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We report an experiment on the determination of the quantum nondemolition �QND� nature of a readout
scheme of a quantum electrical circuit. The circuit is a superconducting quantum bit measured by microwave
reflectometry using a Josephson bifurcation amplifier. We perform a series of two subsequent measurements,
record their values and correlation, and quantify the QND character of this readout.
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I. INTRODUCTION

Performing repeated measurements on a single quantum
object has become possible with the technological advances
of the last 30 years. When the state of the system is de-
stroyed by the measuring apparatus, the quantum object has
to be prepared and measured in an identical manner a large
number of times so that the ensemble description of the ex-
periment is adequate.1 It was while developing methods and
techniques to detect gravitational waves with accuracy levels
exceeding the standard quantum limits1 that experiments
with repeated measurements were first envisioned. It is
within this context that the special kind of “quantum non-
demolition” �QND� measurement was designed and first
coined by Braginsky and Vorontsov in 1975.2 A QND mea-
surement is defined as a projective measurement where the
output state of the measured quantum object is unaffected by
subsequent measurements1,3 and by its free evolution �see
mathematical definitions in Sec. IV�. When the state, how-
ever, is disturbed by the measuring apparatus or by other
degrees of freedom during the measurement, one can still
quantify the disturbance by measuring the QND
“fractions”—i.e., the probabilities of leaving each possible
projected state unaffected by the measurement.

Here we report an experiment on a quantum electrical
circuit, the quantronium,4 where the QND fraction left by the
readout apparatus—namely, the Josephson bifurcation ampli-
fier �JBA�,5 coupled to a split Cooper pair box—was mea-
sured. We first start with a review of the quantronium and its
different components. Second, we describe the JBA measure-
ment principles and motivate its QND aspect. We then de-
scribe the experimental setup and present the experimental
results. Our data and model provide lower bounds on the
QND fractions of the JBA in this particular setup.

II. QUANTRONIUM CIRCUIT

The basic element of the quantronium circuit is a split
Cooper pair box �Fig. 1�. It consists of a low-capacitance
superconducting electrode, called the island, connected to a
superconducting reservoir by two parallel Josephson junc-
tions with capacitances Cj /2 and Josephson energies
EJ�1±d� /2, where d is the asymmetry factor quantifying the
difference between the two junctions �0�d�1�,4,6 EJ

=�0I0, I0 is the sum of the critical currents of the junctions,
and �0=� /2e is the reduced flux quantum. The island is
biased by a voltage source Vg0 in series with a gate capaci-
tance Cg. The second energy scale of the box is the Coulomb
energy ECP= �2e�2 /2�Cg+Cj�. For readout purposes, a larger
Josephson junction is inserted in the superconducting loop
formed by the island, the two junctions, and the reservoir.
The quantronium qubit is then described by the Hamiltonian

H = ECP�N̂ − Ng�2 − Ej�cos
�

2
cos �̂ − d sin

�

2
sin �̂� , �1�

where N̂ is the operator associated with the number of excess
Cooper pairs in the island, Ng=CgVg0 /2e is the reduced gate

charge, �̂ is the superconducting phase operator �“conjugate”

to N̂—i.e., ��̂ , N̂�= i�, and � is the superconducting phase
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FIG. 1. Quantronium circuit with preparation and readout ports.
The qubit consists of two Josephson junctions delimiting an island
�black node� and inserted in a superconducting loop. Its eigenstates
are tuned using the dc gate voltage Vg0 and the magnetic flux �
through the loop. Resonant microwave pulses Vg�t� are applied to
the gate to manipulate the qubit state. A larger junction and a shunt
capacitor C forming an anharmonic oscillator are inserted in the
loop for readout. A microwave readout pulse is sent to the system
by a microwave generator with internal impedance R=50 �. The
state-dependent inductive behavior of the qubit affects the plasma
resonance of the oscillator and modifies the phase � of the micro-
wave readout pulse reflected by the system. In the case of large
driving amplitudes, the dynamics of the superconducting phase 	
across the readout junction can bifurcate between two distinct dy-
namical states, leading to a jump of �.
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across the series combination of the two small junctions.
Hence this Hamiltonian can be tuned using the Ng and �
control knobs �considered as classical parameters for most
applications of interest�. For most values of �Ng ,��, the
Hamiltonian has a strongly anharmonic energy spectrum, al-
lowing a qubit—i.e., a quantum two-level system—to be en-
coded into the first two energy levels.4,6 In addition, by sym-
metry, the system possesses in this parameter space points
where �
01/�Ng=�
01/��=0. At these optimal working
points, the qubit is immune to dephasing arising from fluc-
tuations of Ng and �, up to first order.7

III. JOSEPHSON BIFURCATION AMPLIFIER READOUT

To implement a QND readout, we use a dispersive
method based on the reflection of a microwave pulse on the
parallel combination of the qubit with a nonlinear oscillator
made of the readout Josephson junction and an on-chip ca-
pacitance. This scheme is called the Josephson bifurcation
amplifier5 �see Fig. 1�. Its operating principle relies on the
fact that the dynamics of the phase 	 across the readout
junction depends on the total inductance of the circuit, itself
dependent on the qubit state. The phases � and 	 are linked
by the relation �=	+� /�0, where � is the flux threading the
quantronium loop. When sending a microwave signal onto
the circuit, the classical equation of motion of the phase
across the readout junction, assuming the qubit remains in
one of the instantaneous qubit eigenstates �0(��t�)� or
�1(��t�)� �adiabatic limit8�, is

RC�0	̈ + �0	̇ + R�I0 sin 	 +
1

�0

�E0,1

��
� = U�t� , �2�

where the reader can refer to Fig. 1 to identify the different
variables and E0,1 denote the energies for the ground and first
excited states �0� and �1�, respectively. In this paper, the cir-
cuit is operated only at �=0, which implies �=	 and corre-
sponds to an optimal point for 	=0. Taylor-expanding
eigenenergies to second order yields

�3�

where L0,1 denote the effective qubit inductances corre-
sponding to the states �0� and �1�. This scheme therefore con-
stitutes a dispersive measurement in the sense that the second
derivative of the energy with respect to � is measured. For
small excursions of the phase 	, the dynamics is the one of a
damped harmonic oscillator. As the microwave power is in-
creased, one enters the nonlinear regime of the oscillator.
When the detuning of the microwave frequency with respect
to the plasma frequency �p of the readout junction, ��
=�p−�, is such that ��
 �	3/2Q��p and when the drive
current U /R
 IB, where IB is the bifurcation current given in
Ref. 9 and Q=�pRC is the quality factor of the readout junc-
tion, the resonator switches from a small-amplitude to a
large-amplitude state, these two dynamical states having dif-
ferent phases � of oscillation.10 This phenomenon has a

probabilistic nature in both quantum and thermal regimes. In
our experiment, it occurs at the thermal to quantum cross-
over kBT=��p,11 and the frequency and amplitude of the
drive current can be tuned so that the system bifurcates with
a high �low� probability when the qubit is in state �1� ��0��.
This bifurcation is detected by measuring the phase � using
homodyne demodulation. The method allows single-shot dis-
crimination of the inductances L0,1 and hence of the qubit
states.

IV. QND CHARACTER OF THE JBA MEASURING THE
QUANTRONIUM

When studying a measurement problem quantum me-
chanically, the total system is often conveniently described
with the following Hamiltonian:1,3,12

Htot = HS + HP + HI, �4�

where HS, HP, and HI are the system, the probe �the measur-
ing apparatus�, and their interaction Hamiltonians, respec-
tively. When trying to measure an observable AS, one should
obviously have �HI /�AS�0. The standard conditions to have
a QND measurement are the following.3

�i� �HI ,AS�=0⇒ there is no back action of the measuring
device on the measured observable.

�ii� �HS ,AS�=0⇒ a subsequent free evolution after the
measurement leaves the projected state of the system unaf-
fected.

After the projection of the first measurement, subsequent
free evolutions and measurements always yield the same out-
come. When �HS ,HI��0, determining the basis into which
the wave function collapses, the so-called pointer states
basis,12 can be a difficult task. Cucchietti et al. indeed show
the rotation of that pointer basis with the relative strengths of
the system and interaction Hamiltonians in the case of a cen-
tral spin system coupled to a spin environment.13 We now
show, however, that for the JBA with a low-asymmetry fac-
tor d there is no ambiguity in the two-level approximation.

We now write the total Hamiltonian of the quantronium
coupled to the readout junction under irradiation:

Htot = ECP�N̂ − Ng�2 − EJ
cos��̂� � cos� �̂

2
� − d sin��̂�

� sin� �̂

2
�� +

Q̂2

2C
− EJ0 cos��̂� −

U�t�
R

�0�̂ , �5�

where EJ0 is the Josephson energy of the readout junction

and ��0�̂ , Q̂�= i�. Note that the dissipation of the anharmonic
oscillator was not included here for the sake of simplicity.
The structure of Htot should make the correspondence with
Eq. �4� obvious. However, because the coupling between the
system and the measuring apparatus is strong—i.e., EJ

�ECP—and because under no irradiation 
cos��̂ /2���1, we
recast the Hamiltonian as
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�6�

To simplify our analysis, we now restrict ourselves to the
first two energy eigenstates of the system, supposed to be
biased at the optimum Ng=1/2. With this truncation, the
Hamiltonian can be conveniently reexpressed as Eq. �4� with

HS = −
��01

2
�z,

HI = − ���z � 
cos� �̂

2
� − 1� − ��y � sin� �̂

2
�� ,

HP =
Q̂2

2C
− EJ0 cos��̂� −

U�t�
R

�0�̂ , �7�

where �z,y denote the Pauli spin matrices, �=EJ�
0�cos �̂�0�
− 
1�cos �̂�1�� /2, and �= idEJ�
0�sin �̂�1�− 
1�sin �̂�0�� /2.
With AS=�z, the QND conditions are fulfilled in the limit
d=0. By symmetry, when d is not strictly equal to zero, we
expect a correction to the QND fraction of order d2.

V. MEASURING THE QND FRACTIONS

A. Experimental setup

The sample �see SEM inset of Fig. 2� was fabricated on
an oxidized Si chip using standard double-angle evaporation
and oxidation of aluminum through a shadow mask patterned
by e-beam lithography. The sample was mounted on the cold
plate of a dilution refrigerator and wired as indicated in Fig.
2. The JBA setup used at CEA is similar to the one described
in Ref. 5. The plasma frequency of the sample was lowered
in the 1–2 GHz bandwidth by adding an on chip capacitor
equal to 33 pF in parallel with the junction. It is then easier
to control the macroscopic electromagnetic environment in
this frequency range than at higher frequencies. Furthermore,
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FIG. 2. Experimental setup of the JBA readout. The probing pulses come from the continuous microwave source mixed with a dc pulse
VM�t� �middle left inset�, consisting of a first plateau aimed at inducing the bifurcation or not and of a latching period for measuring the phase
�. The resulting microwave pulses propagate to the microfabricated circuit �bottom left SEM micrograph� along a filtered attenuated line and
a directional coupler. The reflected pulse travels through the coupler and to the amplification stage via three cascaded circulators. Then it
undergoes a homodyne demodulation; one of the quadratures is recorded with respect to time. The top right inset shows in gray levels
thousands of superposed records, with one of them emphasized �shaded line�. The observed quadrature either follows the envelope of the
readout pulse when no bifurcation occurs �bottom traces, readout outcome r= l� or switches upwards in the opposite case �readout outcome
r=h�, corresponding to a phase jump. A threshold �dashed line� is used to count the switching events and deduce a switching probability.
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the thermal population of the resonator is still negligible
���p /kBT=3�. For generating and demodulating the micro-
wave pulses, the output of a microwave generator is split into
two channels. One of the channels is used for the homodyne
detection of the reflected signal on the system, while the
other one is mixed �using Minicircuit ZEM-4300MH mixers�
with pulses coming from an arbitrary wave-form generator.
The resulting microwave pulses are then sent to the micro-
wave excitation line, which is strongly attenuated in order to
use the full dynamical range of the microwave generator, and
thus increase the signal-to-noise ratio at the level of the
sample. At 30 mK, this line is coupled to the sample through
a directionnal coupler �−16 dB coupling� via a 3-dB attenu-
ator to avoid standing waves between the sample and the
directional coupler. This main line is strongly filtered �band-
width of 1.2–1.8 GHz� in order to avoid spurious excitation
in the qubit by the external noise. After going through two
circulators at 30 mK, the signal is amplified by a cryogenic
amplifier �Quinstar L-1.5-30 H� with a noise temperature
TN=2.2 K at 1.5 GHz. A third circulator completes the total
isolation of the line to 75 dB which provides a strong attenu-
ation of the room-temperature noise in the bandwidth of in-
terest. A second stage of amplification is required and is pro-
vided by an amplifier �Miteq AFS4� placed at room
temperature. The amplified signal goes through a bandpass
filter �K&L-5BT-1000/2000� centered at a tunable frequency
and having a bandwidth of about 100 MHz in order to sup-
press the main part of the noise generated by the amplifier
and which could saturate the demodulation card. This de-
modulation card �Analog Device AD8347� provides the in-
phase and quadrature components of the reflected microwave
with respect to the carrier reference. Demodulated signals
showing no bifurcation �readout outcome r= l� or bifurcation
�readout outcome r=h� are shown in Fig. 2.

The parameters of the sample, determined by electrical
measurements and by spectroscopy of the qubit, were ECP
=1.12 K, EJ=0.39 K, d�0.1, EJ0=20.3 K, and C=33 pF,
which led to ��0.2 K, ��0.02 K, and �01/2��8.1 GHz.
We have coherently manipulated the quantronium state,
achieving 55%-contrast Rabi oscillations as opposed to 40%
with the dc switching readout scheme previously used.14,15

The discrepancy between the experimental contrast and the
one expected theoretically ��90% �Ref. 15�� can be partially
attributed to spurious relaxation during the readout pulse.
Indeed, the ac Stark shift of the qubit due to the applied
microwave modifies the transition frequency and can make it
cross electromagnetic resonances able to relax the qubit very
efficiently.5

B. Experimental results

To measure the two QND fractions of the JBA, we pre-
pared the states �0� and �1� in distinct experiments, then sent
two successive nominally identical measurement pulses, re-
corded the switching events for both measurements, and ex-
tracted their correlations. The �1� state was prepared by ap-
plying a � pulse, whose power and duration were deduced
from the analysis of Rabi oscillations, while the �0� state was
simply obtained by letting the system relax to the ground

state. The experiment schematics is provided in Fig. 3. The
probabilities p��i� ,rA ,rB� of the possible outcomes rA and rB

�r= l or r=h� for the two readouts A and B, starting from
state �i� ��0� or �1�� before readout, were measured over 2
�104 events �see Fig. 3�c��. If the readout discrimination
between both qubit states was perfect, one could infer the
QND fraction directly from the second answer rB. The situ-
ation here, however, is a bit more complex due to the imper-
fect fidelity of the readout. We thus introduce the probabili-
ties
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FIG. 3. Measurement of the QND fractions of the quantronium-
JBA system. Panel �a�: the qubit is prepared in state 1 �0� by apply-
ing a gate � pulse �no � pulse�. Then two adjacent readout pulses A
and B are applied. The two successive output quadrature voltages
are averaged during the last 100 ns of the latching period of the
pulses. Panel �b�: bivalued histograms of the quadrature voltages
�open symbols, no � pulse; solid symbols, � pulse�. The top and
bottom peaks correspond to bifurcation �readout r=h� and no bifur-
cation �readout r= l�, respectively. A threshold �dashed horizontal
line� leads to the determination of the bifurcation probabilities.
Panel �c�: the eight probabilities of getting two successive responses
�rA ,rB�.
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PA��i�,r, �f�� �8�

for getting the response r at readout A starting from state �i�
before and leaving the qubit in state �f� after. Like the data
set p, the probability set PA contains eight variables con-
strained by two normalization relations—i.e., six indepen-
dent variables. We also introduce for both states the probabil-
ity PA,B��i� ,r� to obtain a given answer, whatever the final
state. Although the pulses A and B are nominally identical,
the switching rate is so sensitive to small changes of the
microwave amplitude a of the readout pulses that it is nec-
essary to introduce a small uncontrolled amplitude difference
�a between both pulses. In order to deal with this complica-
tion, we have independently measured �data not shown� the
derivative of the switching probabilities �PA��i� ,r=h� /�a,
which allows us to evaluate the effect of a small amplitude
change. Besides, direct observation of the microwave pulses
with an oscilloscope provides an upper bound ��a /a�
�0.5% for such uncontrolled amplitude differences between
the two readout pulses. The set of equations linking the prob-
abilities introduced in the model is

p��i�,rA,rB� = �
f=0,1

PA��i�,rA, �f��PB��f�,rB� , �9�

where

PB��f�,rB� = PA��f�,rB� + �PA��f�,rB�/�a�a . �10�

The probabilities PA��i� ,rB� are readily obtained from Eq. �9�
by summing over the possible outcomes of the second mea-
surement:

PA��i�,rA� = �
rB=l,h

p��i�,rA,rB� . �11�

The system to solve is thus a linear system depending on the
parameter �a. We find that it yields acceptable solutions—
i.e., with positive values in the range �0,1�—only for �a /a
�−0.4%. Taking into account the upper bound already men-
tioned, ��a /a��0.5%, and the error bars in the measured
probabilities, we obtain the solution given in Fig. 4, which
yields the following QND fractions for both qubit states:

q1 = �
rA=l,h

PA��1�,rA, �1�� = 34 % ± 2 % , �12�

q0 = �
rA=l,h

PA��0�,rA, �0�� = 100 % + 0 – 2 % . �13�

The large departure from perfect QND readout observed
in this experiment cannot be attributed to the nonzero asym-
metry factor d�0.1, which would yield corrections of at
most 1%. Besides, our results are to be compared with the
ones obtained in similar JBA readout experiments performed
on a quantronium at Yale �q0=100%, q1=55% ±5% �Ref.
16�� and on a flux-qubit at T.U. Delft �q0=100% and q1

76% �Ref. 17��. The difference between the couplings of
these two circuits to their environments may explain the dif-
ferences observed for the QND character and for the readout
fidelity. Although the theory in the two-level approximation
predicts the JBA measurement to be a QND process, it is
clear that during the measurement itself, other environmental

degrees of freedom interact with the system and cause it to
relax, thus reducing the contrast of the Rabi oscillations.7 As
a consequence, all we can directly characterize is the com-
bined action of the measurement itself and the environment
on the qubit. Whether the JBA scheme itself is fully QND or
not can be eventually inferred using additional independent
relaxation time, T1, measurements. Using the T1 value at the
optimal point, one can estimate the QND fraction, correcting
for the relaxation that would occur if no readout pulse was
applied—i.e., for �=0. The zeroth-order loss being 1−exp
�−t /T1�=0.20, with T1=1.3 �s, the corrected QND fraction
for state �1� is thus 54% ±2%. However, this value must be
considered with caution since there is no proof that relax-
ation during the readout pulse is the same as during free
evolution. Indeed, one should bear in mind that T1 greatly
depends on the spectral density of the available states for
qubit decay. This density can vary significantly with the qu-
bit frequency,7 which is changed by the Stark shift due to the
ac excitation.9

VI. CONCLUSION

We have analyzed and characterized the quantum non-
demolition aspect of the JBA readout scheme for the quant-
ronium. For vanishing asymmetry, in the two-level approxi-
mation, the theory predicts a QND measurement. We have
carried out an experiment consisting of preparing two or-
thogonal qubit states and then sending a series of two subse-
quent measurement pulses in order to measure both out-
comes and their correlation. Using our model and data, we
were able to obtain bounds on the QND fractions of this
measurement scheme. The results obtained show that the
QND character of the JBA readout of the quantronium is less
perfect than expected, but the reasons for this discrepancy
are not understood presently. Additional measurements of the
T1 dependence on the control parameters and a better control
of the measurement pulse shapes in our experimental setup
should lead to a more precise estimation of the QND frac-
tions and of the parameters that affect it.
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