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The evolution of vortex dynamic properties along the vortex-glass melting lines, H,(T), of epitaxial thin film
Y, _,Pr,Ba,Cuz0q4 o7 samples (x=0-0.4) and that of an ultrahigh purity oxygen deficient YBa,Cu;3Og 5 single
crystal are examined in magnetic fields up to 45 T. Analysis was carried out in the context of a modified
melting line expression based on the quantum-thermal-fluctuation model of Blatter and Ivlev [Phys. Rev. B 50,
10272 (1994)]. The melting line equation developed here provides a means of experimentally determining the

physical mechanism responsible for the energy scale which limits vortex motion at high frequencies. It is found
that the effective vortex mass is enhanced significantly by quantum fluctuations and that the distance over
which quantum fluctuations displace a segment of the vortex flux line is of the order of the size of the vortex
core, which increases as T— T,. Supportive evidence that the equation developed here provides a universal
description of the melting line in type-II superconductors is found by analyzing vortex-glass melting line data
from a MgB, bulk sample and an amorphous a-Mo,Si;_, film.
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I. INTRODUCTION

After nearly two decades since the discovery of high tem-
perature superconductivity, the phase diagram of vortex mat-
ter in type-II superconductors continues to be a source of
debate. Certainly, the most experimentally and theoretically
investigated feature of the phase diagram is the vortex lattice
(or vortex glass) melting line, H,,(T) [H,(T)], the boundary
at which the vortex matter undergoes a change from an im-
mobile solid state to an electrically dissipative liquid state.
Achieving an understanding of the nature of this transition
over the entire range of magnetic field and temperature,
within materials with disparate normal state and supercon-
ducting properties, and with various types of disorder is of
the utmost importance if a truly universal picture of the vor-
tex matter phase diagram is to be developed.

It is well understood that disorder within the supercon-
ductor is an important aspect of the physical picture under
consideration. In a sufficiently clean superconductor, vortex
lines will penetrate the sample in a regular array forming a
lattice. As the temperature of the sample is increased, even-
tually the vortex lattice will undergo a first order melting
transition, with a corresponding jump in entropy and
magnetization.> The introduction of disorder or defects into
a superconducting sample creates regions to which the nor-
mal cores of the vortices are attracted, pinning the vortex to
the site and producing a barrier to motion; this enhances the
ability of the sample to carry an electrical current without
dissipation, and subsequently, destroys the long-range order
of the vortex lattice. The result is a variety of glassy vortex
states.> The glassy phases can each be characterized by an
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exponent u, describing their dynamical response where, as
an applied current density goes to zero, the defect barriers
impeding vortex motion diverge, U(j—0)~ U, (j./j)*, and
the vortex velocity goes to zero as v <exp[—U(j)/T]. Alter-
natively, the effect of defect barriers on the dynamical prop-
erties of the vortices can be described via a critical exponent
§ characterizing the vanishing of resistivity as the tempera-
ture approaches from above a critical value, T,, so that
p(T) ~ (T—-T,)*. The critical exponent § is itself a product of
the static critical exponent v and, depending on the kind of
vortex glass, a factor composed of an expression involving
the dynamical exponent z, the dimensionality of the system
d, and an anisotropy exponent {.

The introduction of random point disorder results in the
“original” vortex glass (VG) considered by Fisher et al.*>
Correlated columnar disorder, such as that introduced by ion
bombardment, produces the Bose-glass (BG) state.® In the
case of extremely weak point disorder, the vortex lattice,
while distorted, is able to maintain short range order and is
characterized by the absence of lattice dislocations. The pres-
ervation of long-range periodicity is sufficient so that Bragg
diffraction peaks are observed in scattering experiments,
hence, the name Bragg glass.” The pinning environments
within a vortex glass and a Bose glass differ significantly in
that point disorder encourages wandering of the vortex
through the sample to seek out pinning centers, but, in con-
trast, columnar defects inhibit line wandering. Additionally,
point disorder is isotropic with respect to the direction of the
vortex lines, but columnar disorder produces an anisotropic
environment within a few degrees of the alignment of the
field to the columns, with corresponding angular depen-
dences.
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In spite of the difference of dynamical properties within
the region of the melting transitions, the vortex glass and
Bose glass are described by a critical behavior with a very
similar formalism, based on the critical scaling properties of
the superfluid density, resulting only in differing expressions
for the critical exponents.>®® It has been shown that the
vortex-glass phase is recovered from the Bose-glass phase as
correlated disorder becomes irrelevant, either by strong point
disorder or the absence of correlated disorder.” The theoret-
ical foundation employed to describe the Bragg-glass state
arises from the weak disorder case of the same Hamiltonian
that was originally proposed to describe the vortex-glass
state.”19 While the Bragg glass is expected to undergo a first
order melting transition to a vortex liquid with increasing
temperature, some experimental evidence and theoretical
models suggest that the vortex-glass state lies in a narrow
region between the Bragg-glass region and the melting
line.!"!'2 Even though these three solid vortex phases have
distinct properties, it should be apparent that the dynamical
properties of the vortices in the melting region of each kind
of glass are quite related. Henceforth, we shall use the term
vortex glass to encompass both the vortex- and Bose-glass
ensembles, keeping in mind the different critical exponents,
and shall leave the Bragg glass as a separate case for now.
We shall use VG or BG to indicate a specific type of vortex
glass.

Theoretical analysis of the problem of the melting transi-
tion is complicated, and a consistent theory describing a
melting scenario is known for only a few special cases, the
pancake-vortex system, treated via a self-consistent stability
analysis,13 and a dislocation-mediated melting scenario in
two dimensions'# and in three dimensions.!> The latter case
allows for a unified phase diagram that includes all three
vortex phases. However, this theory does not provide an ex-
plicit temperature dependent form of the vortex glass to vor-
tex liquid transition.

In the absence of a consistent theory, a Lindemann-type
criterion is often employed. This criterion predicts a melting
transition generally when the mean squared amplitude of
fluctuations of a lattice approaches a sizable fraction of
the lattice constant ay, (uz(Tm))zcia(z), where ¢; ~0.1-0.3
[ay=(Dy/B)"> for a vortex lattice]. A Lindemann-type
analysis of vortex flux line displacements leads to the clas-
sical thermal fluctuation result,'®-17

B, = B(c}1G)H,(0)(1 - 1),

where G,=[T,/H*(0)e£}(0)]*/2 is the Ginzburg number, &(0)
is the in-plane superconducting coherence length, H,.(0) and
H,»(0) are the thermodynamic and upper critical fields, and
Bn=2.5.3

The Lindemann criterion approach has resulted in many
theoretically and phenomenologically derived expressions
that are expected to describe the shape of the vortex lattice
melting line, H,(T), over specific ranges of magnetic field
and temperature and for various specific material conditions.
For example, by taking into account the dominant conditions
for each of the three cases of an electromagnetically coupled
layered superconductor, a Josephson coupled layered super-
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conductor, and a continuous anisotropic superconductor,
three separate expressions are found to describe each
scenario.'” The first two cases describe the mid-temperature/
field and high-temperature/low-field regions of a weakly
coupled superconductor, respectively. The latter case de-
scribes the mid- to high-temperature/mid- to low-field region
of a well coupled (anisotropic) superconductor. Each of the
two cases then gives way to a two-dimensional expression
for the melting line at low temperatures/high fields.

More recent (Lindemann criterion based) theoretical ef-
forts have arrived at quite different expressions for the vortex
lattice and/or glass melting line, each of which also breaks
the melting line into two or three segments, to account for
dominant behavior in the various field and/or temperature
regions.'>?0 In addition to accounting for the effects of dis-
order on destroying the vortex solid phase, the only source of
vortex displacements considered in these models are thermal
fluctuations.

Blatter and Ivlev showed some time ago that quantum
fluctuations are also a relevant source of vortex-line displace-
ments, particularly in the high-T,. superconductors.'®2! It
should be understood that the vortex lattice melting line pro-
posed by Blatter and Ivlev is not an interpolation formula
between quantum and classical limits. Instead, quantum fluc-
tuations are accounted for by going to a dynamical descrip-
tion where the relevant functional is the Euclidean action.
The quantum problem is then a (d+ 1)-dimensional generali-
zation of the d-dimensional classical problem with the addi-
tional dimension describing the dynamics of the system (in
imaginary time). The model proposed by Blatter and Ivlev
shows that quantum fluctuations are present for all tempera-
tures, but are most relevant above a characteristic magnetic
field. In the high-T, cuprates, they find that this field is
~2-3 T, so quantum fluctuations must be accounted for
over the majority of the melting line.

In a recent paper,”> we presented experimental data of
the vortex-glass melting lines, H,(7), of the high-T,
Y,_,Pr,Ba;,Cu;0¢9; (0=<x=<0.4) and YBa,Cu;0¢5 systems
in magnetic fields up to 45 T, corresponding to a temperature
range as large as 0.03<T/T,.<1, and demonstrated that the
entire H,(T) line of all samples could be described by a
modified form of the vortex lattice melting line expression
arrived at by Blatter and Ivlev in their initial work.”! (It
should be noted that they arrived at a second similar expres-
sion for the vortex lattice melting line in later work, which is
due to a more thorough treatment of the problem.'®) The key
modification involves the introduction of a single vortex-line
relaxation time (SVRT) of the form

[ P!

which is evaluated along the melting line at T=T,. We then
briefly developed an expression for the vortex lattice melting
line based on the idea that the underlying physics of the
vortex lattice melting line transition involves both the quan-
tum and thermal nature of vortex-line displacements, as de-
scribed by Blatter and Ivlev,'82! and the fluctuation conduc-
tivity associated with the zero field superconducting
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transition as the critical temperature 7. is approached. An
argument is made where the critical behavior of the fluctua-
tion conductivity is responsible for the relaxation time prop-
erties of the single vortex lines in the melting region, and this
leads to an expression for the relaxation time 77 that is in
agreement with that found experimentally [Eq. (1)]. The ex-
planation of the observed behavior of the vortex-line relax-
ation time in terms of the critical fluctuation conductivity
then provides a natural relation between the exponent s and
the critical exponent of the VG or BG models, which char-
acterizes the vanishing of resistivity p~ (T-T,)*VG:5G at the
critical temperature 7,. The resulting expression describes
the vortex-glass melting lines by three characteristic fitting
parameters: the quantum parameter Q « Q,,/\G;, a critical ex-
ponent s, and the Lindemann number c¢;. Generically, it can
be seen that a change in dimensionality of the vortex fluc-
tuations along the melting line must be accompanied by a
corresponding change in the critical exponent sy pc.

In this paper, starting from the latter work of Blatter and
Ivlev,'® we develop the melting line equation®” in greater
detail and examine the information it reveals about vortex
matter in the Y,;_,Pr.Ba,Cu3;04 o7 and YBa,Cu;0g¢ 5 systems.
Additionally, we demonstrate further evidence that the equa-
tion provides a universal description of the melting line in
type-II superconductors by fitting to melting line data from a
diverse collection of systems. The model we develop here is
expected to encompass all three vortex-glass phases: the
point disorder dominated vortex glass, the correlated disor-
der dominated Bose glass, and the well ordered Bragg glass.

II. EXPERIMENTAL DETAILS

Epitaxial thin film Y, Pr,Ba,CusOq9; samples
(x=0-0.4) grown on LaAlOj; substrates by pulsed laser ab-
lation, as well as an ultrahigh purity oxygen deficient
YBa,Cu;30¢ 5 single crystal grown in a BaZrO; crucible,
were investigated in magnetic fields up to 45 T. The H,(T)
line was established from electrical transport measurements
with Hllc. For magnetic fields H<9 T, resistivity p(H,T)
data were taken in our laboratory at UCSD with fixed field
H, and temperature in steps. High-field p(H,T) data were
taken at the National High Magnetic Field Laboratory
(Tallahassee, FL) in a 30 T resistive magnet and a 45 T
hybrid magnet. In these systems, the temperature was held
fixed and the field was swept at 3 T/min while continuously
measuring p(H). The values of (T,,H,) were determined
in low fields by the scaling relation p(T)~(T-T,)’
[s= v(z+2-d)] of Fisher-Fisher-Huse (FFH).> For the high-
field data, in which the field was swept, these values were
obtained both by a similar expression p(H)~ (H-H,)* and
directly from the data where p(H)—0. The films were
etched lithographically to form resistance bridges with six
terminals with sample dimensions € Xw X7=0.50X0.010
X [(1.2=2) X 10°] cm®. The YBa,Cu;045 single crystal
dimensions are 0.21 X 0.076 X (7.6 X 10™*) cm?>. The current
values used were /=10 uA and 10 mA, respectively,
corresponding to current densities of J<90 A/cm’ and
J=2 A/cm?. The current density and electric field values
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used here were well below the criteria of J,~10° A/cm?
and E~10"' V/ecm for films and J,~ 10> A/cm? and
E~107° V/cm established by Charalambous et al.?>

III. MODEL

We begin by briefly restating the vortex lattice melting
problem as approached by Blatter and Ivlev.!®2! In order to
account for the contribution of quantum fluctuations to the
mean squared displacement (u*) of the single vortex line
beyond the standard path integral formulation, a dynamical
description is needed. The relevant functional is the Euclid-
ean action S[u], in Matsubara representation,

Su] 1
- = ;; {TTu,] + Flu,l}, ()

with the dynamical term 7u,] given by

3
Tlud =~ | L) + nle) o Jua}

2] 2w}

and the elastic free energy of the system, F[u], given by

1 [ &%k s )
Flul=7 f W{cll(k)[K-u] +cos(K)[K - u]

+ (KK, - ul’},

with ¢4 denoting the shear moduli, c¢;;(k) and cu(k) the
dispersive compression and tilt moduli, respectively, u(k) the
Fourier transform of the classical displacement field u(r),
k=(K.,k.), and K =(k,,—k,).

The summation over Matsubara frequencies will be cut
off by either the kinetic mass term u(w,)w; or the intrinsic
cutoff arising from the gap energy A, where () is given by
Q:mip[Q ,Q,]. The kinetic cutoff frequency is given by
O, ~\n¢l pt,, where 7, is the relaxation time associated
with the displacement of a single vortex flux line from an
“equilibrium” position, and 7, and w, are the vortex viscos-
ity and vortex mass per unit length, respectively. The gap
limited cutoff frequency is (= %A.

Various contributions to the vortex mass u, are well
known. These include the mass due to the kinetic energy of
the core, up”*, and that arising from the static electromag-
netic energy of the vortex, u¢”, first calculated by Suhl.?*
Additional contributions to the dynamic vortex mass have
been shown to arise from the inertia of quantum excitations
of the quasiparticles within the vortex core having longitudi-
nal and transverse components with respect to the vortex
velocity, uj" and up“"? and from a strain field arising
from the torsional shear deformations of the crystal lattice
induced by the moving vortex, u/.2°2% The mass contribu-
tion which will dominate at high frequencies is the electro-
magnetic mass u¢".'® Blatter and Ivlev found Q,~ 100,
using the assumption that the value of 7, is determined by the
scattering rate of the quasiparticles in the normal vortex core.
However, we consider instead that there are two separate
intrinsic relaxation times: that of the quasiparticles within the
vortex core, 2?30 77 and that of displacements of a single
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vortex flux line, 72, with 72> 70" as the melting transition is
approached,’! leading to the condition ), <(,.

We work here with the expression of the melting line
arrived at by Blatter and Ivlev in Ref. 18, which includes a
term involving compressional modes of the elastic vortex
lattice that was omitted in their initial work?! when calculat-
ing the mean squared displacement amplitude (u?). For the
latter expression, they found

4H ,(0) 6
p, =208 3)
(1+\1+456/)*
where the reduced temperature 6 given by
0= L\/E(T/T 1), S= q+cL\/E and q—zf’h Q”QT is a

parameter measuring the relative contribution of quantum

and thermal fluctuations. Qu= %Z%N is the dimensionless quan-
tum of resistance, G;=[T,/H>(0)e&*(0)]*/2 is the Ginzburg
number, c; is the Lindemann number, B8,,~5.6,'% 7, is the
vortex relaxation time, assumed to be the same as the scat-
tering relaxation time of the quasiparticles in the vortex core
given by the Drude formula oy=e’n7,/m (o is the normal
state conductivity, n is the free-carrier density, and m the
electron mass), d is the distance between the superconduct-
ing planes, and () is the cutoff Matsubara frequency for
Eq. (2).

Rather than using approximate constant values for the fac-
tors that go into the quantum parameter g, we include their
appropriate exact temperature and field dependences. Since it
is not known a priori whether the appropriate cutoff fre-
quency is {2, or ) for all type-II superconductors, we will
work with both. The differing expressions found below pro-
vide a means of experimentally determining the relevant cut-
off mechanism by comparing to independent scaling results,
as will be explained in the next section.

Starting with the expression for the kinetic cutoff fre-
quency, using the Bardeen-Stephen expression for the vis-
cous drag coefficient,??

(I)OO-N

Ne = o gz > 4)

using the electromagnetic contribution of the vortex mass,>*
1 EH*(\\?

me" = 4%7()\—) (5)

with H.=55 }\ & and including the temperature dependence
of £€=&/(1-1)"2, we then have

/ 4eN
Q#x :7mg _ Chy 7T,U«00'1v(1 —t)m, (6)
Me Ty g0 71}

r

where \, is a shielding length a few times that of (k;)~'.
If instead the frequency cutoff in Eq. (2) is determined by
the gap energy, then we will have

2A
Q= 70(1 -2 (7)

Blatter and Ivlev heuristically argue that the relaxation
time 7, of the vortices is determined by the normal state
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conductivity based on the condition that the vortex velocity
has to be consistent with the quasiparticle motion inside the
vortex core, thus 7, =—2<r 8 However, from the ansatz that
the dynamical behavior of the vortices is determmed by the
critical properties of the fluctuation conductivity,”> where the
zero field ac fluctuation conductivity in the critical region
scales as>¥

o) ~ EXIS(0E)

as T—T,, where é~|T.—T|™", and with 7~ o, in the limit
w—0, we arrive at an expression for the single vortex relax-
ation time (to be evaluated along the melting line at 7=T,),

T

where s=v(z+2-d), which is in agreement with that found
experimentally [Eq. (1)].

The ansatz of the vortex-glass theory of FFH? is that the
zero field critical point is actually a multicritical point so that
the vortex-glass melting line is actually a line of critical
points. The generalization of the zero field transition to the
in-field transition leads to the scaling expression for the van-
ishing of the dc resistivity as T— T7,

p= 0_—1 4+2 —-d __ (T T )V(Z+2 d)
From the FFH theory and the above ansatz of the single
vortex relaxation time, it can be seen that the critical expo-
nent which characterizes the vanishing of the resistivity as
the melting transition of the vortex ensemble is approached
from temperatures and/or fields above the transition also
characterizes the shape of the melting line in the H-T plane.
If correlated columnar disorder is relevant, then the criti-
cal dynamics of the vortex ensemble is described by the
Bose-glass model, where the diverging length scale is the
wandering length of a localized vortex line transverse to the
field direction, €(T)~ (TBG—T)V,, and the relaxation time of

a fluctuation diverges as 7~ {’i/, where v’ and 7z’ are addi-
tional critical exponents.® The vortex dynamics in the melt-
ing region described by this model leads to a power-law
scaling of the dc resistivity, p(7), with the same form as that
found by the FFH vortex-glass model with the exponent s
—s’, where s’ is defined in accordance with the updated
Bose-glass scaling relations for the resistivity,

pL = (G 0,

py =S pL(H €1,

where { is an anisotropy exponent, with {=1 for unscreened
long-range interactions and (=2 for correlated disorder.
In the case when H is parallel to the columnar defects, the
relevant resistivity is p,, so then s'=v'(z' +3-{-d), with
{=2.

Whether the correct form for the critical exponent is the
vortex-glass exponent s or the Bose-glass exponent s’ can
readily be determined by the angular dependence of the scal-
ing of the resistivity at the melting transition, where, if the
vortex ensemble is a Bose glass,34
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P (,0) = 1| L C2p (0],

pi(1,60) = o]+ g (1)1 "),

and by the well known cusp in the phase boundary T;(H | ),
where the perpendicular field H (7) at the Bose glass to
vortex liquid transition varies as®3*

HY ~ +[Tp(0) = T]".

The Bose-glass phase will eventually give way to the vortex-
glass phase as the field increases sufficiently past the match-
ing field (the field at which the number of vortex lines is
equal to the number of columnar defects), so that the major-
ity of the vortex lines are far away from the correlated dis-
order and their dynamical properties are dominated by point
defects. The change in vortex dynamics along the melting
transition will be reflected in the shape of the melting line,
H,(T), through a change of the value of the critical exponent
and of the quantum parameter ¢g. For simplicity, we use be-
low the vortex-glass exponent s, but it should be understood
that s—s’ in the case of a Bose glass.

Combining Eq. (6) with Eq. (8), and with all expressions
to be evaluated at the melting temperature T=T,=T,,, we
obtain the full expression for the kinetic cutoff frequency,

Q _ 46)\(1 [WMOO.N<1)—S/2(1 B 1)(1“)/2' (9)
o o \T T,

c

Bzhci
Gi (H g)
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Next we use the expression for the dimensionless quan-
tum of resistance given in Ref. 3,
— ez

Qﬁz (10)

A2

and the field dependent expression of the Ginzburg
number,©

G(H ) ~ (G_)l/3<_l_lg_)2/3 (11)
e ©O\HL(0))

Combining Eq. (7) or (9) with Egs. (8), (10), and (11), we

arrive at the final expression for the value of the quantum
parameter, g, ], at the melting line H(7),

2\/:81h 007

A= - ’mr (1 t)1—§ (12)
with
YN T, 2A
QO[M,A]{Q,F P ﬁ‘)]
0 0

=~ _ Py _ .
Q0="% e, Slm.Al=[s/2,s], and t=T/T.=T,/T,. Combin-
ing Eq. (5) with Eq. (17), we have

(=12

(13)

The above expressions for the cutoff frequency (2, the quan-
tum parameter ¢, and the melting line expression H,(t) given
in Egs. (12) and (13) differ from those given in our previous
work, Egs. (5)-(7) in Ref. 22. As pointed out above, these
differences arise primarily from the use of the melting line
expression arrived at by Blatter and Ivlev in their later
work,'® given here in Eq. (3). Additional differences are due
to the generalization of the expressions to encompass the use
of either the kinetic cutoff frequency (1, or the gap energy
limiting frequency (),. However, as can be seen in Fig. 1,
both expressions describe the data for all samples equally
well with the only major difference being the values obtained
for the quantum parameters g, and Q. This is discussed
further below.

It should be noted that the expression used for the field

dependent Ginzburg number in Eq. (11) is arrived at from a

H,(0)
2_ (1

—1)32, and so is strictly valid only for T=0.67.. In general

melting line that follows the power-law form H,,~

5
20007 - - ct
———(1- t)l_‘y+Ci:| Gl‘ﬂt—l(t—l _ 1))

for a portion of the melting line that can be approximated by
HL2 (0)
H, m™ (1 - t)a

~ 12q| _He ]1/(1
G(H,) = (G) [Hd(o) . (14)
When performing a fit of Eq. (13) to melting line data, a
temperature dependent expression for the Ginzburg number
G(T,) is needed. This is obtained from the field dependent
Ginzburg number by evaluating Eq. (14) at each known field
H,(T) and inverting as a function of temperature.

Also, it should be noted that at finite frequencies, disper-
sive effects lead to'$3

wOTiore(l _ iwﬁom)
(1 _ iwﬁare)Z + (oncrare)Z ’

7(w) = Pop; (15)
with p,=2e|¢4? the superfluid density. However, away from
the superclean limit (wy7,<<1) or for high frequencies (w7,
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FIG. 1. (a) Fit of Eq. (13) to vortex-glass melting line, H,(T),
data of Y _,Pr,Ba,Cu30¢4 97(x=0-0.4) and YBa,Cu30qs. (b) Same
data as in (a) shown in a semilogarithmic plot to emphasize the
quality of the fit to the low-field region.

>1), dissipative dynamics*® dominates and the Bardeen-
Stephen result [Eq. (4)] is recovered.

An additional important result, addressed in more detail in
the Appendix, is that the modified vortex-glass model of
Rydh and co-workers’’*® and the Coulomb-gas scaling
model® are special cases of the model considered here.
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IV. DISCUSSION

The melting line data H,(T) of the Y,_,Pr,Ba,Cu;Oq¢;
films and YBa,Cu;0g 5 single crystal obtained in this study
and that of a bulk MgB, sample and amorphous a-Mo,Si;_,
film were fitted by Eq. (13). We discuss in detail below the
results for the fits for the Y,_Pr,Ba,CusOqy; films and
YBa,Cu;0 5 single crystals, shown in Fig. 1. The results for
the MgB, and a-Mo,Si;_, samples are commented on in the
next section.

Comparison of the values of ¢, s, and g, or Q given in
Table 1 to the values found in our previous work?? shows
overall good agreement. The values of ¢; are in very good
agreement for all samples, with differences ranging from 0%
to ~12%. The values for s are in good agreement, with the
exception of the x=0 optimally oxygenated sample. For all
other samples, disagreement ranges from ~5% to 19%,
which is not considered to be overly significant since the
errors for the values of these exponents is estimated at
~10% —15%. For the x=0 sample, the values are 4.6 vs
3.33, an approximately 30% disagreement. The likely expla-
nation for this larger discrepancy is that the data for this
sample only extend to 7=0.5T,, whereas for the remaining
samples the data extend over temperatures ranging from 7.
down to (0.03—0.17)T.,. Thus there is more room for error in
the fitting processes involved for either expression for the
melting line. The values for the quantum parameter ¢, found
using the melting equation given in this manuscript, are seen
to be a factor of ~5-20 smaller than those for Q,, found
using the melting line expression in Ref. 22. As noted in our
earlier work, the model leading to the initial melting line
expression of Blatter and Ivlev, used in Ref. 22, did not
include the thermal contribution of compressional modes.
Since the quantum parameter is a measure of the strength of
quantum to thermal fluctuations, the exclusion of the com-
pressional modes will likely decrease the measure of thermal
fluctuations, thus likely overestimating Q.

Using the values of e=1/v, py, and g, in Table I, with
Ny=k;' [kp~0.2 A" (Ref. 18)] and G;(0)=~1072, we can
then calculate values for ) and 7, using Egs. (12) and (9).
We find QH~103QA for x=0.1-0.4 and y=6.5, and (),

TABLE 1. Values of the Lindemann number c;, critical exponent s = v(z+2—d), and the quantum param-

eter o= QOQOTO using Eq. (13) for the data in Fig. 1. The error values are Ac; ~0.02, for all ¢;, and =15%
for all values of s and ¢g,. The values of the anisotropy parameter y for Y,_Pr,Ba,Cu;O¢ o7 are from Ref. 40
and for YBa,Cu3Og 5 are given in Ref. 41. The values of ¢ are derived from the value of H,.,(0) obtained

from the fits to the data.

PN §
X cr s 90 bl (€2 m) (A)
0 0.34 4.6 0.07 7.4 0.2 13
0.1 0.31 1.6 4.1 8.4 8.4 17
0.2 0.29 1.8 1.3 14.3 9.3 20
0.3 0.30 2.0 1.5 16.4 9.8 26
0.4 0.31 1.8 0.8 20.8 10.3 29
y=6.5
0 0.28 2.0 0.8 65 2.2 22
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FIG. 2. Resistivity data, p(7), and scaled resistivity data,
[dlog p(T)/dT]™" vs T, of a YBa,Cu;04 5 single crystal.

~10*Q, for x=0. This would imply that the correct expres-
sion for the quantum parameter is g,, and thus, s=s5s. How-
ever, as shown by the example in Fig. 2 for YBa,Cu;30g 5, the
critical exponent s = v(z— 1) obtained from scaling of the re-
sistivity data p(T) agrees well with the value of § found from
the fit to the melting line data by using , [Eq. (9)] in Eq.
(13) for all of the melting lines, i.e., §=s/2. This leads to an
apparent contradiction, since the condition Q=min[{2,,,Q,]
means we expect () to be given by Eq. (7).

This contradiction can be resolved if the effective vortex
line mass is larger than the individual line mass " used in
Eqgs. (6) and (9). From Eq. (12), we can solve for 7, in terms
of the experimentally determined fit parameters, giving

490 7T lu'em
=| = 16
o <QO> 4B me (16

Then, substltutmg Eq. (16) into Eq. (6) and assuming an
effective mass u"=au,,,, we solve for the enhancement fac-
tor necessary to satisfy ), =),

- =
2B, 1
o= e Q026 1 (17)

This gives a~ 10* for the YBa,Cu;0,_4 film and a~ 10° for
the remaining samples.

The friction encountered by a vortex line mass due to
dissipation and quantum vortex tunneling has been consid-
ered by Blatter et al.’> The dynamic vortex friction produces
an enhanced and dispersive vortex effective mass,
o= pe(1+ 70/ | @] prg), where @ is an inverse quantum tunnel-
ing time, 7, is the total viscosity per unit length, and w, is
the total vortex mass per unit length. In the dissipative limit,
the quantum tunneling time (in SI mks units) is found to be,’
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FIG. 3. The quantum parameter ¢(f) measuring the relative con-
tribution of quantum to thermal displacements of a single vortex
line for the Y;_,Pr,Ba,Cu;0¢ 97 and YBa,Cu30g4 5 samples obtained
from the fit of the melting line data to Eq. (13).

2
_ MomeL;
4me, ’

where €,=[®,/47\]? is the basic energy scale of the vortex
line energy, €,=¢,In(\/£), and L, is the collective pinning
length of a segment of the vortex along the vortex length
With w=1"!, the effective electromagnetic vortex mass u,,, is
given (in mks units) by

Mo n%Li )

18
47760/"’6’71 ( )

P = Mem<1 +
A lower limit of the value of the collective pinning length L.
can be set by the size of the vortex core diameter, giving
L.=2§&,. This limit is reasonably chosen, since, for a dis-
placement of a segment of the vortex core smaller than &, the
vortex flux line distortion becomes large and leads to a
breakdown of simple elastic vortex motion.> Using
A= 1400-2900 A, then €,~(0.3—1)X 1072 J/m. Using
the values of py and £ given in Table I, the values of 7,(0)
are in the range 7,(0)=~10"°-10" N s/m?. Finally, the
lower limit of the effective electromagnetic vortex mass is
found to be w, ~(10°~10°4p,,, a considerable increase.
Substituting the effective mass values back into Eq. (12), and
solving again for )y and 7, for each sample, we find
Q,+=(107'-10%)Q,. It is seen then that dissipation from
quantum tunneling produces an enhancement of the high fre-
quency electromagnetic contribution to the vortex mass u,
sufficient to result in a lowering of the cutoff frequency (1,
such that ()« <{),. Thus, the disagreement between the val-
ues found for the FFH critical exponent and the single vortex
relaxation time exponent can be resolved.

The values of the quantum parameter as a function of
temperature, ¢(7), for each of the samples are shown in Fig.
3. The results here are in contrast to what might be expected,
in that the value of ¢(r) increases with temperature, becom-
ing very large as T—T,.. This can be understood physically
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FIG. 4. Temperature dependence of the quantum tunneling
length scale defined by the square root of the quantum contribution
to the mean squared displacement field (u2>q for the
Y,_PrBa,Cu30¢9; and YBa,Cu3Og45 films. The shaded region
corresponds to the range of the diameters of the vortex cores,
d~2¢.

from the contribution of various intrinsic properties: First,
the line tension €, \~2 vanishes as (1-7). So, while the
effect of quantum fluctuations is significant at low tempera-
tures, the quantum tunneling of a segment of the vortex flux
line, in this case a pancake vortex, becomes easier as the flux
line becomes more flexible with increasing temperature. Ad-
ditionally, we would expect quantum tunneling to be easier at
lower fields (higher temperatures) with the increased dis-
tance between the flux lines. Also, with the dynamic behav-
ior of the vortices along the melting line set by the relaxation
time 7, which follows from the scaling properties of the
fluctuation conductivity, the superfluid density plays a sig-
nificant role in the problem of the melting transition. Experi-
mental evidence, at least in the case of YBa,Cu30g s, indi-
cates that the field dependence penetration depth M\,
in magnetic fields up to 6 T, seems to indicate that
Nup(H=H ) =2\ ,,(H=0) at T=0.*>* Additionally, Amin et
al.** studied the consequences of the nonlinear, nonlocal,
and nonanalytic nature of the effect of the anisotropic super-
conducting gap on the effective penetration depth and found,
that, contrary to common belief, the effective penetration
depth is not a linear function of the magnetic field, a result
that is in agreement with the experimental data of Ref. 42.
From the temperature and field dependences of the penetra-
tion depth A, it can be seen that the superfluid density in the
region of the vortex solid melting line is larger at high fields
than at low fields. This adds to the impedance of the tunnel-
ing process, since this means moving a core of normal elec-
trons through a more dense superfluid. It is predicted that the
melting line will terminate prior to reaching H, when it
gives way to what is referred to as a quantum vortex liquid
state (QVL).»!82145 Experimental evidence for the QVL
state was found in @-Mo,Si;_, amorphous films at fields
above H~0.9B,,(0),**" 50 it is quite possible that the melt-
ing line terminates well before any strong field suppression
effects of the superfluid density are relevant. Lastly, as can
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be seen in Fig. 4, and discussed below, the distance over
which quantum fluctuations displace the vortex is of the or-
der of the size of the vortex core. At low fields, as the melt-
ing line approaches the critical temperature 7, the size of the
vortex cores at the melting transition increases as
(1-T/T,)~"2, thus the distance over which a quantum fluc-
tuation displaces a vortex line segment grows accordingly.
An important aspect of the physical picture to be kept in
mind is that disorder promotes quantum fluctuations, as can

be seen by the expressions for Qo py and Q u™ \s“E,, so that
qua]™ [\py.py]- This is understood by the fact that the vor-
tices need somewhere to tunnel to, so then, up to a certain
level of disorder, the value of g should increase as random
disorder increases, and then decrease as the increasing disor-
der begins to shorten the distance over which a vortex seg-
ment tunnels. This effect can be seen in Fig. 3, where the
clean YBa,Cu;0,_;s film has a much lower value of ¢(z)
than the doped Y,_,Pr,Ba,Cu;O¢9; and oxygen deficient
YBa,Cu30¢5 films, and also from the result where the
x=0.1 sample has a notably larger value of g(¢) than the
other samples. This same behavior can also be seen in Fig. 4,
where the distance over which quantum fluctuations displace
the vortex core is plotted, shown as the square root of the
quantum contribution to the mean squared displacement field
(u?), versus the reduced temperature 7, where'8

4
(1), = 50078

The quantum tunneling length is shortest in the clean
YBa,Cu;0,_; film, longest in the x=0.1 film, and close to or
less than the x=0.1 tunneling length in the remaining films.
The apparent nonmonotonic dependence of the quantum tun-
neling length on x for the x=0.1-0.4 films is likely attribut-
able to the error of ~15% of the values shown. For compari-
son, the range of the size of the vortex cores, d ~ 2§, over all
the samples is indicated by the range of the shaded region.
With the exception of the YBa,Cu;0,_s sample, it is ob-
served that, over most of the temperature range, the quantum
fluctuations smear the core over a distance that is comparable
to the size of the core, a result that is in agreement with the
observation of Blatter and Ivlev for YBa,Cu;0,_s5 where
they used a constant value of ¢ and the zero temperature
value of the coherence length &,.!82!

The fraction of the quantum contribution to the displace-
ment of the vortex line to the total displacement necessary
for melting of the vortex lattice, \/@/ cray, where the criti-
cal displacement is defined by the Lindemann criterion,
(u?)=cjag [ay=(2/+3)"2ay], is shown in Fig. 5. The contri-
bution of quantum fluctuations to the melting of the vortex
lattice is found to be a significant to dominant part of the
melting process.

We recognize that the above result is both unexpected and
contrary to the results of Blatter and Ivlev,'® wherein they
found that quantum fluctuations will not be relevant at tem-
peratures near T,. They reached this conclusion by examin-
ing the dynamical response of the supercurrent flow encir-
cling a moving vortex. Specifically, the question to be
addressed in determining whether or not quantum fluctua-
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FIG. 5. Fraction of the quantum contribution to the mean
squared displacement field to the total dlsplacement \r<uz>q/ (u? )T,
at the melting transition, where <u2)T =~c Lao is the Lindemann cri-
terion for the melting of the vortex lattice. The error of the values
shown is estimated as ~10%.

tions are relevant to the melting process of the solid vortex
ensemble is “will the quantum fluctuations of the vortex core
be felt by neighboring vortices?”” Blatter and Ivlev found that
if the supercurrent surrounding the vortex core is able to
follow the motion of the core, then neighboring vortices will
be affected; if not, then the fluctuating vortex core will be
screened at a short distance by the normal current flow
driven by the scalar potential in the core region.

This question is first addressed by considering the ratio of
the quasiparticle and London current densities,'

|wi7, 1
1 +|w,|7, AX(T)’

‘]N 417)\20_N(wn)|wn|
= B (19)

Jr c
where 7, is the normal state (quasiparticle) scattering time
and w, are the Matsubara frequencies (associated with the
quantum fluctuations of the vortex core) which are limited by
the cutoff frequency Q=min[(,,,Q,].

From Eq. (19) above, it is seen that, at low temperatures,
for both vanishing frequencies and for high frequencies the
London currents are dominant. Based on the assumption that
w, remains finite as T—T,. and also with A(T)—0 as
T—T,, Blatter and Ivlev then found, for temperatures near
T,, that Jy>J;, and logically concluded that quantum fluc-
tuations are not relevant to the melting process at tempera-
tures near 7T..

However, if one accepts the empirically determined ex-
pression for the single vortex relaxation time, 77, and the
resulting expression for the (mass limiting) cutoff frequency
Q,~ (1-1)/ \r’?r, which goes to zero as T—T,, then the up-
per limit of the Matsubara frequencies w, must also vanish in
the same manner as T— T.. Then, with w, < w and with
Q, vanishing more rapidly than 1/ Az(T) dlverges as
T—T., the result is instead that J; >Jy, from which it fol-
lows that quantum fluctuations of the vortex core, in fact,
remain very relevant to the melting process for all T<<T..
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To examine the question of the relevancy of quantum
fluctuations further, Blatter and Ivlev'® also considered the
related issue of dissipation due to vortex motion close to 7.
By assuming that their previous conclusion was incorrect
and instead that vortex motion remains coupled to the Lon-
don currents as T— T, they arrived at an expression for the
power dissipated by normal currents outside the vortex core
as T—T,, wherein P~ oy®2u’w?/€>c?. Here, u is the mag-
nitude of the total vortex dlsplacement, and €z~ £(0) is the
charge imbalance length associated with the normal current
flow around the core. Again, assuming that w, remains finite
as T—T,, then P remains finite as 7—T,, from which it
follows that their counter assumption that the vortex motion
remains coupled to the London currents is incorrect.

However, if the empirically arrived at expression for
Q,=0Q0t™2(1-1)1*9"2 is used, then the dissipation based ar-
gument is also overcome, since w, is limited by (), which
goes to zero as T—T,.. The vanishing behavior of P as
T— T, can be found by using the following relations:

<u2>|T=Tm = cia%, (20)

)

2 0
=—, 21
="y 21
Hyl7=04r. = Hol(1 = 1)/}, (22)

Then as T—T,,
oy®

P~ ; 2P0~ (1-0'"2. (23)

The results above, based on the empirically observed
single vortex relaxation time 77, are independent of the an-
satz that the scaling properties of the fluctuation conductivity
are responsible for the single vortex relaxation time. How-
ever, within the context of this ansatz, these results are
readily understood by considering the following: With the
fluctuation conductivity responsible for the time scale over
which vortex motion takes place, then, as the critical point
(H=0,T=T,) is approached, a critical slowing down of the
fluctuation induced motion of the vortex core would be ex-
pected. Naively, we would anticipate this time scale to di-
verge as 7~ (1-T/T,)7%, for some positive exponent ¢, and
that the frequency of the quantum fluctuations would go to
zero as w,~ /7. Then, so long as (=1, Eq. (19) above
remains ﬁnlte as T— T,, implying the continued relevance of
quantum fluctuations. A more restrictive value for { requires
P~u*>Q)?>—0 as T—T,, so then we must have {>s/2.

V. VORTEX-GLASS MELTING LINES OF
Mng AND (Y-MOxSil_x

To further demonstrate that the melting line equation de-
veloped here is not limited to just high-7, compounds, we
have fitted Eq. (13) to vortex-glass melting line data of two
very different compounds, MgB, and a-Mo,Si,_,.

The vortex-glass melting line, H,(T), of a bulk sample of
MgB, was determined by a scaling of the dc resistive tran-
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FIG. 6. Fit of Eq. (13) to vortex glass melting line, H,(7), data
of a bulk MgB, sample prepared by hot isostatic pressing (HIP).
The upper inset shows the same data on a semilogarithmic plot. The
lower inset shows resistivity data plotted as [d In p(T)/dTT™" vs T,
demonstrating vortex-glass behavior, with p(T) ~ (T—T,) Yz=1) The
value of the critical exponent s=4.0, obtained from the fit of Eq.
(13) to the melting line data, is a factor of 2 greater than that found
from scaling of the resistivity data, v(z—1)=2.1. Data taken from
Ref. 48.

sition in accordance with the vortex-glass theory of FFH,
p(T)~(T-T,) vz=1) 48 The fit of Eq. (13) to the data is shown
in Fig. 6. The SVRT exponent value of s=4.0, obtained from
the fit to the melting line data, was found by assuming that
the limiting frequency (1=() ,, i.e., §=s/2, as in the case for
the high-7. samples considered above. However, the expo-
nent syg=v(z—1)=2.1, found from the scaling of the resis-
tivity data, is approximately equal to half of the exponent s
found from the fit of the melting line equation. If instead we
use 1=0),, i.e., §=s, we obtain the SVRT exponent value of
s=2.0, in agreement with the value of sy. This indicates that
the energy gap A provides the scale of the energy cutoff
which limits the dynamical properties of the vortices, and
therefore, the correct expression for the quantum parameter g
in this case is g, [Eq. (12)].

The vortex-glass transition has been shown directly to ex-
ist in amorphous films of the low temperature supercon-
ductor a-Mo,Si;_, down to T~0.04T,. by measurements of
the dc and ac complex resistivities in constant fields.**’ The
transition was identified by the scaling relation of the dc
resistivity stated above and from the ac resistivity which, in
agreement with FFH theory, follows a power-law frequency
dependence p, < f“%; the phase has a frequency-
independent value ¢,=(m/2)(z—1)/z. The fit of Eq. (13) to
the a-Mo,Si;_, data is shown in Fig. 7. In this case, the
exponent obtained from the melting line fit, s=4.5, agrees
well with the exponent v(z—1)=4.4 found by vortex-glass
scaling of the resistivity.
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FIG. 7. Fit of Eq. (13) to vortex-glass melting line, H,(T), data
of a 100 nm thick film of @-Mo,Si;_, (x=0.44). The inset shows
the same data on a semilogarithmic plot. Data taken from Ref. 46.
Okuma et al. found v~1 and z~5.4 for all fields H<5 T from
scaling of the dc resistivity by the form p(T)~(T/T,~ 1)1 At
fields above 5 T, Okuma et al. found evidence from scaling analy-
sis of the ac resistivity p,. of a quantum liquid vortex state. Thus the
melting line terminates prior to connecting to the upper critical field
line H.,(T).

VI. SUMMARY

The vortex-glass melting lines, H,(7), of epitaxial thin
film Y,_Pr,Ba,Cu3044; samples (x=0-0.4) grown on
LaAlOj substrates by pulsed laser ablation, as well as an
ultrahigh purity oxygen deficient YBa,Cu3Og 5 single crystal
grown in a BaZrO; crucible, were measured in magnetic
fields up to 45 T. Analysis of the evolution of vortex dy-
namic properties along the melting lines of each system was
carried out in the context of a modified melting line expres-
sion based on the quantum-thermal-fluctuation model of
Blatter and Ivlev.'® We have also provided further evidence
that the equation provides truly a universal description of the
melting line in type-II superconductors by fitting to vortex-
glass melting line data from the noncuprate non-high-7, sys-
tems, MgB, and a-Mo,Si;_,.

The melting line equation developed here provides an ex-
perimental means for determining the physical mechanism
responsible for the energy scale that limits vortex motion
at high frequencies. By determining the exponent s from
vortex- (or Bose-) glass scaling analysis of the resistive tran-
sitions and comparing the value of s to the value of the
exponent §, obtained from the fit to the melting line data of
Eq. (13), the appropriate cutoff frequency (2, or {1, can be
determined.

It is found that the effective vortex mass is enhanced sig-
nificantly by quantum fluctuations in the Y;_,Pr,Ba,Cu;O¢ o7
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and YBa,Cu;04 5 samples studied here, leading to a value of
the kinetic cutoff frequency (), <{),. By examining the val-
ues of the quantum parameter as a function of temperature,
q(1), it is shown that quantum fluctuations play an important
role in the physics of the vortex solid to vortex liquid tran-
sition. The value of ¢(z) is found to increase significantly
with temperature, becoming very large as 7T—T.. This is
explained primarily due to the increase of the size of the
vortex cores as the melting line approaches the critical tem-
perature 7T,, the distance over which quantum fluctuations
displace a segment of the vortex flux line. The vanishing line
tension €,%\~2~ (1—¢) and reduced superfluid density high-
temperature/low-field region also likely contribute to quan-
tum tunneling effects. The quantum tunneling length is found
to be shortest in the relatively clean YBa,Cu;05_; film, par-
ticularly at low temperatures. The tunneling distance is long-
est in the x=0.1 film, and similar to or less than that of the
x=0.1 sample for the remaining films. This is understood by
the physical scenario wherein disorder actually promotes
quantum fluctuations, up to a point.
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APPENDIX A: MODIFIED VORTEX GLASS MODEL
Recently, Rydh, Rapp, and Andersson®’*® (RRA) devel-
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original model of Fisher et al.’ and the empirically observed
equation for the vortex-glass melting line by Lundqvist et
al.,*® where

N 1.85(1)0[(1 —t)}“ (A1)

"yl |t

with d the interlayer spacing and a=1. RRA arrived at a
scaling law for the vanishing of the resistivity as the critical
temperature T, is approached, such that resistivity data taken
in various constant magnetic fields will collapse onto a single
curve when it is plotted as

{@} b TT=T)

Py T(T.~T) (A2)

Additionally, Lundqvist e al. used the expression of the vor-
tex lattice melting line arrived at by Blatter and Ivlev to lend
support to the melting line equation. It is easily seen that Eq.
(A1) can be recovered as a high ¢ limiting case of Eq. (13)
where a=5.

APPENDIX B: COULOMB-GAS MODEL

The scaling laws from the Coulomb-gas (CG) scaling
model® are nearly equivalent to those found from the modi-
fied vortex-glass thermal depinning model of Rydh and
co-workers.3”3 This can be seen simply by examining the
scaling functions of the resistivity in the two cases. In the
CG model, the resistivity data p(7) is predicted to scale such
that for all applied magnetic fields in the relevant regime, the
data will collapse onto a single curve when plotted as

1[@] b -1 -
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FIG. 8. Resistivity data generated from the modified vortex-glass relation p(7', B)=py| TToT -1

T(T -T )T (T-T)-1
c g g c

(T .-T,)

¢, plotted according to the Coulomb-gas

(left panel) and modified vortex-glass (right panel) scaling laws. Notice the linear (on a log-log plot) behavior of the data in the modified

vortex-glass plot, a key indicator of vortex-glass behavior.
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and MVG (right panel) scaling laws. Note the lack of linear (on a log-log plot) behavior of the data in the MVG plot, indicating that

vortex-glass behavior does occur in this case.

RRA noted that their scaling law is very similar to the CG
scaling relation, and surmised that there is a likely connec-
tion between the generalized Coulomb-gas model and their
modified vortex-glass model. The situation is thus as fol-
lows: If resistivity data will scale according to the CG model,
it will also scale according to the MVG model, and vice
versa.

This equivalence is shown in Fig. 8, where resistivity data
for two different magnetic fields that were generated from
the MVG relation

T( Tc - Tg_r)

T(T.~T) (B2)

p(T.B) = py

are plotted according to both scaling relations.

However, it is possible to distinguish between the two
cases. If, as is shown in Fig. 9, we plot resistivity data which
were generated from the CG relation instead,

0.5
ln{—p(T’B)}:—A/[#LT(TC_T)—I] . (B3)
PN Tg(TL_T)

the data can again be seen to collapse in either case; how-
ever, the data fail to exhibit the predicted power-law behav-
ior in the MVG scaling plot. Thus, it is quite obvious, from a
formalistic and phenomenological examination, that the CG
model is a special case or subset of the MVG model, which
is itself a special case (the large ¢ limit) of Eq. (13).

We reemphasize that, for a system which behaves in ac-
cordance with the modified vortex-glass model, electrical re-
sistivity data in the region of vanishing resistivity will scale
in agreement with both the MVG and CG scaling laws. The
conformity of the resistance data to the scaling expressions
of both models is not the case, however, for resistivity data
from a system that behaves according to the Coulomb-gas
model. It should then be recognized that, for a system whose
vortex solid to vortex liquid transition phase boundary,
H,(T), is described by Eq. (13), resistivity data in the region
of the transition will conform to the Coulomb-gas scaling
relation in addition to the vortex-glass or modified vortex-
glass scaling laws. This, however, does not imply that the
physics of the system is governed by the Coulomb-gas
model.
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