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Influence of biaxial stresses applied perpendicularly to the [100] loading axis on the theoretical tensile

strength is studied from first principles. Ten crystals of cubic metals and three crystals of diamond ceramics
were selected as particular case studies. Obtained results show that, within a limited range of biaxial stresses,
the tensile strength monotonously increases with increasing biaxial tensile stress for most of the studied metals.
Within the range, the dependence can be approximated by a linear function. Beyond the range, the dependence
shows a maximum that usually appears in the tensile range of biaxial stresses. On the other hand, some of the
materials (Si, Ni, Cu, and Ge) exhibit a maximum tensile strength at nearly uniaxial stress state, and the
superposition of both tensile and compressive biaxial stresses reduces the tensile strength. Unlike the other
crystals, diamond revealed a maximum under compressive biaxial stress.
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I. INTRODUCTION

Calculations of the theoretical (ideal) strength of materials
and investigations on micromechanisms of materials failure
are motivated by the development of new materials exhibit-
ing better mechanical properties. Although there is no doubt
that crystals and whiskers used in the industrial exploitation
are usually subjected to a multiaxial loading, little attention
has been paid to a coupling of various stress tensor compo-
nents. Several studies were focused on the influence of su-
perimposed hydrostatic or normal stress on the theoretical
shear strength.'=> The results reveal an increase in the shear
strength with increasing compressive normal (triaxial) stress.
Such analyses allow us, for example, to localize the very
onset of plastic deformation under the nanoindentor (dislo-
cation emissions) and, consequently, yield a deeper insight
into the physical nature of damage processes.'* Another ex-
ample of high practical importance is associated with rein-
forcing fibers used in engineering composite materials. Due
to the matrix/reinforcement incompatibility strain, the single
crystal fibers (or whiskers) are subjected to multiaxial load-
ing even in the case of remote purely uniaxial tension of the
composite material. Consequently, ab initio modeling of the
tension of perfect crystals under superimposed tensile or
compressive biaxial stresses is expected to be a reasonable
theoretical simulation of the stress-strain behavior of fibers
in the composite.

This work examines the effect of the superimposed biax-
ial stress on the [100] stress-strain response of crystals and,
in particular, on the theoretical tensile strength (TTS). Be-
sides the practical impact, the motivation for the research
was also based on our previous experience with calculations
of the theoretical strength under isotropic tension and
compression®® as well as those of TTS under conditions
preventing the Poisson contraction (performed by other
authors®). For some crystals, higher values of TTS were pre-
dicted in the case of superimposed tensile biaxial stresses. A
previous study for the iron crystal'® has also revealed that a
superimposed hydrostatic tension (compression) raises (low-
ers) the ideal tensile strength relative to the uniaxial case.
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PACS number(s): 62.20.—x, 61.66.Bi, 81.40.Jj, 71.15.Mb

II. COMPUTATIONAL DETAILS

For the electronic structure calculations, we utilized the
Vienna Ab initio Simulation Package (VASP).'''1> This code
uses the plane-wave basis set and the projector augmented-
wave potential'3 or ultrasoft pseudopotentials of Vanderbilt
type.'* The exchange-correlation energy was evaluated using
the local density approximation (LDA) or the generalized-
gradient approximation (GGA) of Perdew and Wang.!> Spin-
polarized calculations were performed for Ni and Fe to in-
clude the collinear ferromagnetism into the calculations.
After proper convergency tests, 18 X 18 X 18 k-point mesh
was found to be satisfactory for most of the studied metals.
An energy cutoff (E.,) of the plane-wave expansion was
increased in order to obtain correct stress values. The solu-
tion was considered to be self-consistent when the energy
difference of two consequent iterations was smaller than
10 peV.

The calculation procedure based on the VASP code was
applied to ten cubic crystals (V, Fe, Ni, Cu, Nb, Mo, W, Ir,
Pt, and Au) and three crystals of a diamond structure (C, Si,
and Ge). All studied crystalline systems were subjected to
the tensile stress o, along the [100] direction combined
with the transverse biaxial stresses oy, in the (100) plane. A
relaxation procedure based on Hellman-Feynman forces in
(100) plane was applied in order to get the stress tensor in the
simple form

Ouni 0 0
6' = 0 Oy, 0
0 0 Opi

The relaxation process consisted of the following steps: (i)
The crystal was subjected to oy, of a certain preset value (the
edges perpendicular to the [100] direction were allowed to
change their lengths in order to converge o, to the preset
value). (ii) The crystal was incrementally elongated in the
[100] direction and the value of o, was converged to the
same preset value for any elongation. During the simulated
deformation process, the o,,; values were not directly con-
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TABLE I. Computed values of the equilibrium lattice parameter
ag and Young’s modulus Eyg, along with experimental values. The
table also contains utilized computational parameters such as the
exchange-correlation approximation (XC) and the plane-wave en-
ergy cutoff (E,,)-

ag (A) E\g) (GPa)

E(Tllf

Crystal Calc. Expt. Calc.  Expt. XC (eV)

C dia 3.53 3.57 1065 1050 LDA 370
Si dia 5.39 543 126 130 LDA 190
Ge dia 5.75 5.66 98.6 104 LDA 373
A\ bee 2.99 3.03 178 151 GGA 342
Fe bee 2.83 2.87 173 143 GGA 350
Ni fcc 3.52 3.52 157 151 GGA 350
Cu fcc 3.64 3.61 76.9 72.6 GGA 355
Nb bce 3.29 3.30 147 152 GGA 290
Mo bce 3.15 3.15 397 394 GGA 290
W bce 3.17 3.16 423 417 GGA 290
Ir fcc 3.88 3.84 434 438 GGA 257
Pt fcc 391 3.92 149 136 LDA 260
Au fcc 4.07 4.08 48.1 46.5 LDA 230

trolled by our relaxation procedure. Consequently, they re-
flect the changes of applied [100] strain &,,,. (iii) The stress
maximum o,,,, and the related strain ¢,,, were found by a
cubic spline interpolation of computed o, values. If no
other instability precedes, the o, value can be considered
to be the theoretical tensile strength under corresponding su-
perimposed biaxial stresses. (iv) The relaxation procedure
was repeated for several preset o;,; values.

Some of the previous studies of the crystal stability under
uniaxial loading reported shear®!¢-'® or phonon!? instabili-
ties before reaching the maximum computed uniaxial stress
(the point of inflection on the dependence of the crystal en-
ergy on g,,;). This obviously means a reduction of the tensile
strength. On the other hand, crystals of some elements under
[100] uniaxial loading were found to remain stable with re-
spect to shear until o, reached its maximum.'®2? Other au-
thors that have employed the elastic stability theory with
molecular dynamics simulations (nonzero temperature) have
observed instabilities at smaller stresses than predicted by
static-type (zero temperature) calculations.?!=23

III. COMPUTED RESULTS AND DISCUSSION
A. Ground state properties

In order to check the reliability of both the relaxation
procedure and the computational code (with the utilized pa-
rameters), we applied the relaxation procedure also for a cal-
culation of the equilibrium lattice parameter a, (converged
until ¢,,;=0,;<0.02 GPa) and Young’s modulus Ey (op;
=<0.02 GPa).

The computed gy (1 A=10"""m) and E,, values are
listed in Table I together with available experimental data.?*
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FIG. 1. Normalized values of the theoretical tensile strength
O max! Omayxo as functions of superimposed biaxial stress o7,; for Si,
Ge, Ni, and Cu.

The experimental E |y, value for diamond was taken from
Ref. 25 and the other E(, values in the column were ob-
tained from experimental elastic constants®® using the fol-
lowing relation:?’

(Cy1 = Cp)(Cy 1 +2Cyy)
Ci+Cp

Eip0=

As can be seen from Table I, the a, values correspond
well to experimental data (mostly within 1%). Also the cal-
culated values of E are very reasonable except for those of
V and Fe. The most significant overestimation (20%) can be
seen for ferromagnetic iron. On the other hand, our value is
even 5% lower than results of Clatterbuck et al.?°

B. Theoretical strength

Atomistic modeling of the tensile test was performed un-
der the superimposed biaxial stresses within the range of
+25 GPa with the exception of crystals exhibiting low values
of the plane strength. All the stresses calculated in this work
represent values of the true stress (the axial force divided by
the true area in the stressed state).

Rather anomalous dependences of the normalized strength
value 0,/ 0ar 0 ON 03, (Within the studied range) are shown
in Fig. 1, as received for four elements Ni, Cu, Si, and Ge.
The values of o, correspond to computed o, values
under pure uniaxial tension. The most remarkable influence
of 0;,; can be observed in the case of Ge and Si. The applied
biaxial stress (both tensile and compressive) substantially re-
duces the TTS of those crystals. The maxima of displayed
curves for Si and Cu lie close to the state of zero biaxial
stresses (0<o0y,;<3 GPa), while in the case of Ge and Ni,
the maxima are associated with somewhat higher o; of
about 5 and 8 GPa, respectively.

Previous calculations of TTS for Ni and Cu (Ref. 28)
yielded lower values in the case when Poisson contraction
was omitted ([100] deformation) than in the case of trans-
verse relaxation ([100] loading). By applying the uniaxial
ultimate strain €,,,,o to a system without Poisson contrac-
tion, our calculations yield oy,; values of 18 and 13 GPa for
Ni and Cu, respectively. The related o,,; values of 34.8 and

024115-2



INFLUENCE OF SUPERIMPOSED BIAXIAL STRESS ON...

TABLE II. Slope of the linear regression lines k=do,,,/doy;
the maximum stress 0,,,,0 (GPa), and the ultimate strain &, ¢
under pure uniaxial loading along with available literature data and
computed values of the theoretical isotropic strength o, (GPa).

O a0 Konax Emax.0 TTS Tiso
C 225 -1.08 0.37 2252 88.5
Si 26.3 0.26 155
Ge 16.8 0.23 11.1
A 19.8 0.688 0.22 32.7
Fe 12.4 0.634 0.16 14.2° 27.7
Ni 352 0.37 39.0¢ 28.9
Cu 24.1 0.36 23.7¢ 19.8
Nb 19.0 0.662 0.11 18.84 31.6
Mo 28.3 0.737 0.12 28.84 42.9
W 28.9 0.739 0.16 28.9¢ 50.7
Ir 44.5 0.281 0.25 40.1
Pt 34.1 0.152 0.34 39.6
Au 18.6 0.163 0.33 22.5¢ 23.2

4Reference 25.
PReference 29.
‘Reference 30.
dReference 16.
“Reference 31.

23.1 GPa for Ni and Cu are lower than o, values (with
allowed Poisson contraction) in Table II, in qualitative agree-
ment with the above mentioned semiempirical calculations.”®

Dependences for all the other crystals seem to be linear
within the studied range of biaxial stresses. They can be
parametrized as

Omax = (Tmax,O + kmaxo-bi’ ( 1)

where k,,,, is the slope expressing the influence of oy,;. The
parameters of a linear regression of computed data points are
collected in Table II. Computed values of the slope k,,,, are
mostly positive and seem to be higher for bcc crystals than
for fcc ones. The only interesting exception of the studied
elements is carbon in a diamond state, which exhibits a nega-
tive k,,,, and, thus, decreasing o,,,, with increasing o,,;. Its
k,ac value is about two times higher than that of bcc metals,
but its value of o, is higher by an order of magnitude.
The listed literature data for TTS were computed under the
assumption of tensile instability (regardless of possible shear
instabilities) and, thus, they should correspond to the 0., o
values.

The result for Fe agrees well with TTS calculations of
Clatterbuck et al.,'” where the iron crystal was subjected to
triaxial stress states with o;=20,,=2033 (superimposed ten-
sion) and o ;=—0y=—03; (superimposed compression).
Their uniaxial tensile strength of about 12.5 GPa matches the
O naro Value in Table II. The strength value changed to about
18 GPa (8 GPa) when the authors applied the superimposed
tension (compression), which is also in accordance with Eq.

(1).
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FIG. 2. Normalized values of [100] stress 0,;/ 0,0 as func-
tions of superimposed biaxial stresses o;,; for several constant strain
values &, (Si and Au).

C. Stress-strain response

The influence of the biaxial stresses on the [100] tensile
stress o,,; remains qualitatively similar to that shown for
O pax! Tpmaxo (Fig. 1 and Table II) also for [100] strain values
smaller than ¢,,,,. This is demonstrated in Fig. 2 for particu-
lar cases of Au and Si crystals. All the curves related to
different constant values of the [100] strain show the same
trend. As can be seen for Au, the curves displaying the
o,ni(03,;) dependence can be approximated by linear func-
tions

Ouni = O-uni,O + ko—bi' (2)

However, the slope k decreases with increasing [100] strain
Euni (kzkmax for O-uni,Ozo-max,O)'

Figure 3 displays the stress o, as a function of oy, for
several constant strain values g,,; for Mo in a more extended
region of tensile biaxial stresses than that in Figs. 1 and 2.
The dashed line defines the region of isotropic triaxial stress
state (o,,;=03; and also g,,;=¢;;) and the star represents a
value of the theoretical isotropic strength o, (see Table II).
It can be clearly seen that the linear regressions (1) and (2)
are just rough approximations, holding only for a rather lim-
ited range of tensile biaxial stresses. The deviation from the
linear trend is particularly obvious for higher g,, values.
Theoretically, the function for g,,,, must approach the point
related to the isotropic strength.

Consequently, one can expect that functions o,,,,(o,) ex-
hibit maximum also for other crystals. The dependence can
be reasonably linearized only in cases when the maximum of
the function is well beyond the range of interest. Obviously,

Timax,0

the dependence must have a maximum when k,,,,>1--""
Unlike for other crystals, extended calculations for dia-
mond (in both tensile and compressive regions) also revealed
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FIG. 3. The [100] tensile stress o, as a function of the super-
imposed biaxial stresses oy, for several constant strain values g,,,;
(Mo) and a more extended tensile range of o, The dashed line
corresponds to states of cubic symmetry and the star to the theoret-
ical isotropic strength o,

a maximum at compressive stress of about 120 GPa (see Fig.
4). The fact that only diamond strengthens under increasing
transverse compressive stresses explains the opposite slope
of the dependence in the studied range of o,;=+25 GPa.

Figure 3 also suggests how to estimate the slope k of
o,ni(0p;) lines at constant small g,,,; values. In that case, the
relations 0,,,,;0=E10o€,,; and o;,=B(v—1) are valid, where B
is the bulk modulus and v=(1+g,,,)’ is the relative volume.
Then the k value can be roughly calculated from elastic
moduli as

Tiso = Tuni) . _ Eroo _ 20 3)

f = 50

Tiso 3B Cj1+Cpp
For example, when computing the k values of Mo for ¢,,;
=0 via linear regression of o,,;(0;,;) data points and, simul-
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FIG. 5. The ultimate strain (elongation to failure) &,,,, as a
function of o, for all the studied crystals.

taneously, by using Eq. (3) with experimental elastic con-
stants, we obtain values of 0.516 and 0.514, respectively.
Similarly computed values for Au of 0.913 from linear re-
gression and 0.914 from Eq. (3) also match each other.

In other words, all dependences calculated for the tensile
instability at o,,,, can be qualitatively transferred also to
points of shear or phonon lattice instabilities that could even-
tually occur in individual crystals. This is a very important
result allowing a direct application of computed results to the
assessment of the multiaxial strength of whiskers in the com-
posite materials.

The ultimate strain &,,,, (related to o,,,,) as a function of
the biaxial stress is depicted in Fig. 5 for all crystals. As can
be seen, the ultimate strains g,,,, of fcc metals and diamond
C decrease with increasing biaxial stress, whereas in the case
of bce metals and other two crystals of a diamond structure,
they exhibit an increasing dependence on oy,;. This result is
qualitatively different from the behavior of crystals (or poly-
crystals) containing lattice defects and micropores. All these
materials exhibit an exponential decrease of the ultimate
(plastic) strain with increasing tensile biaxiality.?” It clearly
documents that the intrinsic deformability of a perfect crystal
lattice does not determine the ductility of engineering crys-
talline materials.

IV. CONCLUSIONS

Atomistic modeling of tension in the [100] direction of
perfect crystals under superimposed biaxial transverse
stresses was performed using ab initio calculations. The ten-
sile stress was found to increase (decrease) with increasing
tensile (compressive) biaxial stresses for most of the studied
elements. In a certain range of the biaxial stresses, the de-
pendence is almost linear, and the coupling of [100] stress
and transverse plane stresses can be described by Egs. (2)
and (3) for small [100] strain values or by Eq. (1) and Table
II for ultimate strain values related to the maximum tensile
stress.

024115-4



INFLUENCE OF SUPERIMPOSED BIAXIAL STRESS ON...

On the other hand, within the same range, results for C
show a decreasing trend and some elements (Cu, Ni, Ge, and
Si) exhibit a maximum of the function close to the zero value
of applied biaxial stress. For all investigated crystals, the
results remain qualitatively valid in the whole range of their
tensile deformation. This allows a direct application of ob-
tained theoretical data to the assessment of the multiaxial
strength of whiskers.

The ultimate strain is a decreasing function of the trans-
verse biaxial stress only for fcc crystals and diamond. The

PHYSICAL REVIEW B 76, 024115 (2007)

opposite is true for bee and other diamond crystals, which is
in qualitative disagreement with the behavior of crystalline
materials containing lattice defects.
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