correlation with kTg. How-
ever, Young’s modulus describes a response of a free object
to uniaxial stress, which is not consistent with the fluctua-
tions of a continuous network. Moreover, these plots suggest
that kTg is not a function of a single parameter, such as BV,
GV, or EV, but depends on both BV and GV, or equivalently
on BV and �. Figs. 1–3 show also Eq. �7� as solid curves. It
is evident that Eq. �7� describes the experimental data excel-
lently, with the value of �v

T,crit equal to 0.095±0.004. As far
as we know this is the first time that the glass transition
temperature, quantitatively expressed in terms of measurable
variables, was shown to agree with a wide range of experi-
mental data.

IV. CRITICAL STRAIN

Equation �7� which explains the data so well has a single
parameter �v

Tg, in addition to the measurable parameters, B,
V, and �. To explain the physical meaning of �v

Tg and to
deduce its value let us go back to Eq. �1�. As we discussed
earlier in DRP glasses for an atom to fit into the site with a
certain value of NC it has to be elastically strained by �v

T

=3
x=3�xNc
−1�, which is the transformation strain in the

Eshelby theory.18 By expanding Eq. �1� with 
x around x
=1, it is given by

�v
T = 3
x = 3
NC�� �NC�x�

�x
�

x=1
=

3
NC

2�
�2�3 − 3� ,

�8�

where 
NC=NC�x�−NC�1�. The critical increment of NC for
the topological instability, 
NC=0.5, gives the local critical
volume strain, �v

T,crit=0.11. This means that if the local trans-
formation volume strain is larger than 11% or smaller than
−11% the site is topologically unstable, and the local coor-
dination number may change. For this reason these sites are
liquidlike, whereas the sites with the volume strain less than
11% in magnitude are solidlike. Since the atomic level
volume strain �v has a Gaussian distribution,24 the fraction
of the liquidlike atomic sites, p�liq�, is given by the
complementary error function, CE�yc�, where yc

=�v
T,crit /�2	��v

T�2
1/2. For the standard deviation of the Gauss-
ian distribution 	��v

T�2
1/2 equal to �v
Tg=0.095 as in Figs. 1–3,

yc=0.825. This means that the total fraction of the liquidlike
sites is given by p�liq�=CE�yc�=0.243. This value is in the
range of the percolation limit for the DRP structure, which is
estimated to be pc=0.198 for NC=12.18 and pc=0.246 for
NC=8.73.25 This result implies that the glass transition oc-
curs through the percolation transition of the liquidlike
states, as predicted by Cohen and Grest.26 The value of p�liq�
is slightly higher than the estimate for NC=12, but it prob-
ably originates from the kinetic nature of the glass transition
that it slightly depends upon the cooling rate. The exact per-
colation concentration may predict the ideal glass transition
temperature �Kauzmann temperature� rather than the real
glass transition temperature.

Based upon these results, we suggest that Eq. �7�, deduced
by the topological fluctuation theory, predicts the glass tran-

sition temperature without a sample dependent adjustable pa-
rameter. Currently the most successful theory to describe the
behavior of liquids is the mode-coupling theory �e.g., Ref.
4�. However, the mode-coupling theory requires input from
the experimental data for each composition. In comparison
the current theory needs only the knowledge of the elastic
moduli and atomic volume which can be determined from
the interatomic potentials or directly from the first
principles,27 thus bringing about the predictive capability. As
we demonstrate here this relatively simple model is capable
of quantitatively expressing the glass transition temperature
with high accuracy.

V. CONCLUSIONS

Understanding the mechanism of the glass transition at an
atomistic level is challenging because it is difficult enough to
describe the atomistic dynamics of liquid. We found earlier
that the atomic level stresses provide a good description of
the local structural fluctuations in liquids through their local
elastic energy. This description, however, fails below a cer-
tain temperature because of the topological frustration of the
local structure, and we propose that this deviation from the
equilibrium defines the glass transition. Through this logic
we derived an expression of the glass transition temperature,
and found that it agrees excellently with the wide range of
experimental data without an adjustable parameter. The suc-
cess reported here suggests that this approach may be ex-
tended to more complex glasses, and could form the basis for
a long-sought general microscopic theory of liquids and
glasses.
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APPENDIX

Elastic moduli of a solid depend on temperature because
of the anharmonicity of interatomic interaction. For crystal-
line solids this dependence is well described by a phenom-
enological expression by Varshni28

C�T� = C0 −
s

e�D/T − 1
, �A1�

where C�T� is an elastic modulus at temperature T, �D is the
Debye temperature, and the value of s is chosen so that
C�Tm�=0.55 C�0�, with Tm being the melting temperature.
We found29 that Eq. �A1� works for metallic glasses as well,
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provided that we assume B�Tm�=0.78 B�0� for bulk modulus
and G�Tm�=0.55 G�0� for shear modulus. Tm was evaluated
as a compositional average of the melting temperature of the
components, rather than the actual melting temperature of
the crystalline compound. The actual melting temperature
depends on the delicate balance in the free energy between
the solid and liquid, and is lowered by frustration near the
eutectic composition. Elastic moduli, however, do not exhibit
strong composition dependence, and follow more closely the
composition dependence of the Debye temperature. Thus the

compositional average of the melting temperature of the con-
stituent elements provides a better energy scale for the elastic
moduli. As shown in Table I the effect of this correction is
small. If the elastic moduli measured at room temperature
were used in evaluating Eq. �7�, we obtain �v

T,crit

=0.092±0.003 rather than 0.095±0.004, and p�liq�=0.227
rather than 0.243. Thus this effect is within the margin of
error. Volume expansion between room temperature and Tg is
even smaller, of the order of 0.1%, and was not considered in
this work.
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