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A detailed theory of a phase diagram of a two-dimensional surface superconductor in a parallel magnetic
field is presented. A spin-orbital interaction of the Rashba type is known to produce at a high magnetic field h
�and in the absence of impurities� an inhomogeneous superconductive phase similar to the Larkin-
Ovchinnikov-Fulde-Ferrel �LOFF� �Zh. Eksp. Teor. Fiz. 47, 1136 �1964� �Sov. Phys. JETP. 20, 762 �1965��;
Phys. Rev. 135, A550 �1964�� state with an order parameter ��r��cos�Qr�. We consider the case of a strong
Rashba interaction with the spin-orbital splitting �mvF �where � is the Rashba velocity� much larger than the
superconductive gap �, and show that at low temperatures T�0.4Tc0 the LOFF-type state is separated from the
usual homogeneous state by a first-order phase transition line. At higher temperatures, a different inhomoge-
neous “helical” state with ��r��exp�iQr� intervenes between the uniform BCS state and the LOFF-like state
at g�Bh�1.5Tc0. The modulation vector Q in both phases is of the order of g�Bh /vF. The superfluid density
ns

yy vanishes in the region around the second-order transition line between the BCS state and the helical state.
Nonmagnetic impurities suppress both inhomogeneous states and eliminate them completely at Tc0��0.11.
However, once an account is made of the next-order term over the small parameter � /vF�1, a relatively long
wave helical modulation with Q�g�Bh� /vF

2 is found to develop from the BCS state. This ground state carries
zero current in the thermodynamic limit; however, under the cyclic boundary conditions a kind of “spin-orbital
Little-Parks oscillations” �Phys. Rev. Lett. 9, 9 �1962�� is predicted. The long-wave helical modulation is
stable with respect to disorder. In addition, we show that vortex defects with a continuous core may exist near
the phase boundary between the helical and the LOFF-like states. In particular, in the LOFF-like state these
defects may carry a half-integer flux.
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I. INTRODUCTION

There are experimental indications1 in favor of the exis-
tence of superconductive states localized on a surface of non-
superconductive �or even insulating� bulk material. Such a
superconductive state should possess a number of unusual
features due to the absence of the symmetry “up” vs “down”
near the surface: the condensate wave function is neither
singlet nor triplet, but a mixture of both;2,3 the Pauli suscep-
tibility is enhanced at low temperatures3 �as compared with
the usual superconductors�; the paramagnetic breakdown of
the superconductivity in a parallel magnetic field is moved
toward much higher field values due to a formation of an
inhomogeneous superconductive state4 similar to the one
predicted by Larkin and Ovchinnikov5 and Fulde and Ferrel6

�LOFF� for a ferromagnetic superconductor. All these fea-
tures stem from the chiral subband splitting of the free elec-
tron spectrum at the surface, due to the presence of the spin-
orbital Rashba term;7 the magnitude of this splitting �pF is
small compared to the Fermi energy but can be rather large
with respect to other energies in the problem. The line of
transition from normal to �any of� superconductive state
Tc�h� was determined in Ref. 4; however, the nature of the
transition between the usual homogeneous �BCS� supercon-
ductive state at low fields and the LOFF-like state at high
fields was not studied.

In this paper, we provide a detailed study of the phase
diagram of a surface superconductor in a parallel magnetic

field h �a brief account of our results was published in Ref.
8�. We show that at moderate values of h�Tc /�B, the be-
havior of this system is rather different from the two-
dimensional �2D� LOFF model of Ref. 9. Namely, we dem-
onstrate the existence of a short-wavelength helical state
with an order parameter ��exp�iQr� �where Q�h and Q
��Bh /vF� in a considerable part of the phase diagram,
which is summarized in Fig. 1. The line LT is the second-
order transition line separating the helical state from the ho-
mogeneous superconductor. Below the T point, a direct first-
order transition between the homogeneous and the LOFF-
like state takes place. The line TO shown in Fig. 1 marks the
border of metastability of the BCS state; we expect that the
actual first-order transition line is �slightly� shifted toward
lower H values. The line ST� marks the second-order transi-
tion between the helical and the LOFF-like state. The above
results are valid within the leading �the zeroth-order� ap-
proximation over the small parameter � /vF�1; an account
of the terms linear in � /vF�1 leads, in agreement with Ref.
10, to the transformation of the uniform BCS state into a
long-wavelength helical state with a wave vector q
��H /vF

2 at the lowest magnetic fields. Therefore, the LT
line is actually a line of a sharp crossover �with a relative
width of the order of � /vF� between the long- and the short-
wavelength phases.

The rest of the paper is organized as follows. In Sec. II,
we introduce a model of a spin-orbital superconductor in a
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parallel magnetic field, with a hierarchy of energies Tc
��pF�	F. Most of the results in the paper are obtained
within the “zeroth-order approximation” over the parameter
� /vF. However, at the same time we always assume that the
condition �pF
Tc is satisfied, i.e., the energy splitting be-
tween the chiral subbands is large compared to all the super-
conductive energy scales. In Sec. III, we derive the
Ginzburg-Landau functional for an inhomogeneous ground
state. On the Tc�H� line, we find two critical points, the Lif-
shitz point L and the symmetric point S, and demonstrate the
existence of a “helical” state with an order parameter ��r�
�exp�iQr� and a large Q�H /vF. The point S on the Tc�H�
line is special in the sense that there the order-parameter
symmetry is enhanced to U�2� from the usual U�1�. That
leads to unusual vortex textures discussed in Sec. IV. In par-
ticular, vortices with half-integer flux are predicted for the
LOFF-like state. In Sec. V, we derive the two stationary con-
ditions for the helical state, which determine the equilibrium
� and Q. The latter allows establishing the boundaries of
stability of the BCS and helical state: the Lifshitz line termi-
nating in the critical Landau point T and a line starting in the
symmetric point S. We show that the helical state and the
parity-even �stripe� phase are separated by two phase transi-
tions of the second order and an intervening additional su-
perconducting phase. In Sec. VI, we prove that the electric
current is zero in the ground state; then, we show that the
supercurrent response to the vector potential component Ay
=AQ /Q vanishes at the LT line, whereas within the helical
state both components of the superfluid density tensor n̂s are
of the same magnitude as the superfluid density in the BCS
state. In Sec. VII, we explore the influence on the phase
diagram of the terms linear in � /vF�1. We show that at low
magnetic fields, the ground state is realized as a weakly he-
lical state with zero current. A special geometry is proposed
when an oscillating supercurrent in the ground state of the

helical phase may flow. In Sec. VIII, we study the effect of
the nonmagnetic impurities on the phase diagram. We show
that in the relatively clean case, the paramagnetic critical
field is quickly suppressed by disorder and the position of the
Lifshitz point is shifted toward higher magnetic field values.
We find the critical strength of disorder above which all
short-wavelength inhomogeneous states are eliminated from
the phase diagram; in terms of an elastic scattering time �,
this condition reads �c=0.11� /Tc0. At ���c, the only phase
which survives is the “weakly helical” state with Q
=4�H /vF

2; in this regime the paramagnetic critical field starts
to increase with disorder, and at ���c, we find Hc��−1/2. In
Sec. IX, we go beyond the mean-field approximation and
study the modifications of the transition line Tc�H� due to the
Berezinsky-Kosterlitz-Thouless �BKT� vortex depairing
transition. We demonstrate that vortex fluctuations are
strongly enhanced near the points L and S, leading to local
downward deformations of the actual TBKT�H� line.

II. MODEL OF A SPIN-ORBITAL SUPERCONDUCTOR

Near the surface of a crystal, translational symmetry is
reduced and inversion symmetry is broken even if it is
present in the bulk. �The component of the electron momen-
tum p̂ parallel to the interface is conserved because of the
remaining 2D translational symmetry.� As a result, a trans-
verse electrical field appears near the surface, where con-
ducting electrons are supposed to be localized in the trans-
verse direction; in particular, in the case of Na-doped WO3
studied in Ref. 1, the thickness of conducting layer is prob-
ably in the 1 nm scale. The electron spin couples to this
electric field due to the Rashba spin-orbit interaction7

HSO = ��̂ � p̂� · n , �1�

where ��0 is the spin-orbit coupling constant, n is a unit
vector perpendicular to the surface, and ̂= �̂x , ̂y , ̂z� are

0.8
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FIG. 1. �Color online� A phase diagram that shows a superconducting phase transition line Tc�H� �solid� and two second-order phase
transition lines in the clean case, an LT line between the homogeneous �BCS� and the helical �h.� state and an ST� line of stability of the
helical state. The dotted line going downward from point T to point O marks the absolute limit of stability of the BCS state. The cross
indicates the Lifshitz point L and the circle indicates the symmetric point S. The line of transition into the gapless superconductivity H
=� is marked with a dashed line.
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the Pauli matrices. This interaction explicitly violates inver-
sion symmetry. The electron spin operator does not commute
with the Rashba term; thus, the spin projection is not a good
quantum number. On the other hand, the chirality operator
�̂� ê� ·n commutes with the Hamiltonian. Here, ê= p̂ / p is
the momentum direction operator with eigenvalues ep
= �cos �p , sin �p�, where �p is the angle between the momen-
tum of the electron and the x axis. The chirality operator
eigenvalues �= ±1 together with the momentum constitute
the quantum numbers of the electron state �p ,��. The Rashba
term �1� preserves the Kramers degeneracy of the electron
states; thus, the states �p ,�� and �−p ,�� belong to the same
energy.

In this paper, we consider the simplest model3 of a surface
superconductor: a BCS model for a two-dimensional metal
with the Rashba term �1�, in the limit �pF
Tc. The Hamil-
tonian written in the coordinate representation reads

Ĥ =� ��
+�r�ĥ���r�d2r −

U

2
� ��

+��
+����d2r , �2�

with the one-particle Hamiltonian operator

ĥ = � P̂2

2m
��� + ��̂�� � P̂� · n − g�Bh · ̂��/2	 , �3�

where m is the electron mass, � and � are the spin indices,

and P̂=−i�− e
cA�r� is the momentum operator in the pres-

ence of an infinitesimal in-plane vector potential A=A�r�,
with e�0 the electron charge. We have included into the
Hamiltonian the Zeeman interaction with a uniform external
magnetic field h parallel to the interface, assuming h to be in
the x direction. The vector potential of such a field can be
chosen to have only the z component; therefore, it decouples
from the 2D kinetic energy term. �B is the Bohr magneton
and g is the Landé factor. Hereafter, we use a notation H
=g�Bh /2.

The electron operator can be expanded in the basis of

plane waves, �̂��r�=
p,�eipra�p, and the one-particle part of
the Hamiltonian �2� in the momentum representation can be

written as a sum of Ĥ0 and Ĥem:

Ĥ0 = 

p

a�p
+ � p2

2m
1̂ + ��̂�� � p� · n − H · ̂��	a�p,

Ĥem = 

p

a�p
+ �−

1

c
ĵA	a�p. �4�

Here, the current operator is

ĵ = − e�p̂/m − ��̂ � n�� −
e2

2mc
A . �5�

The Hamiltonian Ĥ0 can be diagonalized by the transfor-
mation a�p=����p�â�p with the two-component spinor

���p� =
1
�2

� 1

i� exp�i�p�H��
	 , �6�

where

�p�H� = arcsin
�py − H

���p�2 − 2�pyH + H2
. �7�

The eigenvalues of the Hamiltonian �4�, corresponding to the
chiralities �= ±1, are

	��p� = p2/2m − ����p�2 − 2�pyH + H2; �8�

thus, at H=0 the equal-momentum electron states are split in
energy by 2�pF. The two Fermi circles, corresponding to the
different chiralities, have Fermi momenta pF

±

=�2m�+m2�2±m�, where �
m�2 is the chemical poten-
tial. The density of states on the two Fermi circles is almost
the same, �±= m

2� �1± �
vF

�. In the main part of the paper, we
neglect the difference �+−�−. The effects related to �+��−
will be considered in Sec. VII. When an external magnetic
field is applied, these two Fermi circles are displaced in op-
posite y directions by a momentum Q= ±H /vF independent
on �, as shown in Fig. 2.

The two-particle pairing interaction in Hamiltonian �2� in
the momentum representation reads

−
U

2 

pp�q

a�p+q/2
+ a�−p+q/2

+ a�−p�+q/2a�p�+q/2, �9�

and can be simplified in the chiral basis �6�, assuming H
��pF��. In the long-wavelength limit q�pF, it can be
factorized as

Ĥint = −
U

4 

q

Â+�q�Â�q� , �10�

where the pair annihilation operator

Â�q� = 

p,�

�ei�pa�−p+q/2a�p+q/2. �11�

Here, �ei�p is the wave function of the Cooper pair in the
chiral basis and it changes sign under the substitution −p for
p.

To calculate the thermodynamic potential �=−T ln Z, we
employ the imaginary-time functional integration technique
with the Grassmanian electron fields a�p , ā�p and introduce
an auxiliary complex field ��r ,�� to decouple the pairing
term Hint �see Ref. 11�. The resulting effective Lagrangian is

FIG. 2. �Color online� When an external magnetic field H
��pF is applied in the x direction, the two Fermi circles corre-
sponding to the different chiralities �= ±1 are shifted in opposite y
directions by a small momentum Q= ±H /vF. The circle corre-
sponding to one of the chiralities is larger than the other by the
relative amount of � /vF.
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L�a, ā,�,�*� = 

p,�

ā�p�− �� − 	��p��a�p

+ 

q
�−

�q2

U
+

1

2

p,�

��q�e−i�pā�,p+q/2ā�,−p+q/2

+ �q
*�ei�pa�,−p+q/2a�,p+q/2�� . �12�

The thermodynamic potential �=−T ln Z describes a system
in equilibrium, where Z is the grand partition function. We
express � as a zero-field limit of a generating functional
�=��� , �̄��→0:

exp�−
���,�̄�

T
	 =� D�D�* exp�−

���,�̄,�,�*�
T

	
=� DaDāD�D�*

�exp��
0

1/T �L�a, ā,�,�*�

+ 

p

��̄��p�a��p� + ā��p����p���d�	 .

�13�

Below, we will work within the mean-field approxima-
tion, which is controlled by the smallness of the Ginzburg
number Gi. However, for a clean 2D superconductor Gi
�Tc /EF may be non-negligible �we discuss the fluctuational
effects in the end of this paper�. The mean-field approxima-
tion is equivalent to the saddle-point approximation for the
functional integral over � and �* defined in the first line in
Eq. �13�. In other terms, we will study the minima of the
functional ��� ,�*�, which comes about after integration
over the Grassmanian fields in the functional integral defined
in the second line of Eq. �13�,

����,�*�
����r�

= 0. �14�

To evaluate the thermodynamic potential ��� ,�*�, we will
use the Green’s function method. The electron Green’s func-
tion is defined as a variational derivative of the generating
functional:

G��r,��r�� = � ����,�̄�
��̄��r������r��

�
�→0

. �15�

In the next section, we determine the line of the supercon-
ducting transition Tc�H� and locate two special points on this
line, L and T, which designate the boundaries of different
superconductive states.

III. SUPERCONDUCTING PHASE TRANSITION

Near the phase transition from a normal metal to a super-
conductor, the order parameter ��r� is small. Therefore, the

thermodynamic potential � may be expanded in powers of
��r� and its gradients. This is known as the Ginzburg-
Landau functional. It has been shown by Barzykin and
Gor’kov4 that the ground state can be inhomogeneous in the
direction perpendicular to the magnetic field. We consider
the order parameter as a superposition of a finite number of
harmonics:

��r� = 

i

�Qi
�r�exp�iQir� , �16�

where �Qi
�r� are slowly varying envelope functions. The

corresponding Ginzburg-Landau functional is

�sn =� �

i

�QiQi
�Qi

�r�2

+ 

ijkl

�QiQjQkQl
�Qi

�r��Qj

* �r��Qk
�r��Ql

* �r�

��Qi+Qk−Qj−Ql

+ 

i

cQiQi

x ��− i�
�

�x
−

2e

c
Ax�r�	�Qi

�r��2

+ 

i

cQiQi

y ��− i�
�

�y
−

2e

c
Ay�r�	�Qi

�r��2�d2r .

�17�

The coefficient �QQ is given by the Cooper loop diagram
with transferred momentum Q �Fig. 3�. The coefficients
�QQQQ and �QQ−Q−Q are determined by four-Green’s-
function loop integrals:

�QQ =
1

U
−

T

2 

�,p,�

G���,p + Q/2�G��− �,− p + Q/2� ,

�18�

�QQQQ = T 

�,p,�

G�
2��,p + Q/2�G�

2�− �,− p + Q/2� ,

�QQ−Q−Q = T 

�,p,�

G�
2��,p + Q/2�G��− �,− p + Q/2�

�G��− �,− p + 3Q/2� , �19�

FIG. 3. �Color online� A Cooper loop with transferred momen-
tum Q.

OL’GA DIMITROVA AND M. V. FEIGEL’MAN PHYSICAL REVIEW B 76, 014522 �2007�

014522-4



cQQ
� =

1

2

�2

�q�
2 ��Qey + q�e�� . �20�

Here, the normal state Green’s function in an external in-
plane magnetic field H��pF is

G���,p� =
1

i� − ���p� − �H sin �p
, �21�

where �=2��n+ 1
2

�T is the Matsubara frequency, n is an in-
teger, and the quasiparticle dispersion

���p� = p2/2m − ��pF − � �22�

is assumed to be small compared to �pF. The integrals over
the momenta in Eqs. �18� and �19� are calculated in the semi-
classical approximation:

� d2p

�2��2 = ���	F��
−�

�

d���
0

2� d�

2�
. �23�

In this section, we will calculate all diagrams in the zeroth
order over the parameter � /vF�1 �i.e., we approximate
���	F����	F��; the effect of the terms of the order of
O�� /vF� will be discussed in Sec. VII below. Note that the
neglect of the terms �� /vF does not mean that the Rashba
velocity is set to zero, since we always assume the condition
�pF
Tc to be fulfilled.

Integrating over the momenta p in the Ginzburg-Landau
functional coefficients �Fig. 4� gives

�QQ =
1

U
− ���	F�T 


��0,�

1

��2 + H�
2

, �24�

�QQQQ =
��	F�

4
�T 


��0,�

2�2 − H�
2

��2 + H�
2�5/2 ,

�QQ−Q−Q =
��	F�

2
�T 


��0,�

�2�2 + H�
2�

�2��2 + H�
2�3/2

H�

vFQ
, �25�

cQQ
x = c−Q−Q

x = −
1

2
�vF

2
	2

���	F�T

�,�

1

��2 + H�
2�3/2 ,

cQQ
y = c−Q−Q

y = −
1

2
�vF

2
	2

���	F�T

�,�

2H�
2 − �2

��2 + H�
2�5/2 , �26�

where

H� = �H + vFQ/2. �27�

Note that in the Ginzburg-Landau functional �17�, the coef-
ficients �QQQQ=�−Q−Q−Q−Q correspond to the terms �Q4
and �−Q4 and the coefficient corresponding to the term
�Q2�−Q2 is a sum of the four equal coefficients �QQ−Q−Q
=�Q−Q−QQ=�−Q−QQQ=�−QQQ−Q.

The condition �QQ=0 determines the second-order transi-
tion line �if �QQQQ�0� between the normal metal and the
superconductor:

1

U
= ��	F�T max

Q



��0,�

�

��2 + ��H + vFQ/2�2
. �28�

Equation �28� determines the shape of the phase transition
line Tc�H� between the normal and superconducting states.
Depending on H, the maximum over Q in the right hand side
�rhs� of Eq. �28� is attained either at Q=0 or on nonzero Q
= ± Q. The position of the Tc�H� line found via numerical
solution of Eq. �28� is shown in Fig. 1, where both tempera-
ture Tc and in-plane magnetic field H are normalized by
the critical temperature at zero magnetic field: Tc0
=2�D exp�−1/�U+�� /�, where �=0.577 is the Euler con-
stant. The line Tc�H� recovers two asymptotics found in Ref.
4:

log
Tc�H�

Tc0
= −

7��3�H2

8�2Tc0
2 in the limit H/Tc0 → 0,

Tc�H�
Tc0

=
�Tc0

2e�H
in the limit H/Tc0 → � . �29�

Remarkably, after the normalization of the temperature and
the magnetic field by the zero-field critical temperature Tc0,
the phase transition line becomes universal: it does not de-
pend on the microscopic parameters of the Hamiltonian, in-
cluding the velocity �. We remind, however, that this result
is obtained under the condition Tc��pF, which guarantees
breaking of the inversion symmetry.

Whereas at low H the superconductive solution is uni-
form, Q=0, in the high-field limit one finds4 Q=2H /vF. The
Lifshitz point L separates Q=0 and Q�0 solutions on the
Tc�H� line and is the end of the second-order phase transition
line between the two superconducting phases. In order to
determine the position of the L point, we note that �QQ, �see
Eq. �24�� is symmetric under the change −Q→Q, and thus it
has always an extremum at Q=0. Therefore, the position of
the Lifshitz point L should satisfy the equation

� �2�QQ

�Q2 �
Q=0

= 0.

A numerical solution of the above equation gives the value
�HL ,TL�= �1.536,0.651�Tc0, with the ratio HL /TL�2.36.

Figure 5 shows the Cooper pairing wave vector Q on the
Tc�H� line as a function of the in-plane magnetic field H.

FIG. 4. �Color online� Diagrams corresponding to the terms of
the fourth order in � in the Ginzburg-Landau expansion:
�QQQQ�Q4 and �QQ−Q−Q�Q2�−Q2.
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Near the L point, the wave vector Q contains a square-root
singularity vFQ�H���H2−HL

2 , typical for the behavior of
the order parameter near a second-order transition. In the
high-field limit H /Tc�0�→�, the behavior of the wave vec-
tor Q is given by the asymptotic expression

vFQ = 2H −
�4Tc

4�0�
7��3�e2�H3 . �30�

Note that Q=2H /vF is the momentum shift of the two �
= ±1 Fermi circles in a parallel magnetic field.

Near the Tc�H� line, the coefficient �QQ can be approxi-
mated as

��T,H� � ��	F�
T − Tc�H�

2T


�

Y�Tc�H�,H�� , �31�

where Y�T ,��=1−T
n
�2�

��n
2+�2�3/2 = 1

4T �d� sech2 ��2+�2

2T is the

Yosida function and �n=�T�2n+1� is the Matsubara fre-
quency. At H�HL, an inhomogeneous superconductive
phase is formed below the Tc�H� line. Equation �28� deter-
mines the absolute value of the equilibrium wave vector Q
�the direction of Q is perpendicular to H�: therefore two
harmonics may contribute to ��r� just below the Tc�H� line:
��y�=�+eiQy +�−e−iQy. Below Tc�H�, the density of the ther-
modynamic potential � is lower in the superconductive than
in the normal state by the amount

�sn = ��T,H��2 + �s�T,H��4 + �a�T,H���+2 − �−2�2,

�32�

where �2= �+2+ �−2. Equation �32� was obtained from
Eq. �17� by keeping only two harmonics: �+2=�Q�Q

* ,
�−2=�−Q�−Q

* . Comparing Eqs. �17� and �32� gives

�s�T,H� =
1

2
�QQQQ + �QQ−Q−Q,

�a�T,H� =
1

2
�QQQQ − �QQ−Q−Q, �33�

where �QQQQ and �QQ−Q−Q are the four-Green’s-function
loop integrals �25� �Fig. 6�. In the symmetric point S, where
�a�Tc�H� ,H�=0, the free energy �32� depends on �2 only,
and thus is invariant under U�2� rotations of the order-
parameter spinor ��+ ,�−�. The coordinates of the S point are
�HS ,TS�= �1.779,0.525�Tc0, and the corresponding wave
vector is vFQS=2.647Tc�0�. At H�HS, we find �a�0, and
the free energy at T�Tc�H� is minimized by the choice of
either �+=0 or �−=0, both corresponding to the helical
state. At H�HS, �a�0 and the free energy minimum is
achieved at �+= �−, i.e., the LOFF-like phase with ��y�
�cos�Qy� is the stable one at high field values.

IV. UNUSUAL VORTEX SOLUTIONS NEAR THE
SYMMETRIC POINT S

A. General considerations: Extended U(2) symmetry and
vortices

In this section, we discuss the peculiar properties of the
superconductive vortices, which appear due to the extended
symmetry of the order parameter near the symmetric point S
of the phase diagram. Although the paper is focused on the
properties of a 2D Rashba superconductor in a parallel mag-
netic field, which by itself does not produce vortices, these
vortex excitations may still appear both due to thermal fluc-
tuations and due to a slight misalignment of the external field
with the 2D electron conducting plane, which will produce a
weak perpendicular field component.

The free energy of the superconductor in the vicinity of
the symmetric point is given by the Ginzburg-Landau func-
tional

FIG. 5. Cooper pairing wave vector Q as a function of the re-
duced magnetic field. The circle indicates the symmetric point S.

1

0.5

21.8 2.2 2.41.6

FIG. 6. The ratio of �QQ−Q−Q and �QQQQ coefficients as a func-
tion of the reduced magnetic field. The symmetric point S, marked
in the figure with a circle, is defined as a point where the ratio
attains the value 1/2. The Lifshitz point L is the point where the
ratio equals 1, since Q=0 there.
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�sn =� d2r�ci��i�i +
2e

c
Ai	�+�2

+ ci��i�i +
2e

c
Ai	�−�2

+ �a��+2 − �−2�2 + �s��0
2 − �+2 − �−2�2 − �s�0

4� ,

�34�

where i=x ,y and �0
2=−� /2�s is the equilibrium value of the

order parameter. The fourth-order term in the Ginzburg-
Landau expansion �32� can be divided into a symmetric and
an anisotropy part �a�T ,H���+2− �−2�2, and in the sym-
metric point the coefficient �a�TS ,HS�=0. The coefficients
cx and cy are given by expressions �26�, and their ratio in the
S point is equal to cx /cy =1.72. Equation �34� can be written
in a rotationally symmetric form via an area-conserving
transformation by stretching and contracting the two coordi-
nates x→x�cx /cy�1/4 and y→y�cy /cx�1/4.

The minimum of the free energy �34� in the symmetric
point �where �a=0� is achieved in the homogeneous state
under the condition �+2+ �−2=�2. In normalized variables
z1=�+ /� and z2=�− /�, the order-parameter spinor �z1 ,z2�
spans the sphere S3, z12+ z22=1, and is equivalent to a

four-component unit vector N� . This normalization allows us
to write the gradient part of the free energy �34� as a nonlin-
ear sigma model,

Fgrad =
�s

2
� d2r���N� �2, �35�

where �s= �
�s

�cxcy is defined through coefficients of the
Ginzburg-Landau functional �34�.

Precisely at the symmetric point, the gradient functional
�35� governs the system’s behavior at length scales L larger
than the order-parameter correlation length ��T�. At �a�0,
its applicability is limited from the large scales also. Namely,
L should be smaller than the temperature-dependent “aniso-
tropy length”

Lan�T� = ��T�� �s

�a

 ��T� , �36�

which is determined by comparison of the gradient term and
the anisotropy term in the full free energy functional �34�.

On the left of the symmetric point ��a�0�, the minimum
of the energy is achieved at either z1=1 or z2=1, leading
to the degeneracy manifold of the order parameter, S1 � Z2.
On the right of the symmetric point ��a�0�, the degeneracy
manifold of the order parameter is S1 � S1. In order for the
gradient energy of a physical defect to be finite, at large
distances from the defect core the order parameter should
belong to the corresponding degeneracy manifold. On the
other hand, at relatively small distances r�Lan, the whole S3

sphere is available for the order-parameter configurations.
The two-dimensional x space is topologically equivalent

to a sphere S2 with a boundary at infinity S1. A physical
defect is described as a mapping of a disk on the real plane
R2 with a boundary S1 �which encloses the defect� on the
degeneracy manifold of the order parameter S3. Due to
boundary conditions at infinity �imposed by the anisotropy�,

the mapping S2→S3 is accompanied either by the mapping
S1→S1 �at �a�0, i.e., on the left from the S point� or by
S1→S1 � S1 �at �a�0�. Therefore, the topological defects
are determined by the nontrivial elements of the homotopy
group �2�S3 ,S1�=Z �on the left from the S point� or
�2�S3 ,S1 � S1�=Z � Z �on the right from the S point�. Note
that in the absence of any anisotropy, there would be no
stable topological defects since �2�S3�=0, i.e., any configu-
ration of the order parameter could be transformed into a
homogeneous state. The general approach to the classifica-
tion of vortices with a nonsingular core by means of the

relative homotopy groups �2�R , R̃�, described above, was
first introduced by Mineyev and Volovik;12 a review of the
approach can be found in Ref. 13. Some explicit solutions
for nonsingular vortices are presented in Ref. 14.

For an actual calculation, it is convenient to employ the
Hopf projection, which splits the order-parameter spinor z
�S3, parametrized here as

z = �z1

z2
	 = ei��e−i�/2 cos  /2

ei�/2 sin  /2
	 , �37�

into an N=3 unit vector n� =z†z�S2 sphere,

n� = �sin  cos �

sin  sin �

cos  
� , �38�

parametrized through the Euler angles on the S2 sphere, and
a total phase ��U�1�, canonically conjugated to the electron
charge.

Each configuration n��x� defines a mapping of the coordi-
nate plane �equivalent to S2� on a sphere n�2=1, i.e., the map-
ping S2→S2. These mappings are characterized by an integer
“topological charge”

Q =
1

4�
�

R2
n���xn� � �yn��d2r , �39�

which is related with the circulation of the vector

A� = − i�z†��z − z��z†� = ���� − 1
2��� cos  � . �40�

Indeed, the following identity can be proven:

Q =
1

2�
�

C�

A� · dl� −
1

2�
�

C0

A� · dl� �
!

!0
− C0, �41�

where C� is the closed loop at infinity and C0 is the infini-
tesimal closed loop just around the vortex singularity point.
The last equality in Eq. �41� relates the topological charge Q
and the magnetic flux connected with the vortex defect �in
units of the superconductive flux quantum !0�.

Now, the gradient energy �35� can be represented as a sum
of the gradient energy of the n� field and the kinetic term:

Fgrad =
�s

2
� �1

4
���n��2 + A�

2�d2r . �42�

Below, we consider separately vortex solutions in the helical
state realized at �a�0 and in the LOFF-like state at �a�0.
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B. Nonsingular vortices in the helical state

In the region on the left of the symmetric point ��a�0�,
the energy minimum in the bulk of the film is attained at
either z1=1 and z2=0 or vice versa; we choose the first so-
lution for further discussions. Then, the order parameter is
proportional to ei��−�/2� and an elementary vortex corre-
sponds to the rotation by 2� of the “effective” parameter’s
phase �−� /2=", where " is the azimuthal angle on the
plane. Near the vortex core, however, one can construct so-
lutions which contain both z1 and z2 components. Now, we
show that such a solution has a lower energy than that of a
standard singular vortex �like those in He II or strongly
type-II superconductors�.

Indeed, one can employ a vortex trial solution,

z1 =
rei"

�R2 + r2
, z2 =

R
�R2 + r2

, �43�

which satisfies the boundary conditions: only one component
z1=

�+

� =ei" survives on large distances. The solution �43�
possesses a topological charge Q=1, and it is just the
skyrmion15,16 for the N=3 nonlinear sigma model functional
�i.e., the first term in the free energy �42��,

Eskyrm =
�s

2
� 1

4
���n��2d2r . �44�

Note, however, that here we use a different gauge. The solu-
tion �43� corresponds to the choice of the phases

� = − �/2 = "/2. �45�

The parameter R is an arbitrary number: at any R, the topo-
logical charge of the skyrmion is Q=1 and its energy

Eskyrm = ��s.

However, the full gradient functional �42� contains the sec-
ond term as well. This term leads to logarithmically large
energy,

E2 = ��s log
#

R
, �46�

where # is the minimum of the system size and �a very long�
two-dimensional screening length �2D=2�2 /d. Indeed, at r
$R one finds A�

2 =r−2, whereas at r�R the polar angle  
→� and, according to Eqs. �40� and �45�, the “vector poten-
tial” A� is not singular anymore. It is evident from Eq. �46�
that one should choose R as large as possible in order to
minimize vortex energy. The upper limit is given by the an-
isotropy length Lan defined in Eq. �36�. Thus, the minimal
energy of our trial solution can be estimated as

Econt = ��s�log #/Lan + C� , �47�

where C�1. The energy of the continuous vortex �47� is
lower than the energy of a usual singular vortex by a large
amount,

Esing − Econt =
�

2
�s log

�s

�a
. �48�

We emphasize that the solution �43� does not provide the
energy minimum but is just a trial function; the correct non-
singular vortex solution should have even lower energy and
thus is more stable than the singular vortex. In the case of a
continuous vortex, the term C0 in Eq. �41� is zero and Q
=! /!0, whereas for a singular vortex, C0= ±1 and Q=0.

C. Half-quantum vortices in the LOFF state

The LOFF-like �or “stripe”� state is realized at �a�0 and
its degeneracy manifold is S1 � S1. Indeed, the energy mini-
mum is realized when vector n� is parametrized as n�
= �cos � , sin � ,0�, i.e.,  =� /2; thus, there are two phase
variables, � and � �see parametrizations �37� and �38��. A
usual singular vortex solution corresponds to �=const and
��=2�; according to Eq. �40�, in this case the vector poten-
tial A�=���, and it does not contain the second phase �.
Then, a natural question arises whether if some other vortex-
like solutions are possible, due to the extended �with respect
to the usual S1� degeneracy manifold. Indeed, the same de-
generacy manifold of the order parameter is realized in some
of the p-wave superconductive states, leading to the exis-
tence of half-quantum vortices.17–19 The reason for the exis-
tence of such an object is evident from the representation
�37�: a sign change of the order parameter due to the �
rotation of the phase � along some closed loop in real space
can be compensated by the ±2� rotation of the phase �
along �topologically� the same loop.

We are not aware of any explicit solution for a half-vortex
in the general case of an S1 � S1 degeneracy manifold. How-
ever, some progress can be made in the vicinity of the sym-
metric point S, where �a��s and the problem simplifies a
bit due to the presence of the “isotropic” spatial scales,
��T��L�Lan�T� �see Eq. �36��. Indeed, on such length
scales the problem can be treated within the gradient free
energy �see Eq. �35� or �42��. The solutions with half-
quantum of magnetic flux obey boundary conditions  ���
=� /2 and ���= ±2�, where via �� we denoted the phase
increment along the large loop. Explicit form of these solu-
tions may be �z̃i=�2zi�

z̃1 =�1 −
R

�r2 + R2
ei�", z̃2 =�1 +

R
�r2 + R2

,

z̃1 =�1 +
R

�r2 + R2
, z̃2 =�1 −

R
�r2 + R2

ei�", �49�

with an arbitrary parameter R. The variable �= ±1 in the
exponent of Eq. �49� corresponds to the sign of the vorticity
�the magnetic flux�, whereas the first and the second lines in
Eq. �49� correspond to the cases of negative and positive
projections n3 of the n� vector in the center of the half-vortex.
In terms of vector n� , these four solutions �Eq. �49�� are rep-
resented as follows:
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n1,2 =
1

�r2 + R2� x

− �y

− R
�, n3,4 =

1
�r2 + R2� x

�y

R
� . �50�

An elementary calculation of the topological charge and of
the magnetic flux associated with the vortex solution �Eq.
�50�� leads to

Q =
!

!0
=
�

2
. �51�

An additional binary variable which characterizes the half-
vortex is the sign of the component n3�r=0�. Therefore, there
are a total of 4 types of half-quantum vortices.

In the presence of a finite length Lan, the solutions �49�
make sense as intermediate asymptotics as long as R�Lan,
whereas at longer scales the anisotropic term ��a modifies
the solution considerably �a numerical solution would be
necessary to determine the solution in this region�. Neverthe-
less, we can make an energy comparison between the singu-
lar vortex and a pair of half-quantum vortices even without
an explicit solution including the anisotropic term. Consider
two contributions to the free energy functional �42�. The
term with ��n� , evaluated for the solution �50�, gives �the
main contribution comes from large distances, r
R�

En� �
�

4
�s log

#

R
,

whereas the term with A� contributes with about the same
amount �since A� is nonsingular at small r�R�,

EA �
�

4
�s log

#

R
.

Both the above estimates may contain subleading terms ��s
which we do not control. Totally, the energy of a half-vortex
is

E1/2 =
�

2
�s�log

#

R
+ C1/2	 , �52�

where C1/2�1. The minimal energy of a half-vortex can be
estimated from Eq. �52� with the substitution R�Lan. Thus,
we find that the energy of two half-vortices coincides �up to
the terms ��s which do not contain a large logarithm� with
the energy of a continuous single-quantum vortex �47�,
found in the previous section, and is certainly lower than the
energy of the singular vortex by approximately the same
amount as in Eq. �48�. This means that the half-quantum
vortex is a fundamental topological defect of the stripe
�LOFF� state, at least in the region relatively close to the
symmetric point S.

V. PHASE DIAGRAM

A. Stationary conditions for the helical phase

Now, we concentrate on the properties of the helical phase
significantly below Tc�H� and determine the locations of the
phase transition lines LT, ST�, and TO. This calculation is

possible since ��r�2=const in the helical state, and thus
explicit analytic equations determining � and the corre-
sponding Q can be written without resorting to an expansion
over small �. Evaluation of the thermodynamic potential in
the helical state gives

�hel��,H� =
�2

U
− ���	F�T


�,�
�

0

2�

���̃2 + �2 − �̃�
d�

2�
,

�53�

where

�̃ = � + iH� sin � , �54�

and H� is determined in Eq. �27�. The equations determining
� and Q are derived from the two stationary conditions

��hel

��
=

2�

U
− ���	F�T


�,�
�

0

2� �

��̃2 + �2

d�

2�
= 0 �55�

and

��hel

�Q
=

vF

2
��	F�T


�,�
f�H�,�� = 0, �56�

where we denoted f�H� ,��=−i�0
2� �̃ sin �

��̃2+�2

d�
2 .

Reducing the integrals over � in Eqs. �55� and �56� to
complete elliptic integrals �see Appendix A� compacts the
stationary conditions to a two equation set,

1

U
= 2��	F�T 


��0,�

K�k�
��2 + �H� + ��2

, �57�



��0,�

f�H�,�� = 0, �58�

where the Jacobi modulus

k =
2��H�

��2 + �H� + ��2
, �59�

and the function

f�H�,�� =
1

H�
���2 + H�

2 + �2�
K�k�

��2 + �H� + ��2

− ��2 + �H� + ��2E�k�� �60�

is defined through the Jacobi complete elliptic integrals of
the first and second kinds. At �=0, Eq. �57� reduces to Eq.
�28�.

B. Lifshitz phase transition line LT

The thermodynamic potential �53� in the helical state is a
function of Q for any given pair �H ,T� by virtue of Eqs. �57�
and �58�. At small Q, Eq. �53� can be expanded in powers of
Q as �terms of the order of � /vF have been neglected�

�hel�Q� = �hel�0� + aQ2 + bQ4 + cQ6, �61�

where
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a =
1

2

�2�

�Q2 = �vF

2
	2

��	F�T

�,�
�

0

2� �2 sin2 �

��̃2 + �2�3/2

d�

2
,

�62�

24b =
d4E

dQ4 =
�4�

�Q4 − 3
� �3�

���Q2	2

�2�

��2

, �63�

and c�0. The condition a=0, b�0 determines the second-
order Lifshitz phase transition line LT, which ends at the
critical point T, where the coefficient b=0 changes sign �see
Fig. 1�. The condition a=0 may be simplified after reducing
the integrals over � in Eq. �62�:



��0

�J + 2�
�

��
J +

�2 − �2

�

�

��
J	 = 0, �64�

where

J =

K�� 4�H

�2 + �H + ��2	
��2 + �H + ��2

.

The line LO of stability of the BCS state �with respect to a
formation of the helical wave� is determined by a simulta-
neous numerical solution of Eqs. �57� and �58�, taken at Q
=0, and Eq. �64�. This line is indeed a line of a second-order
transition as long as the coefficient b�0. Using Eqs. �53�
and �58�, we compute the coordinates of the point T�LO
where b=0 �see Eq. �63� for b� as �H ,T�= �1.547,0.455�Tc0.
At lower temperatures, b�0 and a first-order transition out
of the homogeneous state takes place. Therefore, TO is a
boundary of a domain of the BCS state local stability. The
actual first-order transition line TO� between the BCS and
some inhomogeneous state consisting of many spatial har-
monics lies at lower values of the magnetic field �HO�
�HO=1.76Tc0�.

The homogeneous superconductor which exists on the left
of the Lifshitz line is “gapless” for high enough tempera-
tures. The spectrum of the particles is Ep=��2+�2

−�H sin �p; therefore, the minimum bound energy of the
Cooper pairs �the energy gap� turns to zero at H$�. The
line of transition into the gapless superconductivity H=� is
marked in Fig. 1 with a dashed line.

C. Phase transition line ST�

The second-order phase transition line ST� bounds the
region of the helical phase from the high-H side. Its position
can be determined via the stability condition with respect to
the additional modulations of the order parameter, of the
form ���r�=�v−q exp�−iqy�+�vq+2Q exp�i�q+2Q�y�:

���v = v�+Â�q�v� , �65�

where v� = ��v−q ,�vq+2Q
* � and

Â�q� =
1̂

U
− 


��0,p,�
�G�p−

G�−p+
F�p−

F�−p+

F�p−

* F�−p+

* G�p++QG�−p−+Q
	 ,

�66�

with p±= p±q /2. The Green’s functions entering the matrix

Â are

G���,p −
q

2
	 = −

i�̃ + � − Qp

�̃2 + �� − Qp�2 + �2 ,

F���,p −
q

2
	 =

�e−i�p�

�̃2 + �� − Qp�2 + �2

= − F��− �,− p +
q

2
+ Q	 , �67�

where �̃ is given by Eq. �54�, and for brevity we introduced
a notation Qp= �q+Q�sin �p /2.

The matrix Â has two eigenvalues 	1�q��	2�q�,

	2,1�q� = � 1

U
−

g−q + gq+2Q

2
	 ±��g−q − gq+2Q

2
	2

+ f−q2,

where

1

U
−

g−q + gq+2Q

2

= 

��0,�

�
0

2� d�

4

1

��̃2 + �2�1 −
�̃2 − Qp

2

�̃2 + Qp
2 + �2	 ,

g−q − gq+2Q

2
= 


��0,�
�

0

2� d�

4

1

��̃2 + �2

2i�̃Qp

�̃2 + Qp
2 + �2 ,

f−q = 

��0,�

�
0

2� d�

4

1

��̃2 + �2

�2

�̃2 + Qp
2 + �2 . �68�

Here, g−q=
��0,p,�G�,p−q/2G�,−p−q/2, gq+2Q
=
��0,p,�G�,p+q/2+QG�,−p+q/2+Q, and f−q
=
��0,p,�F�,p−q/2F�,−p−q/2. The integrals �68� can be ex-
pressed through the elliptic integrals of the first and the sec-
ond kind, as shown in Appendix B.

The helical state metastability line ST� is defined as a set
of points where one mode �v becomes energetically favor-
able: minq 	1�q�=0. Four equations are to be solved simul-
taneously in order to find the position of this line: two gap
equations �Eqs. �57� and �58��, that determine the equilib-
rium � and Q, together with the two equations �q	1�q�=0
and 	1�q�=0, where 	1�q� is determined in Eq. �68�. We call
the phase on the right of the ST� transition line a “three-
exponential” state.

Note that the ST� line is an actual phase transition line out
of the helical state if this transition is of the second order.
Another possibility might be that a first-order transition oc-
curs, which transforms the helical state into parity-even
LOFF-type state and occurs at slightly lower values of H at
each T. Below, we show that near Tc�H� the phase transition
is indeed of the second order. In order to demonstrate it, we
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evaluate terms of the eighth order in �Q in the Ginzburg-
Landau functional. Parametrizing the order-parameter spinor
near the symmetric point as

��+

�−
	 = �ei��e−i�/2 cos  /2

ei�/2 sin  /2
	 , �69�

the anisotropy part in the Ginzburg-Landau functional reads

�sn
anis�%� = �a�

4 cos2  + %�8 cos4  �70�

�note that the term ��6 is not allowed by symmetry�. The
sign of the coefficient % in front of the term cos4  deter-
mines the type of the transition near the Tc�H� line. We dem-
onstrate, by rather tedious calculations described in Appen-
dix C, that %�0, which proves that the transition is of the
second order near the Tc�H� line.

Now, we come to a somewhat surprising situation. Indeed,
according to the analysis of superconductive instability at the
Tc�H� line, on the right of the symmetric point S the stripe
�LOFF-like� state is formed, which contains two harmonics
with Q= ± Q. Such a phase preserves spatial inversion �in
the plane� and time-reversal symmetry. Below the Tc�H� line,
additional harmonics develop in such a phase, but they come
in pairs ±3Q , ±5Q , . . ., and still preserve spatial and time-
reversal symmetry. On the other hand, the second-order
phase transition line ST� separates the helical state �parity-
odd� and a three-exponential state which has broken parity
and time-reversal symmetry as well. It means that there must
exist one more phase transition line, between the three-
exponential phase and the parity-even stripe phase. This tran-
sition line should start at point S but will lie slightly to the
right from the line ST�, i.e., at higher values of the field.

The fact that the points T and T� are different but close to
each other is in favor of the existence of a critical point K on
the line ST� �similar to the point T on the line LO� below
which the phase transition from the helical to the LOFF-type
state becomes a weakly first-order transition.

VI. CURRENT AND ELECTROMAGNETIC RESPONSE IN
THE HELICAL STATE

A. Absence of the equilibrium current in the helical ground
state

The oscillating space dependence of the order parameter
like the one given by Eq. �16� may lead to the hypothesis of
a nonzero background electric current present in such a state.
We will show here by general arguments that the electric
current is, in fact, absent in the helical state: the condition of
its vanishing is equivalent to the minimum of the free energy
with respect to the variation of the structure’s wave vector Q.

The superconducting current can be written in the follow-
ing form:

j =
e

2
T 

�,p,�

� �	�,p+Q/2

�p
G����,p + Q/2�

−
�	�,−p+Q/2

�p
G���− �,− p + Q/2�� , �71�

where

G����,p + Q/2� = −
i� + 	�,−p+Q/2

�̃2 + ��
2 + �2 �72�

is the electron Green’s function in the helical state; 	�,p is the
spectrum of the free electron. For brevity, we used notations
�̃=�+ i�	�,p+Q/2−	�,−p+Q/2� /2 and ��= �	�,p+Q/2

+	�,−p+Q/2� /2.
The thermodynamic potential in the helical state

�hel = −
T

2 

�,p,�

log��̃2 + ��
2 + �2� �73�

is evaluated explicitly for an arbitrary spectrum 	�,p of the
electron, due to ��r�=const.

The derivative is

��hel

�Q�
= −

T

4 

�,p,�

�	�,p+Q/2

�p
�i�̃ + ��� −

�	�,−p+Q/2

�p
�− i�̃ + ���

�̃2 + ��
2 + �2 .

�74�

Comparing this stationary condition �74� with the expression
for the current �71�, we notice

j =
2e

�

��hel

�Q�
. �75�

Thus, a direct calculation of the superconducting current j
shows that in any order of � /vF, the current in equilibrium is
zero. This result apparently contradicts the statement made
by Yip,20 who studied basically the same model as the
present one and found a nonzero supercurrent in the presence
of a parallel magnetic field. The resolution of this paradox
will be presented in Sec. VII below.

B. Electromagnetic response in the helical state

We calculated the electromagnetic response function
�j� /�A�=− e2

mcns
�� for the helical state using the standard dia-

gram methods:

jx =
e2

c
T 

�,p,�

�G2 + F2�cos2 �� p

m
− ��	2

Ax,

jy =
e2

c
T 

�,p,�

�G2 + F2�sin2 �� p

m
− ��	2

Ay , �76�

where G=G�� ,p+Q /2� and F=F�� ,p+Q /2� are corre-
spondingly the normal and the anomalous Green’s functions
in the helical state. We found that

ns
yy = 4

m

�

�2�

�Q2 , �77�

i.e., proportional to the parameter a from the expansion of
the thermodynamic potential �61�. Thus, on the Lifshitz line
LT there is no linear supercurrent in the direction perpen-
dicular to the magnetic field. The component ns

xx does not
vanish anywhere in the helical state region and is of the order
of ns of the BCS state:
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ns
xx =

4m

�2 �vF
2

2
�

�

��
� 1

�

��hel

��
	 −

�2�hel

�Q2 � . �78�

This anisotropic behavior of the superfluid density tensor is
in contrast with the one found in the classical LOFF prob-
lem, where ns was shown to vanish in the whole helical state;
the difference is probably due to the fact that in our problem
the direction of Q is fixed by the applied field h, while in the
case of a ferromagnetic superconductor it is arbitrary. The
obtained behavior of the ns

�� tensor indicates a strongly an-
isotropic electromagnetic response of the surface supercon-
ductor near the Lifshitz line LT.

VII. “WEAKLY HELICAL” PHASE AT LOW MAGNETIC
FIELDS

A. Transformation of the uniform BCS state into long-
wavelength helical state

The thermodynamic potential of the helical state in the
form of Eq. �53� was obtained while neglecting the term �Q
small in comparison with the term vFQ in the energy of the
electron. Within this approximation, the thermodynamic po-
tential was symmetric under the change Q→−Q and hence
the expansion �61� contained only even powers of Q. The
account for the first-order term in � /vF in expressions of the
type of Eq. �53� leads �see below� to an appearance of the
term �Q in the thermodynamic potential �61�. This term re-
sults in the transformation of the homogeneous BCS state
�situated on the left of the LT line� into a weakly helical
phase with a small wave vector Qhel=

2�H
vF

2 , first found in
Ref. 10 for small values of H. Mathematically, the terms of
the order of � /vF are considered via taking into account the
difference in the density of states in Eq. �53�: ��	F�
→���	F�. Then, the second stationary condition �58� is
changed noticeably:

��hel

�Q
= ��	F�T


�,�
�vF

2
+ �

�

2
	 f�H�,�� = 0, �79�

where f�H� ,�� is defined in Eq. �60�. Now, the Q=0 solu-
tion never �at any H�0� provides a minimum for the super-
conducting energy,

� = � ��hel

�Q
�

Q=0
= ���	F�T


�

f�H,�� � 0, �80�

and the expansion of the thermodynamic potential in powers
of Q contains the linear term

�hel�Q� = �hel�0� + �Q + ãQ2 + ¯ , �81�

which clearly indicates that the equilibrium wave vector
modulating the order parameter on the left of the LT line is
always nonzero, although small as � /vF�1:

Qhel = −
�

2ã
= −

2�H

vF
2 · & , �82�

where

& =



�
�− ��2 + H2 + �2�

V
K�k� + VE�k��



�
�−

��2 + �2�
V

K�k� +
��2 + �2�2 + H2��2 − �2�

V��2 + �H − ��2�
E�k�� ,

�83�

where k is the Jacobi modulus �59� and V=��2+ �H+��2. In
the limit H→0, Eq. �83� can be expanded, resulting in the
dependence linear in H:

Qhel = − 2�H/vF
2 . �84�

Actually, the approximation �84� is applicable everywhere in
the “BCS” state except the vicinity of the Lifshitz line �see
Fig. 7�; in particular, for T�0.5Tc0 the field range is limited
by H�0.5Tc0 �see Fig. 7�. At higher fields, the dependence
of the pairing wave vector on the magnetic field becomes
nonlinear but still can be approximated by Eq. �82�, until
H�1.3Tc0 �see Fig. 7�. Within the above range of magnetic
fields, the expansion �81� of the thermodynamic potential is
still applicable.

When the magnetic field is further increased, the system
approaches the transition into a short-wavelength helical
state discussed in Secs. V and VI above. The major role of
the small term �Q is to broaden the LT line of the second-
order transition from the uniform to the helical state into a
narrow crossover region. Now, the dependence of the pairing
wave vector on the magnetic field should be obtained nu-
merically by solving the system of the two self-consistency
equations �55� and �58�, while keeping also the term �� /vF
via the substitution of ��	F� by ��	F��1+�� /vF�. The corre-
sponding results for Q�H� are shown by full thin lines in Fig.
7 for two values of � /vF.

0.5

1

1.5

2

2.5

3

210.5 1.5

FIG. 7. The dependence of the pairing wave vector Q on the
magnetic field for the two values: � /vF=0.1 and 0.01 �and a par-
ticular temperature T=0.54Tc0�. The curves shown by bold and thin
lines correspond to neglecting and taking into account in the SC
energy of the helical state the small terms � /vF. The dashed lines
correspond to Eq. �82�.
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B. Cancellation of the ground-state current and a spin-orbital
analog of Little-Parks oscillations

The gradient of the phase of the condensate wave function
determines the density of the superconducting current,

j�1� =
e�

2m
nsQhel, �85�

where ns is the density of the number of superconducting
electrons, e=−e is the charge of the electron, and m is the
electron true mass. The expansion of Eq. �77� for weak mag-

netic fields gives ns
yy =

mvF
2

� ��	F��1−Y�T ,���. In this limit, the
density of the current in y direction, induced by the super-
conducting phase gradient, reads

jy
�1� = − e��	F��„1 − Y�T,��…H . �86�

The supercurrent given by Eq. �86� is not the only contri-
bution to be considered. In fact, Yip20 has considered the
same model and found that a weak current proportional and
perpendicular to the magnetic field flows in the uniform BCS
state. Indeed, a calculation of the current in the BCS state
gives a nonzero value �coinciding with that in Ref. 20�

jy
�2� = T 


�,p,�
G���,p� ĵy

�chir� = e��	F��„1 − Y�T,��…H .

�87�

This second contribution leads to the presence �due to the
Rashba term in the Hamiltonian� of the anomalous contribu-
tion to the electric current.

In the true ground state with the weak helical modula-
tions, both contributions to the current �Eqs. �86� and �87��
sum up to produce a perfect zero, jy

�1�+ jy
�2�=0, as they should

do according to the general proof given in Sec. VI A above.
Thus, we see the resolution of the controversy with the
result:20 a uniform BCS state considered by Yip does pro-
duce a supercurrent under the action of a parallel magnetic
field, but this state is not the ground state. Instead, the
ground state is realized as a weakly helical state with a zero
current. In fact, when a parallel magnetic field is applied, the
current does not flow, but a phase difference ��=LQhel is
induced at the edges of the superconducting film transverse
the field direction.

However, interesting “traces” of the spin-orbit-induced
supercurrent could possibly be seen, if the superconductor is
wrapped in a cylinder and a magnetic field is applied along
the axis. Then, a current may flow around the cylinder �see
Fig. 8�, due to the quantization condition ��=2�n, n
=0, ±1, ±2, . . ., which does not allow an arbitrary phase shift
along the closed loop which encircles the cylinder. The total
current will be given by a sum of the “spin-orbit current” j�2�

and the current due to the gradient of the quantized phase:

jquant =
e�

2m
ns�− Qhel +

2�n

2�R
	 ,

where R is the cylinder radius and Qhel=−2�H /vF
2 . The in-

teger number n is determined as a function of the magnetic
field in a way to minimize the current: n=integer part of

�H /Ho�, where Ho=
vF

2

2�R . The current will vanish at the field

values H=nHo, n=0, ±1, ±2, . . . only. The maximal value of
the current is equal �at T=0� to jmax= e�

2mns /R. The depen-
dence of the current on the magnetic field is of the sawtooth
form, as shown in Fig. 9, in the ideal case of a zero tempera-
ture and absence of impurities. The predicted oscillations of
the current are, on first sight, similar to the well-known os-
cillations in a superconducting cylinder �with the period
BLP=�c /eR2 in terms of a real magnetic induction�, which
goes back to the early stages of the superconductivity
studies.21 However, the corresponding oscillation periods dif-
fer by orders of magnitude: Ho /HLP��vF /���kFR�
1. We
note also that in a real experiment it should not be necessary
that the superconducting film be wrapped in a cylinder; it
would be sufficient to fabricate a heterostructure where a thin
film with a spin-orbit coupling would serve as a weak link
introduced into a superconducting quantum interference de-
vice �SQUID�-type loop, which would allow one to control
the superconducting phase difference between the film edges.

FIG. 8. �Color online� A superconducting film wrapped in a
cylinder �cyclic boundary conditions�. This geometrical configura-
tion enables a current to flow in equilibrium in the ground state of
the helical phase when a parallel to the axis magnetic field is
applied.

/ o

____quant

max

FIG. 9. The sawtooth dependence of the superconducting cur-
rent jquant flowing around a cylinder on the magnetic field H. The
amplitude is jmax= e�

2mns /R, where R is the cylinder radius. The pe-
riod is Ho=�vF

2 / �2�R�. The strictly linear dependence, shown in
the figure, takes place in the case Ho�Tc0, T=0 only.
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VIII. PHASE DIAGRAM IN THE PRESENCE OF
NONMAGNETIC IMPURITIES

In this section, we study the effects of potential impurities
on the superconductive instability in the presence of the
Rashba term and the parallel magnetic field. We consider a
standard model of short-range weak impurities with a poten-
tial u�r�=u��r� and density nimp; they are characterized by an
elastic scattering time �, where �−1=2�nimpu

2��	F�. It is as-
sumed that the impurity scattering rate is weak with respect
to the Rashba splitting, 1 /���pF, whereas it can be both
weak and strong in comparison with Tc.

The interaction between the electrons and the impurity is
described by the following Hamiltonian written in the chiral
representation:

Ĥint =
1

V



i


p,p�

ue−i�p−p��Riap�
+ M���p,p��ap��, �88�

where the matrix

M���p,p�� =
1

2
�1 + ��ei��p−�p��� �89�

appears due to the transformation from the spin to chiral
basis. The semiclassical electron Green’s function of the chi-
ral metal in the presence of nonmagnetic impurities is

G���,p� =
1

i� − ���p� − �H sin �p +
i

2�
sgn �

, �90�

where ���p� is determined in Eq. �22�.
The electron-electron vertex in the Cooper channel is then

given by noncrossing diagrams shown in Fig. 10, where G
denotes the Green’s function �90�. Note that the chiralities of
both electrons which belong to the same “Cooper block”
coincide �otherwise, a diagram would be smaller by a factor
��pF��−1�1�.

An analytical expression for the impurity line is �see Eq.
�89� for the matrix elements�

V����p,�p�� =
1

8����	F�
�1 + ��ei�p−i�p��2

=
1

4����	F�
ei�p−i�p���� + sin �p sin �p�

+ cos �p cos �p�� , �91�

where � and � are the chiralities of the left and the right
blocks around the impurity line. In fact, the last term in the
rhs of Eq. �91� can be safely omitted since its contribution
vanishes after integration over the momenta in the product of
V�� and the Cooper block �Eq. �92� below�. Integrating over
�� a block of two Green’s functions �a Cooper block� in the
Cooper channel gives

C���,sin �p� = ���	F��
−�

�

d�G���,p +
q

2
	G��− �,− p +

q

2
	

=
i����	F�

i�̄ − H� sin �p
, �92�

where �̄=�+sgn � /2�, H� is determined in Eq. �27�, and
���	F�=��	F��1+�� /vF�.

The superconductive transition temperature is determined
by the usual condition U�0�−1=C, where C is the sum of all
ladder diagrams with n=0,1 ,2 , . . . impurity lines, shown on
Fig. 10. A calculation of the Cooper ladder C is presented in
Appendix D; the resulting equation for Tc reads

1

��	F�U�0�
= �T max

q


��0

K��,H+,H−,
1

2�
	 , �93�

where the kernel is

K��� = 4�
�I+

0 + I−
0��1 − �I+

2 + I−
2�� + �I+

1 − I−
1�2

�1 − �I+
0 + I−

0���1 − �I+
2 + I−

2�� − �I+
1 − I−

1�2 . �94�

Equation �93� for Tc�h� was solved numerically; the phase
transition lines are shown in Fig. 11 for a number of impurity
scattering strengths 1/2�Tc0, interpolating from a clean to
dirty limit. It is seen that in the clean limit Tc0�
1, the
impurity scattering decreases the critical parallel magnetic
field �in the clean limit, it is given by Hp0=�2�pF��0� first
found in Ref. 4� and simultaneously pushes the position of
the L point to higher values of H and lower values of T. As

∆Q ∆∗

Qλ0e
−iϕp0 λneiϕpn

Gλ0
(ω,p0+Q/2)

Gλ0
(−ω,−p0+Q/2)

Gλ1
(ω,p1+Q/2)

Gλ1
(−ω,−p1+Q/2)

Gλn(ω,pn+Q/2)

Gλn(−ω,−pn+Q/2)

FIG. 10. �Color online� The electron-electron vertex in the Cooper channel in the presence of nonmagnetic impurities.
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a result, both short-wavelength inhomogeneous states disap-
pear from the phase diagram at �−1$9Tc0. Note a large nu-
merical factor 9 which enters the definition of the “dirty”
regime in the present problem. In the dirty limit 1 /�
$10Tc0, the kernel K��� simplifies to

K��� =
2

� + 2H2� + vF
2Q2�/4

. �95�

The kernel �95� is maximal at Q=0, i.e., in the dirty limit
one obtains a homogeneous superconducting phase �see be-
low, however�. The zero-temperature limit of the paramag-
netic critical magnetic field Hp�0� can be easily obtained
with the use of Eq. �95� as

Hp =��Tc0

4�e�
. �96�

Thus, in the dirty limit 1 /�
Tc0, the paramagnetic critical
field grows with the increase of disorder.

The above results in this section were obtained in the
main order over the parameter � /vF. The linear in � /vF
terms can be included in the same way it was done in the
preceding section, which leads to the substitution of I�

j

→ I�
j �1+�� /vF� in the kernel �94�. Then, in the dirty limit

the kernel reads

K��� =
2

� + 2H2� + vF
2Q2�/4 + 2��QH

. �97�

Maximization of the Cooper loop with the kernel �97� with
respect to the pairing vector Q leads to a nonzero momentum
of the Cooper pair, equal to

Qhel = −
4�H

vF
2 , �98�

for all values of the magnetic field. Thus, the terms � /vF
transform the homogeneous superconducting state into a
weakly inhomogeneous helical state, analogous to the clean

case. Note that the small wave vector modulating the order
parameter in the dirty limit �Eq. �98�� is twice larger than it is
in the clean case for weak magnetic fields �Eq. �84��. Note,
however, that the result �98� was obtained near the transition
line Tc�H� only.

IX. FLUCTUATIONAL EFFECTS NEAR THE Tc„H…

TRANSITION LINE

All previous results of the paper were obtained within the
saddle-point approximation of the functional �13�, which is
usually called the mean-field approximation. Since fluctua-
tion effects are known to become relevant in 2D supercon-
ductors, in this section we will study the corrections to the
mean-field approximation. During this analysis, we will em-
ploy relevant reductions of the full functional �13�. Usually,
these corrections are of the order of Tc /	F for a clean 2D
superconductor: the actual transition is of the Berezinsky-
Kosterlitz-Thouless vortex depairing type, and the transition
temperature is shifted downward by a relative amount
Tc /	F�1. In our system, the fluctuations are enhanced
strongly around the special points L and S, where an addi-
tional analysis is needed.

We start from the L point and recall that near the whole
LT line the component ns

yy of the superfluid density is sup-
pressed, �see Eq. �77�� proportionally to the coefficient a
from Eq. �62�. Within the approximation used in Sec. VI and
above, this reduction factor could be arbitrarily small since
ns

yy vanishes exactly at the LT line. However, as it was ex-
plained in Sec. VII A, an account of the subleading terms
�� /vF transforms the LT line of the Lifshitz phase transition
into a crossover region. The minimal value of the second
derivative d2�hel�Q� /dQ2 and thus of the ratio ns

yy /ns
xx then

scales as �2/3� �� /vF�2/3. In a superconductor with an aniso-
tropic tensor of the superfluid density, the effective “rigidity
modulus” is controlled by the geometric average �ns

xxns
yy.

The strength of the phase fluctuations is thus larger near the
LT line by a factor �vF /��1/3. Therefore, the fluctuational
reduction of the transition temperature near the L point is
enhanced by the same relative factor �vF /��1/3
1, �see Fig.
12�.

Another mechanism of a fluctuation enhancement is effec-
tive near the S point due to the extended U�2� symmetry of
the order parameter. Exactly at the symmetric point S, the
order-parameter spinor spans the sphere S3 and is equivalent
to a four-component unit vector. The corresponding free en-
ergy functional was presented in Eq. �35�. The thermal fluc-
tuations of the classical O�N� nonlinear vector model in 2D
space have been studied by Polyakov22. On large length
scales L
��T�, where ��T� is the temperature-dependent su-
perconductive correlation length, the evolution of the dimen-
sionless coupling constant g=T� �2

2mns�
−1

is governed �for N
=4� by the renormalization-group equation

dg

dX
=

2

�
g2, �99�

where X=log�L /��T��. Deviations from the symmetric point
are measured �see Sec. VI� by the anisotropy parameter �a

0.8

0.6

0.4

0.2

FIG. 11. �Color online� Phase transition lines for different
strengths of impurity scattering: 1 /2�Tc0=0.0, 0.5, 1.2, 2.1, 3.2, 4.5,
6.0, 7.7, 9.6, 11.7. Lifshitz points are shown by crosses.
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which enters into the free energy in the combination

�a�T,H��4�N1
2 + N2

2 − N3
2 − N4

2�2. �100�

It is easy to show that the anisotropy parameter �a satis-
fies a renormalization-group equation:22

d�a

dX
= −

4g

�
�a. �101�

Running solution of Eqs. �99� and �101� can be easily found:

g−1 = g0
−1 −

2

�
X �102�

and

�a = �a
0�1 −

2g0

�
X	2

�103�

�a renormalization of the coefficient �s is absent within the
same approximation�. The infrared cutoff length Lmax�T� for
the renormalization flow solution �Eqs.�102� and �103�� co-
incides with the length Lan defined in Eq. �36�. Finally, we
obtain the renormalized parameters

ns = ns
0 −

2Tm

��2 log��s

�a
	 �104�

and

�a = �a
0�1 −

2Tm

��2ns
0 log��s

�a
	�2

. �105�

The above formulas are valid as long as the effective
renormalization-group “charge” g�Xmax� is small compared
to unity; within this domain, a strong suppression of �a is

still possible. Qualitatively, the result of the U�2� fluctuations
is twofold: �i� the “nearly isotropic” behavior extends to a
wider region around the S point and �ii� the transition tem-
perature occurs to be additionally suppressed within the
same region.

To conclude this section, fluctuations lead to the deforma-
tion of the phase transition line Tc�H� in the vicinities of the
L and S points, as shown in Fig. 12.

X. CONCLUSIONS

In this paper, we found the phase diagram of a surface
superconductor with a relatively strong Rashba splitting of
the electron spectrum: Tc��pF�	F, in the presence of a
parallel magnetic field, both in clean and disordered cases. In
the clean limit, we demonstrated that in the lowest approxi-
mation over the spin-orbital parameter � /vF, the phase dia-
gram is universal and contains the unusual “helical” phase
with the order-parameter modulation �exp�iQr�, as well as a
usual BCS-type phase and a LOFF phase with a sinusoidal
modulation at higher magnetic fields. The absolute value of
the modulation wave vector is typically Q�g�Bh /�vF. Non-
magnetic impurities tend to diminish the region where these
modulated phases exist, and eliminate them completely in
the dirty limit. Once subleading terms of the order of � /vF
�which are due to the different chiral subband density of
states� are taken into account, the uniform BCS state be-
comes unstable and transforms into a “weakly modulated”
helical phase with Qslow��g�Bh /�vF

2 . A weakly modulated
phase is stable with respect to disorder, as its origin can be
found in the symmetry of the problem.10

In the clean limit, we were able to determine the positions
of the phase transition lines between the BCS, the helical,
and the LOFF states on the �H ,T� phase diagram. It was
found possible to implement this calculation mainly analyti-
cally due to the fact that the absolute value of the order
parameter is constant in the helical state. We have shown that
the thermal phase fluctuations are enhanced strongly around
both these transition lines, leading to local “caves” of the
Tc�h� transition line near the end points L and S. We expect
that a fluctuational correction to the conductivity of the
Aslamazov-Larkin type23 should be strongly anisotropic near
the L point, which could be one of the signatures of the
proposed phase diagram.

We have shown that an electric current does not flow in
the equilibrium state of our system at any parallel magnetic
field �as long as the system is infinite�, contrary to the state-
ment made in Ref. 20. However, if the system is considered
in the finite-stripe geometry with the periodic boundary con-
ditions, an oscillating �as a function of the parallel magnetic
field� current is expected, which is another special feature of
a superconductor with a strong Rashba coupling.

A different type of vortexlike topological defect was pre-
dicted to exist in the region near the special S point of the
phase diagram due to the extended U�2� order-parameter
symmetry realized at this point. Contrary to the usual singu-
lar vortex, this topological defect is nonsingular in the sense
that the amplitude of the order parameter does not vanish in
the vortex core. We showed that the energy of the nonsingu-

0.4

0.6

1.4 1.6 1.8

FIG. 12. The phase diagram with the physical TBKT�H� transi-
tion line shown by a dotted line, for the values Tc0 /	F=0.02 and
� /vF=0.34. The effect of the enhanced fluctuations in the regions
near the points L and S is seen as a shift of the TBKT�H� line in the
direction of lower temperature and field, with respect to its mean-
field position. The mean-field phase transition line Tc�H� is shown
by a solid line.
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lar vortex is lower than that of the singular vortex in some
finite region around the S point. The nature of an elementary
vortex defect differs between the helical and the stripe
phases �in the regions to the left and to the right from the S
point�: whereas in the helical state a vortex carries an integer
flux !=n!0 and an integer topological charge Q=n, these
quantum numbers are half-integer in the stripe state. Physi-
cally, these half-vortices correspond to the presence of a vor-
texlike defect within only one �either �+ or �−� component
of the order parameter.

Recently,24 an experiment was proposed for the detection
of a helical order in a noncentrosymmetric three-dimensional
superconductor: a Josephson junction was considered be-
tween two thin film superconductors, one with and the other
without inversion symmetry. Similar interference experiment
might be useful in detecting inhomogeneous phases studied
in the present paper. Another possibility is related with the
spin-orbital analog of the Little-Parks effect, discussed in
Sec. VII B. In particular, Rashba superconductor included
into one arm of the standard dc SQUID would lead to the
shift of the interference picture under the action of a parallel
magnetic field.

Note added. When this paper was nearly completed, we
learned about a recent preprint by Agterberg and Kaur,25

where the density of states effects �due to �+��−� on the
phase diagram of the Rashba superconductor were studied in
the clean limit by means of a numerical solution of the Eilen-
berger equations. The main emphasis was made on the three-
dimensional systems there; thus, the comparison is not
straightforward. Qualitatively, the results they obtained seem
to be in agreement with ours.
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APPENDIX A: TRANSFORMATION TO ELLIPTIC
INTEGRALS

Consider the integral

I1 = �
0

2� d�

2

1
��� + iH� sin ��2 + �2

, �A1�

which enters Eq. �55�, and note that �0
2�f�sin ��d�

=4�0
�/2f�cos 2��d� for any function f . Using then the iden-

tity cos 2�=cos2 �−sin2 � and the substitution �=arctan t,
we transform Eq. �A1� into

I1 = 2�
0

� dt

�Aei�t4 + 2��2 + H�
2 + �2�t2 + Ae−i�

, �A2�

where we denoted Aei�= ��− iH��2+�2, and

A = ���2 + �H� + ��2���2 + �H� − ��2� . �A3�

The integral �A2� is rapidly convergent; thus, it is possible to
make a transformation of variables in the complex plane �
= tei�/2 and to reduce Eq. �A2� to

I1 = 2�
0

� d�
�A�1 + �a + a−1��2 + �4

, �A4�

where

a =���2 + �H� + ��2�
��2 + �H� − ��2�

. �A5�

�In the course of transformation from Eq. �A2� to Eq. �A4�,
we rotated the path of integration over � by the angle � /2�.
Making an inverse substitution �=tan � in Eq. �A4� gives

I1 =
2

�A
�

0

�/2 d�

�1 + ��a − �a−1

2
	2

cos2 2�

. �A6�

Following the definition of an elliptic integral of the first
kind K�k�=�0

�/2�1−k2 sin2 ��−1/2d�, we rewrite Eq. �A6� as

I1 =
2

�A
K�i

�a − �a−1

2
	 =

2
�A

K��1 −
1

a2	
�a

. �A7�

The last expression in Eq. �A7� leads directly to the gap
equation �57�, with A and a given by Eqs. �A3� and �A5�.

APPENDIX B: EQUATION FOR THE ST� LINE

Here, we present the transformation of Eq. �68�, which
determines the helical state metastability line ST�, to the
complete elliptic integrals of the first and the third kind �K
and ��:

I2 = �
0

2�

d�
1

4��̃2 + �2

− 1 + ��̃ + iX sin ��2

�̃2 + �2 + �X sin ��2

=
zK�k� − z1��l1,k� − z2��l2,k�

��� + H�2 + �2
�B1�

and

I3 = �
0

2� 1

4��̃2 + �2

�2

�̃2 + �2 + �X sin ��2

=
yK�k� − y1��l1,k� − y2��l2,k�

��� + H�2 + �2
, �B2�

where �̃=�+ iH sin �. In Eqs. �B1� and �B2�, we introduced
notations

l1�S� = 1 −
�� − H + i����2 − �H + i��2 + X2�

�� + H + i����2 + H2 + �2 − X2 − 2iS�
,
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l2�S� = l1�− S� ,

z = − 2 −
�H�2i�X + ��H + 2X��

�� + i��2X2 ,

z1�S� = −
�� − H + i��L�S�

2�� + i��2X2��2 − �H − i��2 + X2�S
,

z2�S� = z1�− S� ,

y =
�2H2

�� + i��2X2 ,

y1�S� = −
i�2�� − H + i��M�S�

2�� + i��2X2��2 − �H − i��2 + X2�S
,

y2�S� = y1�− S� , �B3�

where

L�S� = − i�4H�H + X�2 − 2�2X2�H − i� + X���X + S�

+ 2i��X�H + X��H − i� + X���X + S�

+ �3�H + X�2�− iH2 − H� + 2�X + iX2 + S�

+ �2�H + X��H2 − iH� + HX + i�X��2�X + S�

− �X2�2�H + X�2,

S = �− �2H2 + ��2 + �2�X2, X =
q + Q

2
; �B4�

M�S� = �H3�� + H − i�� − HX2���� + 2H� − i�� − H��

+ 2�2� + �� + i��X4 + �H2�i�� + H� + ��

+ �− i�� + H� + ��X2�S . �B5�

APPENDIX C: THE EIGHTH-ORDER TERMS IN THE
GINZBURG-LANDAU FUNCTIONAL

Here, we present a calculation of the coefficient % which
is in front of the eighth-order anisotropic term in the free
energy �Eq. �70��. As it was mentioned, the sign of % deter-
mines the type of the helical state instability.

The terms of the eighth order in � in the Ginzburg-
Landau functional are

Fsn
�8� =

a

8
�8 +

b

8
�u2 − v2�2�4

+
�D1 − D2 + D3/2�

8
�u2 − v2�4 + E3Q, �C1�

where all but the last term originate from the expansion of
the free energy in powers of the basic amplitudes u and v,
and notations a=D1+D2+D3 /2 and b=6D1−D3 are intro-
duced. The last term E3Q arises due to the nonlinearity-
induced additional harmonics with momenta ±3Q and ampli-

tudes u±3Q and v±3Q; explicit form of E3Q will be specified
shortly. Actually, we are interested in terms which contribute
to the coefficient % in front of the cos4  term in Eq. �70�;
thus, the terms in the first line of Eq. �C1� are irrelevant.

The coefficients D1,2,3 come from the eight-vertex dia-
grams shown in Fig. 13. The corresponding analytical ex-
pressions are summarized below �we introduce notations Di

=T
�,p,�D̃i�:

D1
˜ =

1

8
Gp+Q/2

4 G−p+Q/2
4 ,

D2
˜ = Gp+Q/2

4 G−p+Q/2
3 G−p−3Q/2

+ Gp+Q/2
3 G−p+Q/2

2 G−p−3Q/2
2 Gp+5Q/2,

D3
˜ =

3

2
Gp+Q/2

4 G−p+Q/2
2 G−p−3Q/2

2

+ Gp+Q/2
3 G−p+Q/2G−p−3Q/2

3 Gp+5Q/2

+ Gp+Q/2
3 G−p+Q/2

3 G−p−3Q/2Gp−3Q/2

+ Gp+Q/2
2 G−p+Q/2

2 G−p−3Q/2
2 Gp−3Q/2Gp+5Q/2, �C2�

where G are the normal metal Green’s functions. The inte-
gration is first done over d�=d�p2 /2m−EF�, then over d� by
means of a generating function 1/��2+ ��H±nQ�2, where
n=1,3 ,5. The obtained analytical expressions are evaluated
for the values TS=1.779Tc0, HS=0.525Tc0, and QS
=2.647Tc0 at the S point of the Tc�H� line. The summation
over � is performed numerically, resulting in

D1 = 0.001 060 53, D2 = 0.001 526 74,

D3 = − 0.001 200 67. �C3�

Now, we turn to the evaluation of the “induced” term E3Q
in the free energy �C1�. It appears due to a generation of the
third harmonics e±3iQ in the order parameter. The amplitudes
of the third harmonics u3Q and v3Q are small and propor-
tional to the third power of the basic amplitudes u and v. The
induced term reads

E3Q = V+AV + �X+V + V+X� , �C4�

where the matrix A and the vector X contain numerical co-
efficients li, which are determined by means of evaluation of
the loop diagrams with two, four, and six vertices �shown in
Fig. 14�:

A = �l1 + l3u2 + l4v2 l5uv

l5u*v* l1 + l4u2 + l3v2
	 ,

V+ = �u3Q
* ,v−3Q�, X+ = �x*,y� ,

x = l2u2v* + l6u2v*u2 + �l7 + l8�u2v*v2,

y = l2v
2u* + l6v

2u*v2 + �l7 + l8�v2u*u2. �C5�

The fifth and higher harmonics, as well as the higher powers
of the third harmonics, do not contribute to the eighth order
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in �. The amplitudes u3Q and v−3Q in Eq. �C4� are found
from the minimization of the superconducting energy,

�E3Q

�V
=0, which gives

E3Q = − X+A−1X � d2�u6v2 + u2v6� + d3u4v4,

�C6�

where

d2 =
l2�− 2l6l1 + l2l3�

l1
2 ,

d3 =
2l2�− 2�l7 + l8�l1 + l2�l4 + l5��

l1
2 . �C7�

The analytic expressions for the diagrams shown in Fig. 14

are �we introduce notations li=T
�,p,�l̃i�

(a) (c)

(b) (d)

(e)

FIG. 13. �Color online� �a� Diagrams corresponding to the coefficient D1 in front of the term u8+ v8 in the Ginzburg-Landau expansion.
Both combinatorial coefficients are equal to 1/8. All the loops are symmetric under the replacement Q→−Q, which is equivalent to the
replacement u→v; therefore, all such diagrams are equal. �b� Two different diagrams which form the coefficient D2 in front of the term
v2u6. The combinatorial coefficient of both is equal to 1. Diagrams �c�–�e� form the coefficient D3 in front of the term u4v4: �c� Two
loops with equal values but different combinatorial coefficients equal to 1 and 1/2 correspondingly. Under the replacement u→v, both
diagrams do not change. The complex conjugate of them simply reverses the encircling along the loop and such diagrams are taken into
account in the combinatorial coefficients. �d� The combinatorial coefficient of both diagrams is equal to 1, if we keep in mind the complex
conjugate of them. The two loops transfer one into another under the replacement u→v. �e� A diagram with a combinatorial coefficient equal
to 1.
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l1 =
1

U
−

T

2 

�,p,�

Gp+3Q/2G−p+3Q/2,

l2̃ =
1

2
Gp+Q/2G−p+Q/2G−p−3Q/2Gp+5Q/2,

l3̃ = G−p+Q/2Gp−3Q/2
2 G−p−3Q/2,

l4̃ = G−p+5Q/2Gp−3Q/2
2 G−p−3Q/2,

(b)

(c)

(a)

(d)

(e)

FIG. 14. �Color online� Diagrams �a� and �b� are of the sixth order in u: �a� The Cooper loop for the third harmonic which corresponds
to the coefficient l1 in the GL expansion; it has a combinatorial coefficient equal to 1/2. �b� Diagrams corresponding to the term
l2�u3QuQ

* 2v−Q+v−3Qv−Q
* 2uQ+H.c.�. The combinatorial coefficient of all four is 1 /2. The diagrams �c�–�e� are of the eighth order in u: �c�

Diagrams with a combinatorial coefficient of all four of them equal to 1. The upper two correspond to the term l3�u3Q2uQ2
+ v−3Q2v−Q2�, and the lower two correspond to the term l4�u3Q2v−Q2+ v−3Q2uQ2�. �d� Diagrams corresponding to the term
l5�u3Qv−3QuQ

* v−Q
* +H.c.�. The lower loop is a complex conjugate of the upper loop. The combinatorial coefficient is equal to 1. �e� Diagrams

corresponding to the terms l6u3QuQ
* 2v−QuQ2 and �l7+ l8�u3QuQ

* 2v−Qv−Q2. There are even more loops which are complex conjugate to the
ones shown on the picture, as well as loops obtained under the replacement u→v. The values of such loops are the same; therefore, we do
not show them.
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l5̃ = G−p+Q/2Gp−3Q/2G−p−3Q/2Gp+5Q/2,

l6̃ = Gp+Q/2G−p+Q/2
2 Gp−3Q/2

2 G−p−3Q/2,

l7̃ =
1

2
Gp+Q/2

2 G−p+Q/2
2 Gp−3Q/2G−p−3Q/2,

l8̃ = Gp+5Q/2Gp+Q/2G−p+Q/2Gp−3Q/2G−p−3Q/2
2 . �C8�

The calculation of the above integrals in the symmetric
point S leads to numerical values

l1 = 0.674 254, l2 = 0.103 447,

l3 = 0.191 039, l4 = 0.170 477,

l5 = 0.206 894, l6 = 0.032 572 6,

l7 = 0.004 911 75, l8 = 0.021 198, �C9�

which we substitute in Eq. �C7�. Finally, for the coefficient %
we obtain a positive value:

% = D1 − D2 + D3/2 − d2 + d3/2 = 0.0053. �C10�

APPENDIX D: CALCULATION OF THE COOPER
LADDER IN THE PRESENCE OF IMPURITIES

The sum of all ladder diagrams C with n=0,1 ,2 , . . .. im-
purity lines �see Fig. 10� reads

C = T 

��0



n=0

�



�n

�
0

2� d�pn

2�
L�n

n ��,�pn
�C�n

��,sin �pn
��nei�pn,

�D1�

where L�n

n �� ,�pn
� is the expression for a ladder diagram

which includes a left vertex L�0

0 �� ,�p0
���0e−i�p0, n “Cooper

blocks,” and n impurity lines; the factor �nei�pn corresponds
to the right vertex of the diagram in Fig. 10.

In order to sum up the whole Cooper ladder, it is useful to
employ a recurrent relation between the ladder diagrams of
the nth and the �n+1�th order:

L�n+1

n+1 ��,�pn+1
� = 


�n

� d�pn

2�
L�n

n ��,�pn
�C�n

��,sin �pn
�

�V�n�n+1
��pn

,�pn+1
� . �D2�

The form of Eq. �91� helps identify an ansatz,

L�n

n ��,�pn
� = �ln

0��n,�� + ln
1��n,��sin �pn

�e−i�pn, �D3�

for the solution which is consistent with the recurrent rela-
tion �D2�. After substituting the ansatz �D3� in Eq. �D2�, we
encounter integrals

I�
j =

1

4�
�

0

2� d�

2�

isinj�

i�̄ − H� sin �
, j = 0,1,2. �D4�

Then, Eq. �D2� can be rewritten in the matrix form

l�n+1 = R̂l�n, �D5�

where we define a 4-vector

l�n
T = �ln

0�+ �,ln
1�+ �,ln

0�− �,ln
1�− �� �D6�

and a 4�4 matrix

R̂ =�
I+

0 I+
1 − I−

0 − I−
1

I+
1 I+

2 I−
1 I−

2

− I+
0 − I+

1 I−
0 I−

1

I+
1 I+

2 I−
1 I−

2
� , �D7�

with the three “block integrals” �Eq. �D4�� calculated as

I�
0 =

1

��̄2 + H�
2

1

4�
,

I�
1 =

i

H�
� �̄
��̄2 + H�

2
− 1	 1

4�
,

I�
2 = −

�̄
H�

2� �̄
��̄2 + H�

2
− 1	 1

4�
. �D8�

Now, we can proceed with the calculation of the Cooper
ladder. We substitute the ansatz �D3� and the Cooper block
�92� in the Cooper ladder �D1� and obtain

C = 4����	F�T 

��0



n=0

�



�

��ln
0���I�

0 + ln
1���I�

1�

= 4����	F�T 

��0

I�T · �1 − R̂�−1 · l�0, �D9�

where we used the definition of the integrals �D4� and the
4-vectors �D6�, and we summed up the geometric progres-

sion 
n=0
� R̂n= �1− R̂�−1. We also introduced a vector I�T

= �I+
0 , I+

1 ,−I+
0 ,−I+

1� and used a notation l�0
T= �1,0 ,−1 ,0�, corre-

sponding to the definition of L�0

0 �� ,�p0
�. At this point, we

have as well neglected the difference �+��−.
Evaluating the scalar product in Eq. �D9�, we find the

Cooper ladder C and Eq. �93� for Tc.
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