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Interplay between optical nonlinearity and localization in a finite disordered Fibonacci chain
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Both the average transmission coefficients and dimensionless optical resistances of a nonlinear disordered
Fibonacci chain are calculated as functions of the photon flux of an incident light field with various types of
chains of scatters, numbers of embedded nonlinear-optical scatterers, and energies of incident photons. If the
incident optical field is very weak, the nonlinear-optical scattering in the chain becomes negligible and the
chain behaves just like a transparent dielectric slab. As for the interplay between the optical nonlinearity and
localization effect in the finite disordered Fibonacci chain, it is found that the localization effect introduced in
the disordered Fibonacci chain exhibits a reduction in the transmission only when the incident optical field is
strong. The localization effect, which increases with the number of scatterers in the chain, is found to yield an
enhanced optical nonlinearity of the system. The localization effect on the incident optical wave in the chain
can be accelerated by an intense light illumination in the presence of a large number of nonlinear-optical
scatterers. When energetic photons fly through the chain, they tend to ignore most of the deeply embedded
optical scatterers. When the number of scatterers in the system is F4=1597, a complete localization in the
chain is reached for an incident field amplitude as low as 50 kV/cm.
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I. INTRODUCTION

Photodetector and vision protection against high-power
laser damage'~® are very desirable in many optoelectronic
applications. For the exposure of optoelectronic devices to
high-power radiation, it is important to develop a protection
scheme which makes use of the intensity dependence of
transmittance to block harmful radiation over a broad wave-
length range. At the same time, it should also be transparent
to low-power radiation in visible wavelengths for human vi-
sion purposes. Current protection schemes using the photo-
chromic effect or two-photon absorption usually reject only a
limited number of laser frequencies and have no dependence
of transmission on the incident laser power. Nonlinear one-
dimensional (1D) photonic band-gap structures (PBSs) have
proven to be promising candidates for laser-damage
protection.* Such smart devices allow high transmission for
low-intensity light but block high-intensity radiation in a
wide-spectral range with fast response and recovery time.

The central blocking frequency of PBS can be designed
by choosing different material compositions and struc-
tures.>™ The classic picture of PBS is photon localization,
involving interference among multiple scattered waves in a
random medium. Interference among these waves in the me-
dium confines the wave within a region the size of a local-
ization length.'0 If the size of the material system becomes
greater than the localization length, the diffusion coefficient
for wave propagation becomes zero. In order to reject high-
power radiation, nonlinear-optical materials with an
intensity-dependent refractive index!' can be employed. The
combination of principles of PBS and nonlinear optics can
create 1D nonlinear photonic band gaps, which exclude elec-
tromagnetic radiation over a band of frequencies when the
light intensity is high.*

Recent technical advances in submicron physics have fur-
ther enabled experimentalists to fabricate nearly ideal
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multilayer PBS wusing molecular-beam epitaxy growth
techniques'? or sputtering. The connection between the elec-
trical resistance at zero temperature and the transmission co-
efficient, provided by the well-known Landauer formula,!3
indicates that some experimentally measurable quantities,
such as electrical or optical resistance, can be adequately
explained when a simple infinite 1D array of short-range
electronic or optical scatterers is considered. The discovery
of quasicrystals'* has stimulated interest in exploring the
physical nature of quasiperiodic (e.g., Fibonacci and Thue-
Morse) sequences'® as well as commensurate-incom-
mensurate systems.'® Our previous researches on quasiperi-
odic sequences included plasmon excitation,!” electron
localization,'®!® neutron polarization,”® phonon density of
states,’!  optical-phonon  tunneling,”>  nonlinear-optical
filters,* defect-assisted tunneling,?® and interaction between
two nonlinear electron waves.>* The quasiperiodicity in an
infinite chain leads to a self-similar structure in the transmis-
sion as a function of the incident energy. The disordered
(fully random) chain leads to Anderson localization!® only
when the chain becomes infinitely long. For a short disor-
dered chain, there is no complete localization. However,
when the chain length practically exceeds a threshold value,
i.e., the localization length, the electronic or optical wave
behaves very similar to that found when there is complete
localization. In this case, the transmission of a long chain
with disorder can be exponentially small.

The pure Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13,..., de-
fined via the recurrence F,,,=F,+F,_,, were found to relate
to the number of leaves, petals, or seed grains in plants and
ancestors of a drone in nature. A straightforward stochastic
modification of the pure Fibonacci sequence is to introduce
both additions and subtractions. The random Fibonacci re-
currence X,,.;=xX,+x,_; results in sequences which behave
erratically for small generation index n. In the limit of n
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— o, however, exponential growth occurs with unit probabil-
ity as was demonstrated by Furstenberg® in 1963. For the
random Fibonacci recurrence where each * sign is indepen-
dent and occurs with probability 1/2, the Lyapunov exponent
v=0.12397558... is found.?® Very recently, the renor-
malization-group method has been generalized” to study the
local electronic properties of large disordered Fibonacci
chains in which different generations of pure Fibonacci
chains and inverted Fibonacci chains (see the definition in
the next section) are randomly mixed (concatenation rule).”’
The Lyapunov exponents for the weak and strong disordered
cases can also be calculated numerically.?®

In this paper, we compute the average transmission coef-
ficients and dimensionless nonlinear-optical resistances for
an incident light wave packet as functions of the incident
photon flux for disordered and pure Fibonacci chains, differ-
ent generations of Fibonacci sequences, as well as different
photon energies. We demonstrate that localization effect in a
disordered Fibonacci chain can play a role if the light illu-
mination is intense. We further find that the optical nonlin-
earity in the disordered Fibonacci chain can be enforced by
the localization effect increasing with the number of embed-
ded nonlinear-optical scatterers in the system. An intense in-
cident light field can speed up the localization effect on an
optical wave if there are enough optical scatterers present in
the chain. The higher the photon energy is, the less the ef-
fective number of scatterers will be felt by photons flying
through the chain. Interesting physics behind the interplay
between the optical nonlinearity and localization effect in a
finite disordered Fibonacci chain is elucidated.

The organization of the paper is as follows. In Sec. II, we
introduce our model and theory for the calculations of aver-
age transmission coefficient and nonlinear-optical resistance
(see its definition in the next section) with layered nonlinear-
optical scatterers embedded in a disordered Fibonacci chain.
Numerical results are displayed and explained in Sec. III for
the average transmission coefficient and optical resistances
as functions of the field amplitude of incident light. The pa-
per is briefly concluded in Sec. IV.

II. MODEL AND THEORY

Let us start by considering a plane-polarized electromag-
netic wave with frequency w, which propagates parallel to
the z direction perpendicular to the interfaces of a multilayer
structure shown in Fig. 1. The multilayer structure in this
figure is composed of a nondissipative (no optical absorp-
tion) dielectric slab embedded with many planar nonlinear-
optical scatterers. For simplicity, we assume a matched re-
fractive index to dielectric materials surrounding the
multilayer structure. The form of plane-polarized and single-
color optical field can be simply written as E(z,f)
=E(z)exp(—iwt) within the multilayer structure. The
z-dependent field amplitude E(z) satisfies the following 1D

Maxwell wave equation:
PER)  o? )
d—zz"‘?nr(Z)E(Z):O, (1)

where the z-dependent refractive-index function n,(z), in-
cluding layered nonlinear-optical scatterers, is
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FIG. 1. Illustration of a finite nonlinear disordered Fibonacci
chain embedded with optical scatterers at zo,zy, ... Zjs -+ »ZN-152A>
where the positions of optical scatterers {zy,25, ...,Zy_1,2y} form a
so-called disordered Fibonacci sequence (see the text) with the po-
sition of the first optical scatterer fixed at z=z3=0. The linear re-
fractive index of the chain is n;, and the nonlinear refractive index
for the jth optical scatterer at z=z; is n;. The space outside the
sample (z<<zq and z>zy) is filled by a dielectric material with a
matched refractive index n;. The light is incident from the left of
the sample (z<<z,) and is transmitted to the right of the sample (z
>zy). The field amplitudes of the incident, reflected, and transmit-
ted optical waves in this figure are denoted as s, 7y, and f,
respectively.

N

n(2) =n,+ X, n;8(z - z)). 2)
j=0

Here, z; is the position of the jth planar optical scatterer,
(N+1) is the total number of scatterers, n, is the linear re-
fractive index of the dielectric slab, and the nonlinear refrac-
tive index n; of the jth optical scatterer is assumed to be*

n;= (- 1)j+lBK|E(Z_j)

where By is the Kerr nonlinear coefficient and |E(z))| is the
field amplitude at the jth optical scatterer.

If the positions of the optical scatterers for the (n—1)th
and nth generations of a pure Fibonacci chain are denoted by
{x1,x5,....xp _} and {y;,y,,....,yp }, respectively, we can
obtain the positions of the optical scatterers for the (n+1)th
generation at {z;,25, ... ’ZFM} through the relation'’

2 0<j<N, (3)

Vi forj=1,...,F,
’ 4)

% Ye, t Xk, for j=(F,+1),...,Fp1,

with z;=b and z,=b+a, where a and b are two arbitrary real
numbers, and F, is the nth number in a Fibonacci sequence
{F\,F5,....,F,_;,F,,F,.1,...}. The numbers in the Fi-
bonacci sequence are obtained through the recurrence F,
=F,+F,_; starting from F;=1 and F,=2.

In this work, we further define an inverted Fibonacci
chain. For this situation, instead of using Eq. (4) we define
the positions of optical scatterers for the (n+ 1)th generation
through a concatenation rule'®?°

X; forj=1,....F,_
' 1 5)

7= ,
/ Xp,  *tYj-r, forj= (Fpoy+ 1), 00 F .

The so-called disordered Fibonacci chain is the random mix
of the pure and inverted Fibonacci chains in Egs. (4) and (5).
We introduce a random variable 7 which is uniformly dis-
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tributed within the interval 0<#<1. For any given real
number 0<p =1, we define a disordered Fibonacci chain as
follows: the disordered Fibonacci chain becomes the pure
Fibonacci chain if 7<<p, while the disordered Fibonacci
chain becomes the inverted Fibonacci chain if = p. There-
fore, the disordered Fibonacci chain simply reduces to the
pure Fibonacci chain when p=1. On the other hand, the dis-
ordered Fibonacci chain reduces to the inverted Fibonacci
chain when p=0. When p=1/2, however, there is an equal
probability for the disordered Fibonacci chain to become ei-
ther the pure or the inverted Fibonacci chain. For p=1/2, the
randomness of the system reaches a maximum.

As shown in Fig. 1, we assume that the multilayer struc-
ture occupying the region z,<z<zy (with a fixed z,=0) is
under a light illumination from the left, where z <<z is filled
by a dielectric material with a matched refractive index n,,
and then transmitted to the right, where z>zy is also filled
by the index-matched dielectric material. Here, the number
set {z21,22,...,2y-1-2n} 1s assumed to be a disordered Fi-
bonacci sequence, with N=F, being the number of optical
scatterers for the nth generation disordered Fibonacci chain
(excluding the first optical scatterer fixed at z=z,=0). For
this case, the solution to Eq. (1) can be formally written as*3°

s 4 ye™i0 if z<z,=0
E(z) = fjezq(z—zj) + bje—lq(Z—Zj) ifz,,<z<gz (6)
te'?* if 7> zy,

where j=1,2,...,N, and the wave number along the z direc-
tion is g=gqgn,=27n,/Ng, With \g=27c/w denoting the
wavelength and ¢ the speed of light in vacuum. The quanti-
ties f; and b; are known as the coefficients for the forward
and backward optical waves'® between the (j—1)th and the
Jjth optical scatterers with 1<j=<N and are determined by
the boundary conditions at different scatterers. In addition, s,
v, and ¢ in Eq. (6) are the field amplitudes of the incident,
reflected, and transmitted optical waves, respectively.

By assuming a moderate incident optical field, the Kerr
optical nonlinearity in Eq. (2) is expected to be weak. Ne-
glecting the very small term containing nj2 in Eq. (1), we
obtain the discontinuity of dE(z)/dz for the jth optical scat-
terer at z=z; by integrating both sides of Eq. (1) in a very
small region containing only z=z;,

dE(z)) dE(Z;)) 20° N
—dz]_ - —dzL == ) =-2q ;: E(z)),

()

where the notation z}' (z;) represents the right (left) side ad-
jacent to the plane at z=z;. Applying the boundary conditions
to Eq. (6), i.e., E(z) is continuous and dE(z)/dz is discon-
tinuous as described by Eq. (7), we find the following recur-
rence relation for the interface at z=z; with 1 <j<N-1:

|:fj:| _ lAJil AJisz;n } )
bil LAy Ay ILbjn

where the elements of the (2X2) coefficient matrix A; for
the jth optical scatterer are

PHYSICAL REVIEW B 76, 024201 (2007)

Al =[1 - ig(nny)]e s,
Ay =~ ignin,)e i,

)

Ay =ig(njing)e™ 4,

Ah=[1+ iq(n;iny)]e"%1,

and d,1=z;,,—z; is the separation between the (j+1)th and
the jth optical scatterers. The left surface at z=z,=0 provides
us with an additional recurrence relation

s A(l)l A(l)zl |:f1 ]
= s 10
|:7} [Agl A(z)z b, (10)

where the elements of the (2 X2) matrix coefficient A, for
the first optical scatterer are

AN =1 = ig(ny/ny) e,

AY, = — ig(ng/ny)e,
(11)

Agl =ig(no/ny)e 4,

A3, =[1 +ig(ny/ny)le',

and d;=z,—z9=z, is the separation between the second and
the first optical scatterers. In addition, the right surface at z
=zy provides us with another recurrence relation

In|_ Af A?’Z]{t}
|:bN:|_|:A12Vl Ap Loy (2

where the elements of the (2X2) coefficient matrix A, for
the last optical scatterer are

A11V1 =[1 - ig(ny/ny) e,

AYy == ig(nylny)e N,
| (13)
AN, =ig(ny/n,)e'®n,

AY, =[1+ig(nylny)]e .

From the boundary conditions for E(z), we know that it is
continuous across any optical scatterers in the system. There-
fore, according to Egs. (3) and (6), we know that n; depends
only on fj,; and b;,,. This leads to the following expression
for the nonlinear refractive index at each optical scatterer
with 0<j=<N:

. (= " B|f 7951 + by i) if 0<j<N
J— (_ 1)N+1BK|t|2 lf] — N,
(14)

where we note that fj,je”4+1+b;, €% 1=f+b; by the
boundary condition, and therefore, there is no oscillation in
n;. Combining Egs. (14) and (8), we are able to calculate the
amplitude of the optical field at any position (labeled by
indices 1 <j=<N) using backward iterations within the disor-
dered Fibonacci chain,
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. t
|:fl:|=Aj®Aj+l® ®AN—1®AN[ :|a (15)
b, 0

where the notation ® denotes the product of two matrices.
Furthermore, combining Egs. (14) and (15), we find the re-
flected () and transmitted (¢) field amplitudes for incident
light as follows:

Vs =My (2,1)/My,(1,1),
(16)
tls = l/MN+l(l,1),

where My, ;(2,1) and My, ,(1,1) are the two elements of the
(2 X2) matrix My, defined as*

My, 1=A0®A;® - @Ay © Ay. (17)

For backward iterations, different values of s for incident
field amplitude can be obtained by varying ¢ in Eq. (16).

For a single planar optical scatterer, we get the following
pair of equations:

qoBxlrl° + |1 = [sI* =0,

(18)

2
s

o>+ o =1s

which is independent of n,. From Eq. (18), we find |t/s|?
—1 and |y/s|>—0 for a transparent linear system when
|s|>—0. On the other hand, when [s|>>1, we get from Eq.
(18) [t/5> = (qoBxls)™>* <1 and | y/s[>— 1-(goBxlsl*)
=~ | for an opaque nonlinear system.

Based on the calculated field amplitudes 7y and ¢ for the
reflected and transmitted optical waves in Eq. (16), we obtain
the reflection coefficient Ry,; and the transmission coeffi-
cient Ty, of the nonlinear disordered Fibonacci chain with
N+1 optical scatterers as a function of the wave number g
and the field amplitude s of an incident light,

Ry1(5,90) = |3’/S|2 =My (2,1)/My,(1,1) %,

(19)
Tre1(5,q0) = |tls)? = 1/|My,,(1,1)]*.

By considering an incident light wave packet with a cen-
tral wave number g, and broadening o, we calculate the
average transmission coefficient over an interval g.—30y
<go=<q.+30y,

I

_ 1 max I
.4 L) = T o+ i—"2]Aq |,
1(s.q,..L) I,,m+1§ N+1[sq (l 2) q]

(20)

where 1,,,,=60,/Aq with Ag/q.=107 and 0(/q.=1072 in
our numerical calculations below. The calculated ’7'(s,qc,L)
depends not only on how nonlinear-optical scatterers are dis-
tributed within a chain but also on the field amplitude s of
the incident light. Furthermore, it changes with the chain
length L or the total number of optical scatterers, where L
=(F,_,a+F,_;b) with n=2 for the nth generation Fibonacci

chain. The L dependence in 7'(s,qc,L) reflects the localiza-
tion behavior.! The localization length &(s,g,) of a nonlin-
ear disordered Fibonacci chain can be defined as'®1?
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gO(S7qc)=_ hm_; (21)
L==In[7(5,q.,L)]

In addition, the dimensionless optical resistance for the dis-
ordered Fibonacci chain can be defined through the Landauer
formula'®!® by excluding the contact resistance

Rop(8.qe-L) = 1= T(s.q..L). (22)

If the L-independent &y(s,q.) becomes less than L when L is
large, we say that a full localization has been reached in the

system.'® In this situation, 7(s,q,,L) decreases exponentially
with L.

III. NUMERICAL RESULTS AND DISCUSSIONS

Proposed layered nonlinear-optical scatterers embedded in
a dielectric slab can be realized using nonlinear materials.
Materials with By as high as 2 X 107" cm?®/V? are currently
available.3'-3> With this value of Bk, the minimum laser
power to switch a nonlinear device is about 4 X 10° W/cm?.
As a model calculation to demonstrate the interplay between
optical nonlinearity and localization effect in a finite disor-
dered Fibonacci chain, we set sample parameters n,=1.4,
Br=2x10"" ecm?/V2, a=1000 A, and b/a=7=(5+1)/2.
The other parameters, such as N, p, and A, will be given in
the figure captions.

The interesting physics involved in this paper is the
unique combination of optical nonlinearity and quasiperiod-
icity of the system. In a nonlinear-optical system described
here, the transmission of an electromagnetic field depends on
the amplitude of this incident wave as shown by Eq. (18), in
strong contrast with a linear-optical system where the trans-
mission is independent of the incident amplitude. The quasi-
periodicity in the proposed nonlinear-optical system leads to
localization effects, which makes the transmission of an elec-
tromagnetic field strongly depend on the length of the
sample, in contrast with a periodic system where the trans-
mission becomes independent of the sample length.

The construction of a disordered Fibonacci chain (p
=0.5) is based on the random mix of a pure (p=1) and an
inverted (p=0) Fibonacci chain. The randomness, in addition
to the quasiperiodicity in a regular Fibonacci chain, leads to
an enhanced localization effect in the disordered Fibonacci
chain. Figure 2 displays the average transmission coefficients

7(s,q.,L) defined in Eq. (20) [in (a)] and the dimensionless

optical resistances QOI,(s,qC,L) defined in Eq. (22) [in (b)] as
functions of incident photon flux |s|> (in units of
108 V2/cm?) for nonlinear disordered (solid curves) and pure
(dashed curves) Fibonacci chains with N=Fy=55 and A\,
=6283 A. Randomness in the nonlinear disordered Fibonacci
chain reduces 7(s,q.,L) in (a) when [s|*> or the optical-
scattering strength (n; Bkls|>) of the system is moderate.
However, this effect is suppressed when |s|? is small for a
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FIG. 2. Comparison of average transmission coefficients
T(s,q.,L) [in (a)] and dimensionless optical resistances

ﬁop(s,qc,L) [in (b)] as functions of incident photon flux |s|? in units
of 108 V2/cm? for nonlinear disordered (p=0.5, solid curves) and
pure (p=1, dashed curves) Fibonacci chains with N=Fy=55 and
No=6283 A. Here, the chain length L=7.6 um. The inset in (a)
shows the comparison of 7(s,q.,L) for p=0.5 (solid curve) and p
=1 (dashed curve) as functions of |s|> in units of 10% V2/cm? with
N=F6=1597 and L=220.7 pum.

transparent linear-optical system. Moreover, when |s|? is
large, the incident electromagnetic field tends to feel the
dominant nonlinear-optical effect only from individual scat-
terers instead of the distribution of them. As a result, this
makes the difference between p=0.5 and p=1 disappear in
(a) when |s|> becomes high. We further find from (b) that the
randomness in the disordered Fibonacci chain gradually

enhances ﬁap(s,qc,L) when the optical nonlinearity
(~Bkls|>) of the system initially increases from zero. From
the inset of Fig. 2(a), we find that 7(s,q,.,L) almost drops to
zero for large values of |s|*> when the number of scatterers is
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FIG. 3. Comparison of average transmission coefficients
T(s.q..L) [in (a)]
ﬁgp(s,qc,L) [in (b)] as functions of incident photon flux |s|? in units
of 108 V2/cm? for N=Fy=55 (solid curves) an N=Fs=8 (dashed
curves) in a nonlinear disordered Fibonacci chain with p=0.5 and
No=6283 A. Here, the chain lengths L are 7.6 um for N=55 and
1.1 um for N=8, respectively. The inset in (a) shows the compari-
son of ’7(s,qC,L) for N=F4=1597 (solid curve, L=220.7 um) and
N=F,;=144 (dashed curve, L=19.9 um) as functions of |s|?> in
units of 108 V2/cm? with p=0.5. The inset in (b) shows the com-
parison of logo(&/L) for N=F4=1597 (solid curve) and N=F,
=144 (dashed curve) as functions of |s|? in units of 10% V2/cm?
with p=0.5.

and dimensionless optical resistances

increased to N=Fs=1597, where &,/L~0.2 indicating a
strong localization effect.

The localization effect in a disordered Fibonacci chain
also increases with the number N of optical scatterers in the
system or the chain length L=(F,_,a+F,_;b). In Fig. 3, we

compare 7(s,q,,L) [in (a)] and 7_2,,,,(s,qc,L) [in (b)] as func-
tions of |s|?> for nonlinear disordered Fibonacci chains with
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N=Fy=55 (solid curves) and with N=F5=8 (dashed curves)
at \y=6283 A. From (a), we find that the optical nonlinearity

slightly decreases 7(s,q.,L) when the chain is short (L
~\o), where only a few nonlinear-optical scatterers (N=8)

exist in the system. On the other hand, ’f’(s,qC,L) decreases
greatly with |s|> when the chain is long (L~ 10\,), where
there are a lot of scatterers (N=55) in the system. Corre-

spondingly, R,,(s,q.,L) in (b) is seen to increase with |s|?
dramatically when the chain is long and the number of
nonlinear-optical scatterers in the system is large. From this,
we know that the localization effect of the system is able to
enhance the nonlinear-optical scattering in the chain. From
the inset of Fig. 3(a), we can clearly see that the difference in

T(s,q.,L) for large values of |s|? is greatly enhanced when
the number of scatterers increases from N=F; =144 to N
=F6=1597. In order to quantify the effect of localization in
the chain, we numerically calculate &,/L in Eq. (21) and
display it for disordered Fibonacci chains as a function of |s|?
in the inset of Fig. 3(b) with N=F,5=1597 (solid curve) and
N=F,,=144 (dashed curve) at \;=6283 A. From this inset,
we find that &/L dramatically decreases with |s|> by more
than 6 orders of magnitude from a transparent (£,/L— ) to
a nearly opaque (&,/L—0) optical system. When the chain
length is increased from L=19.9 um (N=F,;=144) to L
=220.7 um (N=F4=1597), & /L decreases nearly by an or-
der of magnitude with moderate |s|?, indicating a strong lo-
calization effect from randomness in a disordered Fibonacci
chain. When &,/L drops below unity, the full localization of
the system with &/L>«1/L has been reached for N=Fg
=1597. Moreover, &/ L becomes independent of N when |s|?
is very small. If |s|>— 0, &/L tends to infinity, corresponding
to a transparent dielectric slab in the absence of embedded
optical scatterers since n; Bgls|>. Consequently, a large op-
tical nonlinearity of the system for intense light illumination
can be employed for speeding up the localization effect in
the chain when enough nonlinear-optical scatterers are
present.

The more energetic the incident photons are, the less the
effective number of embedded optical scatterers is seen by
them while flying through a chain. This effect can be clearly

seen from Fig. 4, where we plot 7(s,q.,L) [in (a)] and

Rop(s.4..L) [in (b)] as functions of |s|> in a nonlinear disor-
dered Fibonacci chain with N=Fy=55 for Ay=6283 A (solid
curves) and \y=4833 A (dashed curves). When |s|? is large,
a smaller photon energy (solid curve with a larger \) leads

to a significant reduction of 7(s,g,,L) in (a) due to the pres-
ence of many nonlinear-optical scatterers in the system. On
the other hand, photons tend to ignore most of the deep op-

tical scatterers in the system when their energy is large. In
2

this case, ’j'(s,qC,L) becomes less sensitive to |s , as ex-
plained in Fig. 3(a) for very few optical scatterers. When
|s|* is large, the dependence of 7(s,g.,L) on g, causes
7_3,,,,(s,qC,L) to exhibit an enhancement in (b) with a smaller

photon energy. The above explanation also holds for a much
longer chain (not shown here).

PHYSICAL REVIEW B 76, 024201 (2007)

1.00
c
Ke]
[2]
R
€ 095} p |
g N
= L
(0]
2 og0| " 1
§ —
2 - k0_628.3 nm
,,,,,,,,,,,,, 2,=483.3 nm
0.85 ‘ : : :
0 1 2 3 ) ’
(@ IsI” (10°V*/cm®)
0.15 v ' ' '
—2,=628.3 nm
§ ,,,,,,,,,,,,, 2,=483.3 nm
8 o010} |
@
(2}
[0
(4
©
S 005} 1
joR
(@)
0.00 ‘ : :
0 1 2 y ¢ ’
(b) Is” (10°V?/cm®)

FIG. 4. Comparison of average transmission coefficients
1s.q.,L) [in  (a)]
ﬁop(s,qc,L) [in (b)] as functions of incident photon flux |s|? in units
of 108 VZ/cm? for Ny=6282 A (solid curves) and \y=4833 A
(dashed curves) in a nonlinear disordered Fibonacci chain with p
=0.5 and N=Fy=55. Here, the chain length L=7.6 um.

and dimensionless optical resistances

IV. CONCLUSION

We have calculated in this paper the average transmission
coefficients and dimensionless optical resistances as func-
tions of the square of the incident field amplitude for differ-
ent types of chains of scatterers, numbers of embedded
nonlinear-optical scatterers, and energies of incident photons.
When the incident photon flux is very low, the nonlinear-
optical scattering can be neglected and the system behaves
just like a transparent dielectric slab. We have concluded as
follows for the interplay between the optical nonlinearity and
localization effect in a finite disordered Fibonacci chain: (1)
the localization effect in a disordered Fibonacci chain can
play a significant role only when the incident light field is
strong; (2) the localization effect, which increases with the
number of optical scatterers, can lead to an enhancement of
the nonlinear-optical scattering in a chain; (3) a large optical
nonlinearity with an intense light illumination can speed up
the localization effect in a chain in the presence of many
nonlinear-optical scatterers; and (4) energetic photons tend to
ignore most of the deep nonlinear-optical scatterers embed-
ded in a chain. In addition, when N=F4=1597, a full local-
ization in the chain has been reached for s=50 kV/cm.

As a final remark, the use of nonlinear-optical scatterers
with the strength n; % Bys|* embedded in an refractive-index-
matched chain ensures that the chain behaves just like a
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transparent dielectric slab when the intensity of the incident
light field is weak. On the other hand, when the incident light
intensity exceeds a threshold value, the strong optical scat-
tering will greatly reduce the light transmission due to qua-
siperiodically distributed nonlinear scatterers inside the
chain. In addition, the randomness introduced in the disor-
dered Fibonacci chain further speeds up the localization ef-

PHYSICAL REVIEW B 76, 024201 (2007)

fect on the incident optical wave to make its transmission
exponentially small when the chain is long and the incident
light is intense.
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