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Domain walls for spin glasses are believed to be scale invariant; a stronger symmetry, conformal invariance,
has the potential to hold. The statistics of zero-temperature Ising spin glass domain walls in two dimensions are
used to test the hypothesis that these domain walls are described by a Schramm-Loewner evolution SLE�.
Multiple tests are consistent with SLE�, where �=2.32±0.08. Both conformal invariance and the domain
Markov property are tested. The latter does not hold in small systems, but detailed numerical evidence suggests
that it holds in the continuum limit.
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The geometrical characterization of physical objects is
central to much of our understanding of their energetics and
dynamics. The relevant geometries can be as simple as points
or gently curved surfaces. Many objects are not well de-
scribed by an integer dimension, but have a scale-dependent
measure that can be represented by a fractal dimension. For
example, continuous phase transitions in homogeneous sys-
tems have nonanalytic behavior consistent with fractal di-
mensions for the surfaces that separate phases. Evidence for
fractal domain walls is seen in scattering experiments and
numerical simulations. In models of glassy systems with
quenched disorder �frozen-in random fields�, analytic work
and numerical simulations indicate that domain walls can be
scale invariant and fractal at low temperatures. In two-
dimensional homogeneous systems, the additional symmetry
of conformal invariance often applies and yields detailed
predictions for critical exponents, the effects of boundary
conditions, and a background for physical explanations.

The conjunction of conformal invariance with the pres-
ence of a domain Markov property �DMP� in statistical me-
chanics models has led to an even more complete—and in
several cases mathematically rigorous—description of fractal
curves such as loop-erased random walks, percolation hulls,
and domain walls at phase transitions in two dimensions in
the scaling �i.e., continuum� limit.1,2 Schramm showed that
when both properties are present the probability measure on
these curves is described by a Schramm-Loewner evolution
SLE�.3 Random sequences of simple conformal maps can be
used to generate the fractal curves with the correct measure,
if the real-valued driving function that underlies the maps is
a Brownian motion. The diffusion coefficient � of the
Brownian motion uniquely parametrizes the process and is
related to the fractal dimension of the curve via df =1+� /8.
This deep connection has led to very precise characterization
of these curves for pure systems such as q-states Potts model,
O�n� models, and percolation.

An outstanding question is whether SLE can be applied to
other systems. Numerical evidence has been presented, for
example, that SLE describes certain isolines in 2D
turbulence.4 The broad question of whether and how confor-
mal invariance, a necessary condition for SLE, applies to
disordered systems is still very much open. Attempts to ex-
tend the apparatus of conformal field theory to systems with

quenched disorder, a notably difficult subject,5 have sug-
gested some numerical tests, such as finite size scaling.6 A
positive result was obtained recently for surface wave func-
tion multifractality at the 2D localization transition with
spin-orbit symmetry.7 Most importantly for our work,
Amoruso, Hartmann, Hastings, and Moore8 have suggested
that domain walls in the 2D spin glass have conformal in-
variance.

Here we directly investigate whether the domain wall sta-
tistics converges to an SLE�. We apply several tests. We
examine the winding of domain wall around a cylinder, as
well as the angular distribution of the curves and the dipolar
SLE hitting probability. We use an iterated slit map �dis-
cretized inverse Loewner evolution� to determine the driving
function and test whether it converges to Brownian motion.
We directly test the DMP by comparing precise domain wall
statistics in “whole” and “cut” domains. To determine the
significance of these tests, we carry out the same analyses for
the loop-erased random walk �LERW�, which has SLE2 as a
scaling limit, and for paths on minimal spanning trees
�MST�, which are not conformally invariant.10 We find that,
for one choice of boundary conditions �BCs�, the spin glass
domain wall passes all tests with a consistent value of �.

We study the domain walls in a 2D Ising spin glass �ISG�
with Gaussian disorder. We use the Edwards-Anderson
Hamiltonian H=−��ij�Jijsisj, with spins si= ±1 and where
the couplings Jij are each chosen from a Gaussian distribu-
tion with zero mean. The glass transition is at T=0; we study
the minimum energy states at T=0 using an exact optimiza-
tion algorithm12 and sample over disorder realizations. There
are two ground states, connected by a global spin flip, in any
finite sample. In the scaling picture based on domain walls
and droplets, introduced by McMillan,13 Bray and Moore,14

and Fisher and Huse,15 there are two ground states in the
thermodynamic limit.16,17 Domain walls �DWs� separate
these two ground states. The domain wall energy scales as
EDW�L� �Refs. 13–15� for DWs defined at scale L, with �
=−0.28�1�.

We work on a triangular lattice that has W spins in each of
L rows, as sketched in Fig. 1. Our samples are cylindrical,
with periodic rows. One can uniquely describe ground state
pairs by the bond satisfactions �ij =sgn�Jijsisj�, where
���ij =sgn���Jij� for any elementary triangle �. Periodic
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BCs result from fixing ��ij��p�
�ij =��ij��p�

sgn�Jij�, where
p� are the sets of boundary bonds on the upper ��=1�
and lower ��=2� edges BCs. Imposing ��ij��p�

�ij

=−��ij��p�
sgn�Jij� gives antiperiodic BCs �equivalent to a

change in the sign of the Jij along a column of bonds�. Com-
paring ground states for periodic and antiperiodic BCs gives
a domain wall, a simple path on the dual lattice that crosses
bonds whose satisfaction differs between the two BCs. A
domain wall is the minimizer of the cost function 2��ij���Fij,
with Fij =Jijsi

0sj
0 and si

0 the spins in the periodic ground state,
over open paths � from the bottom to the top of the cylinder.
In the ground state, the cost of any closed loop is positive.18

We refer to the domain wall found using this particular
periodic-antiperiodic BC comparison as “floating” �FPA�, as
the endpoints of the domain wall are not fixed. We also con-
sider a periodic-antiperiodic BC change where the domain
wall at one end is locally constrained to a single chosen bond
on the lower boundary �LPA�, i.e., a given �ij is reversed on
the lower boundary.

The choice of L and W give the cylinder shape, with the
circumference given by X=W and the length by Y
= ��3/2�L. Within our accuracy, average quantities converge
well for W�4L over the whole path and the results for the
first quarter of the path for W=L agree with those for W
	L. For comparison, we also study LERW curves and paths
between two points in the MST, both on honeycomb lattices;
LERW curves have dimension df =5/4 in the continuum
limit and MST paths appear to have a fractal dimension df
=1.217�3�.9

We estimate df for the domain wall by computing the

mean total path length S̄�L� of the domain wall, comparing

with S̄�L��Ldf, the overline indicating averages over �104

samples at sizes up 5
105 spins, and also by computing the
sample averaged distance from the origin as a function of
partial path length. We find df =1.28�1�, in statistical agree-

ment with previous work,11 for both FPA and LPA BCs.
We test conformal invariance and consistency with the

SLE description by measuring the winding of the FPA do-
main wall around long cylinders with Y 	X. The prediction
from SLE is that the variance of the transverse displacement
x of the end point from the starting location is �x2�= 4

� �df

−1�XY. We studied cylinders with 8�W�32 and up to L
=800 for at least 104 samples at each of at least eight values
of L. Our data is consistent with �

4 �x2� being linear in XY,
with a coefficient of 0.27±0.01 for L
4W, in agreement
with conformal invariance, again for both FPA and LPA BCs.

An important result19 from SLE is a prediction of the
probability that a curve generated by SLE will pass to the left
of a given point at polar coordinates �R ,�� �see Fig. 1 for
notation�. Given scale invariance, the probability that the
curve passes to the left of �R ,�� depends only on �, and the
theory of SLE can be used to predict19
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�



���	8 − �

2�

 cot���2F1�1

2
,
4

�
;
3

2
;− cot2���� ,

�1�

where 2F1 is the hypergeometric function and � is the diffu-
sion parameter from continuum SLE. Our results �Fig. 1� for
P��� depend on the choice of BC. For FPA BCs the mea-
sured P��� is most consistent with the analytical form in the
range �eff

F =2.32±0.08, consistent with the relation �=8�df

−1�. Our result is slightly higher, but more precise, than that
of Ref. 8. For LPA domain walls measured from the fixed
end, we find �eff

L =2.85±0.10. We find consistent BC-
dependent values20 using another test: a comparison of the
distribution for the displacement between the DW endpoints
with the form predicted using dipolar SLE,21 which describes
the limit X /Y →� for SLE curves that start at a given point
a and terminate on the upper boundary. Constraining the do-
main wall to start at a given point �LPA BCs�, rather than
choosing domain walls that start at a point �i.e., conditioning
on a� with FPA BCs, changes the effective �. Domain walls
with fixed endpoints are not consistently described by SLE�

over their entire length.
The boundary conditions appear not to affect the fractal

dimension, but clearly do affect more subtle aspects of the
geometry. A similar result holds for the LERW: absorbing
and reflecting boundary conditions both are consistent with
df =

5
4 ,2 but P��� is well fit by Eq. �1� with �=2 for absorbing

BCs, as expected, in contrast with P����� /� for reflecting
BCs.

Note that the LPA DW energy approaches a constant as
L→�, in contrast with EDW�L� for FPA DWs. This differ-
ence holds in general for ��0, as can be seen by summing
LPA domain wall energies defined over geometrically in-
creasing scales connecting the localized region to the large
scale. Essentially, the LPA constraint gives an O�1� correc-
tion to EDW from the cost of the single bond at the localized
end. Apparently, the optimization over successive scales dis-
torts the curve from the form expected from SLE, while op-
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FIG. 1. �Color online� Plots of P�� ,R�− P2���, where P�� ,R�
is the probability for the domain wall to pass to the left of a point
with polar coordinates �R ,�� �see inset�. The magnitude of statisti-
cal errors �not shown� is consistent with the apparent fluctuations of
the data lines. The predicted P2���=
�− 1

2 sin�2��� /� for �=2 is
subtracted to display small variations clearly. The data from FPA
paths agree with SLE predictions for � in the range 2.24��
�2.40, while LPA paths give ��2.85�10�. Inset: A domain wall of
length S=9 in a sample with L=4 rows and W=6 columns.
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timization over a single global scale gives results consistent
with SLE.

To more carefully inspect the correspondence with SLE,
we have used a discrete Loewner evolution to map the do-
main walls, represented by sequences of points zi

0=xi
0+ iyi

0,
i=1. . .S, in the complex half-plane, onto a real-valued se-
quence ��ti� defined at discrete ti, and studied the sample
statistics and correlations of the interpolated ��t�. For con-
tinuous curves generated by SLE, the underlying function
��t� is Brownian motion with diffusion constant �. The se-
quence is initialized by setting t0=0 and ��t0�=0. We then
recursively map the sequence �zi

i−1 , . . . ,zS
i−1� to the trans-

formed and shortened sequence �zi+1
i , . . . ,zS

i � using the map
appropriate for dipolar SLE �first defining �i=�yi

i /2Y�,

ti = ti−1 − 2�Y/��2 log
cos��i�� ; ��ti� = xi
i−1 �2�

zj
i = ��ti� +

2L

�
cosh−1�cosh���z − �i�

2L
�� cos��i�� .

These maps are a sequence of slit maps that successively
remove the first point from the sequence �see Fig. 2� and
maintain the hydrodynamic normalization used in SLE.

The simplest test for the diffusive property of ��t� is to
examine its distribution at fixed times. Our data for L2 /5
� t�50 are consistent with a Gaussian distribution for ��t�
with variance �2�t�=�efft �Fig. 2�. We have confirmed that
higher cumulants satisfy �2n�t�= �2n�!!��2�t��n for n=2,3 ,4,
within numerical error, for the same range of t. For compu-
tations of ��t� that start from a free end of a domain wall
�FPA boundary conditions or the free end of LPA BCs�, we
find �eff

F =2.24±0.08, while for computations starting from
the localized end with LPA BCs, we estimate �eff

L

�2.85±0.1, consistent with our estimates from P�� ,R�. We

note that �2�t� is also nearly linear in time for paths on the
MST, even though such paths are not conformally invariant,
but the coefficient is not consistent with the fractal dimen-
sion �see Ref. 10 for MST winding angle results�.

We have also tested the Markovian property for ��t�, i.e.,
that the changes in ��t� depend only on the current value of
��t� and not on previous values. We studied the correlation
function Cd�n�= �
��ti+n+1�−��ti+n��
��ti+1�−��ti��� at inter-
mediate times; it decays rapidly �by a factor of �100 over
the range n=2 to n=8� for both the spin glass and for the
LERW.20 Note that there must be short term correlations in
��t� on the lattice, as there are forbidden sequences of “turns”
for the domain wall.

Given that the Ising spin glass DW passes several SLE
tests, one must examine the domain Markov property �DMP�
in a disordered system. Let us call PD��ab� the probability
that the DW happens to coincide with the curve �ab in a
domain D �where a ,b are two given boundary points�. The
DMP �Ref. 22� states that if one conditions this probability
on a piece �ac of the curve, then the probability for the rest of
the curve �cb is identical to the original probability on the cut
domain D \�ac conditioned on curves starting at c, i.e.

PD��cb��ac� = PD\�ac
��cb�c� . �3�

Cutting the domain removes bonds that cross the segment
�ac. In pure statistical systems, Eq. �3� is an identity, given
proper BCs. One can easily check that the DMP holds in a
single realization of disorder. However, this property does
not survive disorder averaging �as conditioned probabilities
are ratio of probabilities� except for percolation SLE�=6 �be-
cause of locality�.

To evaluate the deviations from the DMP we have com-
puted numerically the ratio of sums of the two probabilities
in Eq. �3�. We generate domain walls in both whole cylinders
and in cylinders cut by all paths �1 of a chosen path length
s1. We sample at least 3
107 disorder configurations to
estimate the ratio r��1 ,�2�=��bc��2

PD\�1
��bc �c� /

��bc��2
PD��bc ��1�, with �1 starting at the lower boundary, �2

a subpath of �bc of path length s2, and �1 connecting to �2 at
c. If DMP holds strictly, r��1 ,�2��1. We summarize our
data in Fig. 3, where we plot the cumulative probability
C�x�=��1,�2�r��1,�2��xPD��1 ,�2� that r is less than x. We find
that in small samples with L=W=8, r is statistically distinct
from unity for larger ��2�. The largest deviations are seen for
�2 near to and parallel to �1. For comparison, we show re-
sults of the same analysis for the LERW with both absorbing
BCs �ALERW�, where r is unity within statistical error, and
for reflecting BCs �RLERW�, where r clearly deviates from
unity. In ISG simulations, C�x� is quite close to the curve for
ALERW. Our data cannot rule out the possibility of DMP
holding in the continuum limit.

It is tempting to conjecture that the emergence of the
DMP in the continuum limit follows from the existence of
“principal” minimizers, separated from each other on a scale
L. These are the basins of attraction for minimizing paths: if
the start of a DW is displaced from the minimizer’s start by
a scale ��L, the DW merges with principal minimizer
within a distance of order �.16 These minimizers are a result
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FIG. 2. �Color online� Plot of an effective diffusion constant
�eff=�2�2t�−�2�t� / t, for W�4L. Lines indicate �=2.24, 2.32, 2.40,
2.85, and 3.00. The range 2.24���2.40 fits the data for curves
with FAP BCs, while 2.85���3.00 describes the diffusion mea-
sured from a constrained domain wall end. Inset: Part of a sample
conversion of a domain wall in the 2D ISG to a sequence ��ti�, i
=1. . .S. The left curve is the initial domain wall with ��0�=0, while
the red �lighter� curve is the remainder after 500 applications of the
dipolar map, giving ��t500�7239.4��101.5.
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of finding shortest paths in a graph with negative weights
�but no negative weight loops�. In particular, this implies the
same statistics for the LPA and FPA BCs on a long cylinder.
In a broad strip �X	Y�, the differences between LPA and
FPA BCs must be related to the approach of the constrained
path to the principal minimizer over a sequence of scales.
Unlike local minimizers, principal minimizers are indepen-
dent of the direction in which they are traversed. We expect
that bulk segments of the LPA curves are well described
locally by SLE�. The conditioning of paths used in defining
the DMP may be related to the properties of the minimizing
paths.23 We also note that the LERW with reflecting BCs

passes the same set of tests of conformal invariance as the
LPA 2D ISG and fails the same set of tests of SLE�.

In conclusion, we have numerically sampled over geomet-
ric objects in a system with disorder, domain walls in the 2D
Ising spin glass, and tested their statistical geometric proper-
ties. We find that the domain walls pass to the left of a given
point with probability consistent with SLE, wind around long
cylinders in a manner consistent with conformal invariance,
and that the sequences of conformal maps that generate
DWs, i.e., Loewner evolutions ��t�, give a diffusion constant
�=2.32±0.08 in accord with a fractal dimension df
=1.28±0.01. We directly study the domain Markov property:
it fails in small systems, but we can not rule it out in larger
systems. This set of tests, whose utility is validated by appli-
cation to curves in LERW and MST, provides strong numeri-
cal support for a description of spin-glass domain walls with
unconstrained endpoints by SLE, implying both conformal
invariance and a domain Markov property on long scales.
Domain walls starting from a localized bond are not consis-
tent with the simplest form of SLE, though more complex
conformally invariant descriptions, e.g., SLE with drift such
as SLE�;� should be investigated.
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FIG. 3. �Color online� Plot of C�x�, cumulative probability of
ranked values for r��1 ,�2�, as defined in the text, with W=L=8.
Large deviations from r=1, as clearly seen for RLERW, indicate a
failure of the domain Markov property.
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