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Ab initio density functional calculations on explicitly doped La2−xSrxCuO4 find that doping creates localized
holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that
doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals
apical O pz, planar Cu d3z2−r2, and planar O p�. This is in contrast to the assumption of hole doping into planar
Cu dx2−y2 and O p� orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background
leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes
percolate through the crystal at x�0.05 for La2−xSrxCuO4, a Cu dx2−y2 and planar O p� band is formed. The
computed percolation doping of x�0.05 equals the observed transition to the “metallic” and superconducting
phase for La2−xSrxCuO4. Spin exchange Coulomb repulsion with chiral polarons leads to d-wave supercon-
ducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy
separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the
antiferromagnetic spin coupling energy, Jdd�0.1 eV, suggesting a higher critical temperature. An additive
skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature
dependent Hall effect that fits the measured values for La2−xSrxCuO4. The integrated imaginary susceptibility,
observed by neutron spin scattering, satisfies � /T scaling due to chirality and spin-flip scattering of polarons
along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with
experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferro-
magnetic Cu d9 spins is computed for classical spins on large two-dimensional lattices and is found to be
incommensurate with a separation distance from �� /a ,� /a� given by �Q��2� /a�x, where x is the doping.
When the perturbed x2−y2 band energy in mean field is included, incommensurability along the Cu-O bond
direction is favored. A resistivity �T�+1 arises when the polaron energy separation density is of the form ���

due to Coulomb scattering of the x2−y2 band with polarons. A uniform density leads to linear resistivity. The
coupling of the x2−y2 band to the undoped Cu d9 spins leads to the angle-resolved photoemission pseudogap
and its qualitative doping and temperature dependence. The chiral plaquette polaron leads to an explanation of
the evolution of the bilayer splitting in Bi-2212.
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I. INTRODUCTION

It is generally assumed that the relevant orbitals for un-
derstanding high temperature cuprate superconductivity arise
from holes on planar Cu dx2−y2 and O p� orbitals. The t-J
model1 and its generalization to the three-band Hubbard
model2 are believed to be the correct Hamiltonians for un-
derstanding these materials. Extensive work since the origi-
nal discovery3 has not led to a complete understanding of the
properties of the cuprates despite the rich physics contained
in such a simple Hamiltonian.

In this paper, we assume that doping creates polarons
composed of apical O pz hybridized with Cu d3z2−r2 and pla-
nar O p� that form localized chiral states in the vicinity of
the dopant �Sr in La2−xSrxCuO4, for example�. The polaron
orbital is spread over the four-site Cu plaquette near the Sr
and is stabilized in a chiral state due to its interaction with
the antiferromagnetic d9 spins on the undoped Cu sites. This
is similar to prior work4–8 suggesting that chiral spin states
arise from doping, except that, in our case, the polaron is
formed from out-of-plane orbitals.

As the doping is increased, the chiral polarons eventually
percolate through the crystal. We assume that a Cu dx2−y2 and
O p� delocalized band is formed in the percolating swath.
This leads to our Hamiltonian of a delocalized Cu dx2−y2 band

interacting with chiral plaquette polarons and localized d9

antiferromagnetic spins on the undoped Cu sites.
For low dopings, momentum k is not a good quantum

number because the x2−y2 / p� band is formed on the perco-
lating swath. This leads to broadening observed in angle-
resolved photoemission spectroscopy �ARPES� measure-
ments. As the doping is increased, k becomes a better
quantum number.

With increasing doping the four-site chiral polarons
crowd together in the crystal, and several changes occur.
First, the apical O and single Cu closest to Sr is doped with
pz instead of the four Cu’s of the plaquette.9 Second, the
reduction of undoped d9 spins decreases the energy differ-
ence between a polaron state and its time-reversed partner.
Third, the number of x2−y2 / p� band electrons increases.

In our model, the superconducting d-wave pairing is due
to the Coulomb spin exchange interaction of the x2−y2 band
with chiral polarons where the Debye energy in phonon su-
perconductors is replaced by the maximum energy difference
of a polaron with its time-reversed partner �the polaron with
flipped chirality and spin�. This leads to an overdoped phase
where superconductivity is suppressed.

Calculations in this paper of the doping values of
La2−xSrxCuO4 and YBa2Cu3O6+� for the percolation of po-
laron plaquettes and the formation of an x2−y2 band are x
�0.05 and ��0.36. The percolation of single doped apical
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O pz and Cu z2 described above is x�0.20. These numbers
are close to known phase transitions in La2−xSrxCuO4 Refs.
10 and 11 �x�0.05 for the spin glass to superconducting
transition and x�0.20 for the orthorhombic to tetragonal
transition� and YBa2Cu3O6+� �Ref. 12� ���0.35 for the an-
tiferromagnetic to superconducting transition�.

Chiral polarons couple to the Cu d9 spins on the undoped
sites and distort the antiferromagnetic order, leading to in-
commensurate magnetic neutron scattering peaks. The
charge current of the polaron induces a chiral coupling of the
form ±Jch�Sz · �Sd1	Sd2��,7,8,13 where Sz is the polaron spin
and the subscripts d1 and d2 represent Cu x2−y2 spins at
adjacent sites. The sign of the interaction is determined by
the chirality of the polaron. This term is in addition to an
antiferromagnetic coupling between the polaron spin and a
neighboring d9 spin, Jdz, and the d9−d9 spin coupling, Jdd.

We have performed energy minimizations on large lattices
of classical spins doped with chiral plaquette polarons over a
range of coupling parameters to compute the static spin
structure factor. These calculations are similar to previous
computations of the correlation length and incommensurabil-
ity due to chiral plaquettes13 using the Grempel algorithm14

to search for a global minimum. A neutron incommensura-
bility peak consistently appears on a circle in k space cen-
tered at �� /a ,� /a� with a radius ��2� /a�x. This result
misses the kinetic energy perturbation of the dx2−y2 band.
Computing this contribution in mean field selects the incom-
mensurate peaks along the Cu-O bond directions in accord
with experiments.10,15–17

If the energy difference between a chiral state and its
time-reversed partner, where the spin and chirality are
flipped, is uniformly distributed over an energy range larger
than the temperature, then the dynamical magnetic response
of the polarons satisfies � /T scaling.10,18–24 Since the po-
larons are randomly distributed throughout the crystal with
different undoped d9 environments, the probability distribu-
tion of the energy separation of these states may be approxi-
mately uniform.

There are four possible orbital state symmetries for a po-
laron delocalized over a four Cu plaquette. They are S, Dxy,
and Px�± iPy�, where the last two states are chiral. x� and y�
refer to axes along the diagonals. Coulomb scattering of Cu
x2−y2 band electrons with polarons leads to a linear resistiv-
ity in the case of a uniform energy distribution of the ener-
gies of the four polaron states. This may be uniform for the
same reasons discussed above for neutron scaling. Any non-
uniformity of the energy distribution spectrum makes the re-
sistivity nonlinear.

Spin exchange Coulomb scattering of an x2−y2 Cooper
pair �k↑ ,−k↓ � with a chiral polaron Px�± iPy� and spin s
into the time-reversed intermediate state Px�
 iPy� and spin
−s leads to an anisotropic repulsion that is peaked for scat-
tering of a Cooper pair with k near �±� ,0� to k� near
�0, ±�� and k near �0, ±�� to k� near �±� ,0�. There are two
necessary conditions to obtain a d-wave superconducting
pairing. First, the time-reversal symmetry must be broken
such that Px�+ iPy� and spin s is not degenerate with Px�
− iPy� and spin −s. The maximum energy separation of these
two polarons replaces the Debye energy in phonon supercon-

ductivity. Second, the polaron must be spread out over more
than one site so that phase differences in the initial and final
x2−y2 band states can interfere. A single site polaron would
lead to an isotropic repulsion and no superconductivity.

In zero magnetic field, there is an equal number of po-
larons of each chirality. A magnetic field creates more po-
larons of one chirality than the other. An x2−y2 band electron
scattering from a chiral polaron is skew scattered25–28 due to
a second-order Coulomb repulsion with a polaron, where the
polaron orbital changes in the intermediate state. This leads
to an additive skew-scattering contribution to the Hall effect
proportional to the difference of the number of “plus” and
“minus” polarons. For high temperatures, the difference is
�1/T.

For the hole-doped cuprates, the polarons are holes. The
Coulomb matrix element is negative, U�0, since the change
in the Hamiltonian amounts to the removal of a Coulomb
coupling. Although we have not identified the nature of the
polaron in the electron-doped system Nd2−xCexCuO4, the
same argument makes U�0.

The skew-scattering contribution is derived and computed
for reasonable values of the parameters. It is found that the
sign change between the hole-doped and electron-doped cu-
prates appears due to the sign change of U. The magnitude of
the skew-scattering term is shown to be large enough to ac-
count for the experimental data. The derived functional form
for the temperature dependence is shown to fit the data29 on
La2−xSrxCuO4. To our knowledge, the only explanation for
this sign difference between the hole- and electron-doped
cuprates arises from the additional �� ,�� nesting of the
Nd2−xCexCuO4 Fermi surface.30

The d9 undoped spins interact with the x2−y2 band elec-
trons. They induce a coupling of a state with momentum k to
k±Q, where Q��� ,�� is the incommensurate peak momen-
tum. This leads to an ARPES pseudogap.31–34 The strength of
the d9 antiferromagnetism decreases with increasing tem-
perature, making the pseudogap close with temperature. At
low doping, there are more undoped d9 spins, and the cou-
pling to the x2−y2 band electrons is larger than the coupling
at higher doping. The pseudogap increases with decreasing
doping, while Tc is reduced. The couplings leading to the
pseudogap and superconductivity are different in our model.

The outline of the paper is as follows. In Sec. II, the
experimental and theoretical arguments for the existence of
pz holes with doping are examined. In particular, experi-
ments considered to establish the validity of the t-J
model35,36 and preclude any substantial out-of-plane charac-
ter are addressed.37 Section III defines the chiral plaquette
polarons. Section IV calculates the percolation phase transi-
tions and compares them to the La2−xSrxCuO4 and
YBa2Cu3O6+� phase diagrams. Section V describes classical
spin calculations of the neutron structure factor, including the
effect of the d9 and polaron spin incommensurability on the
kinetic energy of the band x2−y2 electrons. Incommensurate
peaks along the Cu-O bond direction are obtained. The po-
laron magnetic susceptibility is calculated, assuming a uni-
form probability distribution of polaron energy level separa-
tions, and is shown to satisfy � /T scaling. In Sec. VI, the
Coulomb interactions of x2−y2 band states with chiral
plaquette polarons is examined to determine the possible su-
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perconducting pairing channels. The spin exchange interac-
tion leads to an anisotropic repulsion of the form sufficient to
create a d-wave gap with nodes. Section VII describes the
resistivity and Hall effect due to Coulomb interactions with
chiral polarons. If the distribution of energy separations of
polaron states with different symmetries is uniform, then the
resistivity is linear. A magnetic field produces a difference in
“up” and “down” chiral polarons, leading to an additive
skew-scattering contribution to the ordinary band Hall effect,
with a temperature dependence consistent with measure-
ments. The magnitude and temperature dependence of the
skew scattering is calculated. Section VIII A describes our
model of the ARPES pseudogap and its doping and tempera-
ture dependence. Section VIII B discusses the doping and
temperature dependence of the bilayer splitting observed in
ARPES on Bi-2212. Section IX discusses the NMR data of
Takigawa et al.38 that is assumed to be strong evidence for a
one-component theory because of the similar temperature de-
pendencies of the Knight shifts of planar Cu and O in under-
doped YBa2Cu3O6.63. We argue qualitatively that these re-
sults are compatible with our model. Section X presents our
conclusions.

II. EXISTENCE OF A1 HOLES

A. Ab initio calculations

Becke-3-Lee-Yang-Parr �B3LYP� is a three parameter hy-
brid density functional that includes 20% exact Hartree-Fock
exchange.39–43 Its success has extended beyond its original
domain of parametrization to include the thermochemistry of
compounds containing transition metals.44–47

Several years ago,48 we performed ab initio periodic band
structure computations using the spin unrestricted B3LYP
functional on undoped La2CuO4 and explicitly doped9

La2−xSrxCuO4. For the undoped insulator, the antiferromag-
netic insulator with the experimental band gap of 2.0 eV was
obtained.49

Prior to this calculation, the insulating state had been ob-
tained by extending local spin density computations, which
yielded zero gap or a metal to approximately incorporate the
self-interaction correction not accounted for in this func-
tional. Table I chronologically summarizes corrections to the
initial local density approximation �LDA� results and their
computed band gaps.

Our result showed that an off-the-shelf functional with an
established track record44–47 for molecular systems could re-
produce the results of more elaborate LDA corrections. In
addition, we found the highest occupied states to have more
out-of-plane orbital character �apical O pz and Cu z2� than
what LDA obtained. Svane53 also made this observation in
his self-interaction corrected �SIC� computation.

In a second paper,9 we explicitly doped La2CuO4 with Sr
to form supercells of La2−xSrxCuO4 at special dopings of x
=0.125, 0.25, and 0.50. We found that an additional hole was
formed for each Sr atom that localized in the vicinity of the
dopant of apical O pz, Cu z2, and an A1g combination of pla-
nar O p� characters. The Cu sites split into undoped and
doped sites. The undoped sites had a d9 x2−y2 hole, and the
doped sites were still predominantly d9 with a mixture of

x2−y2 and z2 hole characters. There was a corresponding
hole character on the neighboring O atoms in and out of the
plane with the appropriate B1g and A1g symmetries. This led
us to argue that out-of-plane hole orbitals are a generic char-
acteristic of cuprates and must be considered in developing
theories of these materials.

At the time, B3LYP had an established track record with
molecular systems, but its use for crystal band structures was
in its infancy. This is likely due to the difficulty of including
exact Hartree-Fock exchange into periodic band structure
codes.

Since the appearance of our doped Sr work, it has been
found that B3LYP does remarkably well at obtaining the
band gaps of insulators.58–61 Hybrid functionals appear to
compensate the overestimation of the gap from Hartree-Fock
with the underestimation arising from local density and gra-
dient corrected functionals. Thus, we believe density func-
tionals have established the existence of a nonplanar hole
character in La2−xSrxCuO4.

For La2−xSrxCuO4, there are five Cu sites in the vicinity of
a Sr atom in two distinct CuO2 planes. The Sr is centered
over four Cu in a square plaquette. The fifth Cu couples to
the Sr through the neighboring apical O between them, as
shown in Fig. 1. The hole state composed of apical O pz,
Cu z2, and planar O p�, as shown in Fig. 1, appeared with Sr
doping.

The polaron state with the hole delocalized over two di-
agonally opposed Cu in the four Cu plaquette is higher in
energy in our ab initio calculation by 0.57 eV for each Sr or
0.071 eV for each f.u of La1.875Sr0.125CuO4. The value of
0.57 eV is an upper bound since our geometry optimizations
only allowed the apical O sites to relax. The polaron local-
izes on two Cu sites due to spin exchange coupling with the
x2−y2 hole and the antiferromagnetic spin ordering of the
x2−y2 holes in our periodic supercells. In this paper, the hole
state in Fig. 1 obtained from our ab initio calculations is not
taken to be the correct polaron. Instead, we postulate that Sr
doping leads to chiral polarons over the four plaquette Cu
atoms shown in Fig. 2. This is discussed in Sec. III.

TABLE I. Ab initio La2CuO4 band gap results. LSDA stands for
local spin density approximation, SIC is self-interaction correction,
HF is Hartree-Fock, and UB3LYP is unrestricted spin B3LYP. The
last line is the experimental gap.

Method
Bandgap

�eV� Ref.

LSDA 0.0 Yu et al. �Ref. 50�
LSDA 0.0 Mattheiss �Ref. 51�
LSDA 0.0 Pickett �Ref. 52�
SIC-LSDA 1.0 Svane �Ref. 53�
LSDA+U 2.3 Anisimov et al. �Ref. 54�
SIC-LSDA 2.1 Temmerman et al. �Ref. 55�
LSDA+U 1.7 Czyzyk and Sawatzky �Ref. 56�
HF 17.0 Su et al. �Ref. 57�
UB3LYP 2.0 Perry et al. �Ref. 48�
Experiment 2.0 Ginder et al. �Ref. 49�
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This paper explores the consequences of the assumptions
that Sr doping causes holes to appear in Cu four-site
plaquettes, and the most stable configurations are the chiral
states Px�± iPy�.

From an ab initio standpoint, our first assumption is plau-
sible for La2−xSrxCuO4, but unproven. This may be due to
the limitation of the special periodic supercells that were
chosen out of necessity to perform the computation, the re-
strictive geometry relaxation for the plaquette polaron, or it
may be a limitation of the B3LYP functional.

For YBa2Cu3O6+�, we do not have an ab initio proof for
doping of four-site Cu plaquettes in the CuO2 plane either. In
fact, any polaron plaquettes would likely be in the yz plane,
where the Cu-O chains are along the y axis and the z axis is
normal to the CuO2 planes. One way in which polaron
plaquettes can arise is when two adjacent Cu-O chains each
have an occupied O separated by one lattice spacing along
the x axis �perpendicular to the direction of the chains�. In
other words, the two O chains reside in neighboring chains
with a minimum separation between them. This may create
four-site polarons on the two CuO2 planes above and below
the two O atoms. For this paper, the chiral plaquette polarons
in Fig. 2 are assumed.

The second assumption, that the polarons are chiral, is
true for a localized polaron interacting with an infinite d9

antiferromagnetic lattice in two dimensions4–8 by mapping
the two-dimensional �2D� Heisenberg antiferromagnet to a
continuum model and analyzing the effective Hamiltonian
arising from a path integral formulation. These papers did
not specifically consider an out-of-plane hole, but the analy-
sis is applicable in our scenario. This is discussed further in
Sec. III.

B. Experiment

Resonance circular dichroism photoemission investigating
the spin of the occupied states near the Fermi level35,36 find a
preponderance of singlet occupied states just below the
Fermi level in CuO and Bi2Sr2CaCu2O8+� �2212�. These re-
sults are considered strong evidence in favor of the correct-
ness of the t-J model. In particular, it is expected that out-
of-plane pz, z2, and A1g p� would lead to triplet occupied
states near EF due to the exchange Coulomb coupling to the
orthogonal x2−y2 orbital. Since the prima facie evidence is
against our proposal, we review the measurement and its
interpretation.

We show that our assumption of a delocalized x2−y2 band
on the percolating out-of-plane polaron doped Cu sites leads
to a null effect for resonance absorption on these sites. This
arises because a delocalized x2−y2 band electron spin has no
correlation to the polaron spin. Thus, the experiment mea-
sures the spin of the highest occupied states on the undoped
Cu d9 sites, where it is expected that the first holes would be
created in B1g combinations of ligand planar O p� orbitals
that form a singlet with the x2−y2 d9 hole �the Zhang-Rice62

singlet�.
The idea behind the dichroism experiment is to use circu-

larly polarized incident soft x rays tuned to the Cu L3 �2p3/2�
white line energy ��931.5 eV�. The incident x rays induce
the photoabsorption transition 2p63d9+
�→2p5d10 that Au-
ger decays to an ARPES final state 2p6d8+e. The spin-orbit
energy separation of the core-hole 2p1/2 and 2p3/2 states is
sufficiently large ��20 eV� to guarantee that the intermedi-
ate state is a j=3/2 core hole.

By monitoring the outgoing electron energy and spin
along the incident photon direction for each photon helicity,
�+ and �−, the total spin of the final Cu d8 is obtained. In the
Bi-2212 experiment,35 the photon is incident normal to the
CuO2 planes. The analysis below is for a normally incident
photon. The transition rates are slightly different for the CuO

Sr

La

Cu

O

FIG. 1. La2CuO4 with one doped Sr atom. Ab initio calculations
�Ref. 9� find an A1 hole localized above the Sr with hole character
on the apical O pz, Cu z2, and planar O p� orbitals. The pz character
above the doped Cu is smaller than the pz below the Cu, leading to
an A1 state rather than an A1g one.

Cu

Cu

x

y

x’

y’

Cu

Cu

x

y

x’

y’

Sr

O

O O

O OO

Cu CuO

Cu CuO

(2)-1/2 (Px’+ i Py’)_

FIG. 2. Orbital schematic of
chiral polarons postulated in our
model. We assume that these chi-
ral hole states are the most stable
due to interactions with the un-
doped d9 Cu lattice spins.
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case36 where a polycrystalline sample was used.
Consider a Cu initially in the d9 state

�2p6 ;3dz2↑ ↓ ;3dx2−y2�A↑↑ +A↓↓ ��, where our notation shows
the occupied electrons. The dxy, dxz, and dyz orbitals are al-
ways doubly occupied and are omitted in the wave function
for convenience. The 3dz2 orbital is doubly occupied, and the
single x2−y2 electron is in a spin state along a direction that
may be different from the incident photon direction. It is
represented as a linear combination of ↑ and ↓ along the
incident photon direction with �A↑�2+ �A↓�2=1. By summing
over all helicities and exiting electron spin directions, the
photoemission becomes independent of the initial direction
of the x2−y2 electron, as shown below.

Writing x̂, ŷ, and ẑ for the angular part of the Cartesian
variables, x /r, y /r, and z /r, the relevant wave functions and
photon polarization operators may be written as d3z2−r2

=C2�3ẑ2−1�, dx2−y2 =	3C2�x̂2− ŷ2�, and Y1±1=C1�1/	2�
	�x̂± ŷ�, where C1=	3/4� and C2=	5/16�. The mod-
squared matrix elements for resonance absorption of
�2p6 ;3dz2↑ ↓ ;3dx2−y2�A↑↑ +A↓↓ �� to the intermediate 2p3/2

core-hole states are

�2p6;3dz2↑↓;3dx2−y2�A↑↑ + A↓↓��

——→

�+ 
 �p5:

3

2
,
3

2
�d10 = �A↑�2

�p5:
3

2
,
1

2
�d10 =

1

3
�A↓�2
 1

6
�C1

C2
� , �1�

�2p6;3dz2↑↓;3dx2−y2�A↑↑ + A↓↓��

——→

�− 
 �p5:

3

2
,−

3

2
�d10 = �A↓�2

�p5:
3

2
,−

1

2
�d10 =

1

3
�A↑�2
 1

6
�C1

C2
� , �2�

where 
�± are positively and negatively circularly polarized
photons.

The Auger scattering rates of the four 2p3/2 intermediate
states, where one x2−y2 electron fills the 2p3/2 core hole and
the other is ejected are,

�3

2
,
3

2
�d10 → �2p6��dz2↑↓� + e↑ = �V�2, �3�

�3

2
,
1

2
�d10 → 
 �2p6��dz2↑↓� + e↑ = �2

3
��V�2

�2p6��dz2↑↓� + e↓ = �1

3
��V�2,
 �4�

�3

2
,−

1

2
�d10 → 
 �2p6��dz2↑↓� + e↑ = �1

3
��V�2

�2p6��dz2↑↓� + e↓ = �2

3
��V�2,
 �5�

�3

2
,−

3

2
�d10 → �2p6��dz2↑↓� + e↓ = �V�2, �6�

where �V�2 is the Auger matrix element. The z2 is doubly
occupied, making the d8 state a singlet. There are analogous
matrix elements if the Auger process scatters the two z2 elec-
trons instead of x2−y2 and also if the final d8 is composed of
one electron in z2 and one in x2−y2 in a singlet configuration.

The total scattering rate is given by the products through
the various intermediate states. Using the convention35,36

�+↑, �−↑, �+↓, and �−↓ to represent a positively circularly
polarized photon ejecting an electron with ↑ spin, etc., the
scattering leaving a singlet d8 final state is

�+↑ = ��A↑�2 +
2

9
�A↓�2��V�2, �7�

�+↓ =
1

9
�A↓�2�V�2, �8�

�−↑ =
1

9
�A↑�2�V�2, �9�

�−↓ = �2

9
�A↑�2 + �A↓�2��V�2. �10�

The total parallel and antiparallel scattering is

↑↑ � ��+↑ + �−↓� =
11

9
�V�2, �11�

↑↓ � ��+↓ + �−↑� =
1

9
�V�2, �12�

where we have neglected the �C1 /6C2� from Eqs. �1� and �2�
since it cancels out when we evaluate the polarization de-
fined below. These two sums are independent of the starting
spin orientation of the x2−y2 electron. The “polarization” is
defined as a ratio �↑↑−↑ ↓ � / �↑↑ + ↑ ↓ �=5/6 for pure singlet
d8 states.

There are three possible triplet d8 spin states. There is one
electron in x2−y2 and z2. The scattering from the intermedi-
ate d10 state with a 2p3/2 core hole to triplet d8 is given by

�3

2
,
3

2
�d10 → 
�2p6��↓↓� + e↓ = 2�V�2

�2p6�� ↑↓ + ↓↑
	2

� + e↑ = �V�2, 
 �13�
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�3

2
,
1

2
�d10 →


�2p6��↓↓� + e↓ = �2

3
�2�V�2

�2p6�� ↑↓ + ↓↑
	2

� + e↑ = �2

3
��V�2

�2p6�� ↑↓ + ↓↑
	2

� + e↓ = �1

3
��V�2

�2p6��↑↑� + e↑ = �1

3
�2�V�2,



�14�

�3

2
,−

1

2
�d10 →


�2p6��↓↓� + e↓ = �1

3
�2�V�2

�2p6�� ↑↓ + ↓↑
	2

� + e↓ = �2

3
��V�2

�2p6�� ↑↓ + ↓↑
	2

� + e↑ = �1

3
��V�2

�2p6��↑↑� + e↑ = �2

3
�2�V�2,



�15�

�3

2
,−

3

2
�d10 → 
�2p6��↑↑� + e↑ = 2�V�2

�2p6�� ↑↓ + ↓↑
	2

� + e↓ = �V�2. 
 �16�

Multiplying by the transition rates to the intermediate state
for all possible photon and electron spin polarizations,

�+↑ = ��A↑�2 + 4
9 �A↓�2��V�2, �17�

�+↓ = �2�A↑�2 + 5
9 �A↓�2��V�2, �18�

�−↑ = � 5
9 �A↑�2 + 2�A↓�2��V�2, �19�

�−↓ = � 4
9 �A↑�2 + �A↓�2��V�2. �20�

The total parallel and antiparallel scattering is

↑↑ � ��+↑ + �−↓� =
13

9
�V�2, �21�

↑↓ � ��+↓ + �−↑� =
23

9
�V�2, �22�

leading to polarization �↑↑−↑ ↓ � / �↑↑ + ↑ ↓ �=−�1/3��5/6�
for pure triplet d8 states.

The measured value of the polarization for each photo-
electron energy gives an estimate of the amount of singlet
and triplet characters in the occupied states below EF. The
experiments35,36 find a singlet character just below EF, con-
sistent with the t-J model and in contradiction to A1 holes
that would Hund’s rule triplet couple to the x2−y2 electron.

In our model, there are two types of Cu sites. The first is
undoped with a single x2−y2 hole in a d9 state. The ejected
photoelectron near the Fermi level comes from the B1g com-

bination of neighboring p� orbitals on the planar O that
couples to the x2−y2 electron in a singlet, as described by
Zhang and Rice.62 This is consistent with experiment and the
t-J model.

The second Cu is on a doped site with an out-of-plane
polaron and a delocalized band comprised of x2−y2 and p� in
our model. In this case, the final Cu d8 state has one z2 and
one x2−y2 hole with no spin correlation between them. Thus,
↑↑ = ↑↓ and the polarization arising from resonance scatter-
ing on doped Cu sites is zero. The only polarization observed
arises from the undoped sites with singlet holes near the
Fermi energy.

The second experiment we consider is polarized x-ray ab-
sorption on La2−xSrxCuO4 for x=0.04–0.30.37,63 A substan-
tial O absorption with z-axis polarized x rays indicates that
there are holes in apical O pz. In addition, x-ray absorption
fine structure �XAFS�64,65 measurements observe a displace-
ment of the apical O away from the Sr toward Cu, consistent
with hole formation in O pz. Since the pz hole character is
compatible with our out-of-plane polaron assumption, we fo-
cus on the Cu result.

The Cu absorption finds a few percent z2 character on the
Cu sites. Our ab initio calculations find the z2 hole character
to be approximately 85% of the x2−y2 hole character. It is
too large compared with experiment. One could argue that
the many-body response to the formation of a Cu 2p core
hole is different for an undoped Cu, versus a doped Cu where
the delocalized x2−y2 band may suppress the white line due
to the orthogonality catastrophe or more strongly screen the
core-hole potential. We are not convinced that this is the sole
reason for the small amount of the z2 hole character observed
in the white line.

A possible explanation is that the chiral polaron, spread
out over four Cu sites as in Fig. 2, has more p� and pz
characters at the expense of z2 from delocalization compared
to the polaron centered around a single Cu site in Fig. 1. A
recent neutron pair distribution analysis66 is more compatible
with a chiral plaquette polaron. In this case, extracting a very
small signal from a bulk average of bond distances and then
using the measured bond distances to infer orbital occupa-
tions is very model dependent.

III. CHIRAL POLARONS

The higher energy antibonding electronic states with api-
cal pz, z2, and p� over a four Cu doped plaquette are shown
in Fig. 3. The Px� and Py� are degenerate. For simplicity, we
have taken the two apical O pz above and below each Cu and
the Cu z2 and 4s to be one A1 orbital. Thus, there are a total
of eight states. The figure does not show the lower energy
three bonding states �E and B2� since they are occupied.

Table II lists the energies of the eight polaron states for
the case where the orbital energy of the “effective” A1 com-
posed of pz and z2 is taken to be equal to the p� orbital
energy, �z=�p=0. There is an effective hopping matrix ele-
ment, tpz, from pz to p�. tpp is the diagonal p� matrix ele-
ment. It is expected that 0� tpz� tpp.

The antiferromagnetic �AF� interaction of the polaron
spin with the undoped Cu d9 lattice renormalizes these cou-
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plings, but we expect Px� and Py� to remain the most un-
stable electronic states.

The effect of the undoped d9 spin background is seen in
mean field where the d9 AF spins surrounding a plaquette are
frozen with an ↑ spin on one sublattice and a ↓ spin on the
other sublattice. The additional energy of an S or Dxy polaron
with spin � due to AF coupling of � with the d9 spins is zero
since the average d9 spin seen by the polaron is zero. For P
states, the polaron spin couples to one sublattice. � can be
aligned with the sublattice spin leading to a further destabi-
lization of the P state.

P hole states were found in the exact diagonalization of
Gooding8 for a t-J model on a 4	4 lattice, with an addi-
tional hole allowed to delocalize on the interior 2	2 lattice.

This is in accordance with theoretical predictions.4–7 Based
on the energies in Table II, the mean-field description of the
d9 spins, and exact results on a 4	4 lattice,8 we assume that
the polaron hole has a P symmetry.

For a single hole delocalized in a small region of an AF
spin background, it has been shown4–7 that the chiral states
1 /	2�Px�± iPy�� are the correct spontaneous symmetry
breaking states for the hole rather than Px� and Py� because
the complex linear combinations are compatible with the
long range twisting of the AF lattice spins into a stable con-
figuration topologically distinct from the AF ground state.67

In this paper, we assume that doping introduces hole char-
acter in out-of-plane orbitals that can delocalize over a small
number of sites in the vicinity of the dopant. The most fa-
vorable configuration for the polaron is taken to be the chiral
state. If there was a single dopant in an infinite d9 crystal,
then the chiral states, 1 /	2�Px�± iPy��, would be degenerate.
These two states are time-reversed partners.

In a finitely doped system, the environment of each po-
laron is different and the two chiral states may have different
energies. We assume that, in a doped cuprate, the chiral
states are the correct polaron eigenstates, but the energies of
the two states may be different. This leads to a model of the
polarons where the splitting between the chiral states along
with all the other states represented in Table II and Fig. 3 are
distributed differently for each plaquette. The assumption of
a completely uniform probability distribution of different po-
laron state energies throughout the crystal leads to neutron
� /T scaling, as shown in Sec. V A. A linear resistivity, de-
rived in Sec. VII, arising from the Coulomb scattering of
x2−y2 band electrons with the polarons is also obtained with
a uniform energy distribution.

This model of nondegenerate chiral polarons implies that
the time-reversal symmetry is broken. At any instant, the
number of up chiral polarons should equal the number of
down chiral polarons, and, macroscopically, the cuprate is
time-reversal invariant. There is recent experimental evi-
dence for local time-reversal symmetry breaking in neutron
scattering.68

IV. PERCOLATION

There are three basic assumptions of our model. First,
doping leads to additional holes in out-of-plane orbitals that
form chiral states, as shown in Figs. 2 and 3.

Second, when these polaron plaquettes percolate through
the crystal, a band is formed with the x2−y2 and p� orbitals
on the percolating swath. This metallic band interacts with
the x2−y2 hole d9 spins on the undoped Cu sites and the
plaquette polarons. The random distribution of impurities
leads to a distribution of the energy separations of polaron
states shown in Fig. 3.

Third, this energy distribution is uniform. The linear re-
sistivity arises from this assumption, as shown in Sec. VII.
Since the resistivity is nonlinear for certain dopings and tem-
perature ranges, this assumption is not always valid.

The transitions from a spin glass to a superconductor in
La2−xSrxCuO4 at x�0.05 �Ref. 10� and from an antiferro-
magnet to a superconductor at ��0.35 �Ref. 12� in

TABLE II. Polaron symmetries and energies from highest �most
unstable electronic states� to lowest. The effective pz and p� orbital
energies are taken to be 0.

State Symmetry Energy

Px�, Py� E +	2tpz

Dxy B2 −tpp+	tpp
2 +4tpz

2

S A1 0

Px�, Py� E −	2tpz

Dxy B2 −tpp−	tpp
2 +4tpz

2

Not polaron A2 Coupled to x2−y2

S=A1 Dxy=B2

Px’=E Py’=E

x

x’
y’ y

A2g

FIG. 3. Projection onto CuO2 of four polaron states and their
symmetries. The higher energy antibonding states are shown. The
fifth state of the A2g symmetry is composed entirely of p� orbitals
and is not a polaron state. This state becomes part of the delocalized
x2−y2 band at the unoccupied k state �� ,�� and the occupied bond-
ing x2−y2, p� band. We assume that an interaction with the undoped
d9 spin background, as shown in prior work �Ref. 4–8�, makes the
chiral combinations px�± ipy� the most unstable electronic states
�most stable hole states�. When these chiral states percolate through
the crystal, we further assume the electronic states composed of
x2−y2 and p� delocalize over these doped sites. There are a total of
eight states. The lowest three have E �Px� and Py�� and B2 �Dxy�
symmetries and are bonding combinations of the states in the figure.
They are always occupied. The energies of the states are listed in
Table II.
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YBa2Cu3O6+� occur at the doping when the polarons perco-
late through the crystal.

In this section, the site percolation doping values are com-
puted for La2−xSrxCuO4 and YBa2Cu3O6+�. Reasonable as-
sumptions for the distribution of plaquettes are used to ap-
proximately simulate the repulsion of the dopants. The
computed values are close to known phase transitions in
these materials.

We also computed the percolation for two additional sys-
tems. The first is La2−xSrxCuO4, where each Sr dopes exactly
one Cu site, as shown in Fig. 1, and the second is a 2D
square lattice with plaquette doping. The computed
La2−xSrxCuO4 1-Cu percolation value of x�0.20 is associ-
ated with the observed orthorhombic to tetragonal phase
transition.10

For the 2D square lattice with four Cu plaquette doping,
percolation occurs at x�0.15. We believe that the 2D perco-
lation of the plaquettes should be associated with the transi-
tion from an insulator to a metal at x�0.15 found by low-
temperature resistivity measurements in large pulsed
magnetic fields.69 This is further discussed in Sec. VII.

All percolation computations described here were per-
formed using the linear scaling algorithm of Newman and
Ziff.70 In all these calculations, we simplify the problem by
using Cu sites only. For La2−xSrxCuO4, we take each Cu to
have four neighbors in the plane at vectors �±a ,0 ,0� and
�0, ±b ,0� and eight neighbors out of the plane at
�±a /2 , ±b /2 , ±c /2�, where a, b, and c are the cell dimen-
sions. Thus, each Cu has a total of 12 neighbors in the site
percolation calculations.

For all YBa2Cu3O6+� calculations, we take each planar Cu
to be connected to a total of six Cu atoms. There are four

nearest neighbors in the same CuO2 plane, one neighboring
Cu on the adjacent CuO2 across the intervening Y atom and
one Cu on the neighboring chain. The Cu chain is connected
to the two Cu atoms in the CuO2 planes above and below
itself. We assume an O chain atom dopes three Cu atoms,
two in CuO2 planes and the corresponding Cu chain as
shown in the constraints of Fig. 5.

Table III lists the computed percolation values for
La2−xSrxCuO4, a 2D square lattice, and YBa2Cu3O6+� for
various types of doping and doping constraints. These con-
straints were chosen to simulate the repulsion of the dopants
and are approximations to the actual distribution of dopants
in the cuprates.

The La2−xSrxCuO4 and YBa2Cu3O6+� calculations are on
200	200	200 lattices with 2500 different dopings. The
square lattice size is 2000	2000 with 5000 different dop-
ings.

The first La2−xSrxCuO4 calculation is the critical doping
for percolation of doped Cu, where each Sr dopes the single
Cu shown in Fig. 1 instead of the four Cu plaquette of Fig. 2.
Although we assume that plaquettes are created at low dop-
ings, once the doping is large enough, there is crowding of
the plaquettes. Single Cu polarons are formed. This single
Cu percolation calculation is an approximate measure of the
doping for the transition from predominantly doped
plaquettes to single site polarons. A phase transition at this
crossover doping is expected. The computed percolation of
x�0.20 matches the orthorhombic to tetragonal transition10

doping.
From the table, the critical doping for three-dimensional

�3D� plaquette percolation in La2−xSrxCuO4 is x�0.05 re-
gardless of the applied doping constraints and matches the

(d)(a)

(b)

(c)

Sr

La

Cu

O

(e)

FIG. 4. Applied Sr doping constraints used
for the La2−xSrxCuO4 and 2D square lattice
plaquette percolation calculations shown in Table
III. For each four Cu plaquette in Figs. 2 and 3,
two Sr atoms, one above and one below the
plaquette �upper and lower Sr�, can dope the
Cu’s. Each figure shows the disallowed configu-
ration of Sr doping. It is assumed that all ±90°
and 180° rotated configurations are equivalent to
the figure and also disallowed. �a� Upper and
lower Sr doping the same plaquette. �b� A Cu
atom in a plaquette doped by two different Sr
atoms. This figure includes the three cases of two
upper Sr, two lower Sr, and one upper and one
lower Sr. This is the no overlap constraint. �c�
Adjacent plaquettes doped by two upper Sr or
two lower Sr. �d� Adjacent plaquettes doped by
one upper Sr and one lower Sr. �e� Nearest-
neighbor upper Sr and lower Sr in different LaO
planes.
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spin glass to superconductor transition.10 This is because the
plaquette percolation values are approximately 1/4 of the
single Cu percolation result of x�0.20.

For YBa2Cu3O6+�, the more realistic doping constraints
are the second and third cases where ��0.33 and ��0.36
since O chains should not have a preference of which Cu
triple to dope. Experiment12 finds ��0.35.

From these results, we conclude that the plaquette polaron
model with percolation can obtain known insulator to metal
phase transitions in La2−xSrxCuO4 and YBa2Cu3O6+�.

V. NEUTRON SCALING AND INCOMMENSURABILITY

A. Scaling

Neutron spin scattering measures the imaginary part of
the magnetic susceptibility, ��q ,��.

The integral of the imaginary part of the spin susceptibil-
ity �d2q���q ,�� over the Brillouin zone, where �=��+ i��,
has been found18–24 to be a function of � /T. The integral is
the on-site magnetic spin susceptibility. The � /T scaling is
unusual because ���� /Jdd for an antiferromagnet and ��
�� /EF for a band, where Jdd is the d9 AF spin coupling and
EF is the x2−y2 band Fermi energy.

In this section, we show that the single polaron suscepti-
bility is a function of � /T when the energy difference be-

tween polaron chiral states with opposite spins and chiralities
is uniformly distributed.

The q dependence of the polaron susceptibility, �p��q ,��,
is peaked at q=0 if spin-flip polaron scattering dominates at
low energy. �p��q ,�� is peaked at q= �� ,�� if the polaron
spin and chirality flips are at low energy. The latter scatters
the polaron to its time-reversed state. The time-reversed chi-
ral polarons are the low energy excitations, as shown in Sec.
V B. The q dependence is broad because the polaron is lo-
calized over a four-site plaquette. Since the total susceptibil-
ity is dominated by q near �� ,��, the polaron susceptibility
is approximately momentum independent, �p��q ,����p����.

The imaginary part of the polaron susceptibility is found
to be of the form �p����� tanh��� /2� and satisfies scaling.
The coupling of the polaron spin and chiral orbital state to
the undoped d9 spins causes the total susceptibility to be-
come incommensurate. This is shown in Sec. V B, where we
compute the static spin structure factor for classical spins
perturbed by chiral polarons.

In this section, we show that coupling to the undoped d9

spins leads to a dynamic susceptibility consistent with the
measured form10,18 in Eq. �36�.

Consider a polaron as in Fig. 6 with energy � separating
the down spin state from the up spin and occupations n↓ and
n↑ in thermal equilibrium. Since the polaron is always singly
occupied, n↑+n↓=1 and n↓=e��n↑. Solving for n↓ and n↑,

n↓ = f�− ��, n↑ = f��� , �23�

where f��� is the Fermi-Dirac function,

f��� =
1

e�� + 1
. �24�

TABLE III. Percolation values for various structures and doping
scenarios. The column on constraints references the figures describ-
ing the applied constraint. All La2−xSrxCuO4 and YBa2Cu3O6+� re-
sults are obtained for a 200	200	200 lattice with 2500 doped
ensembles. The percolation value is the computed critical x in
La2−xSrxCuO4 and � in YBa2Cu3O6+�. The square lattice results are
for a 2000	2000 lattice with 5000 ensembles. The digit in paren-
theses is the error in the last digit.

Structure Dopant type Constraints Percolation

LSCO 1-Cu None 0.19617�2�
LSCO 4-Cu None 0.05164�1�
LSCO 4-Cu Fig. 4�a� 0.05097�1�
LSCO 4-Cu Figs. 4�a� and 4�b� 0.04834�1�
LSCO 4-Cu Figs. 4�a�–4�c� 0.04880�1�
LSCO 4-Cu Figs. 4�a�–4�c� and 4�e� 0.04904�1�
LSCO 4-Cu Figs. 4�a�, 4�b�, and 4�e� 0.04862�1�
LSCO 4-Cu Figs. 4�a�–4�d� 0.04926�1�
LSCO 4-Cu Figs. 4�a�–4�e� 0.04943�1�
Square 4-Cu Figs. 4�a� and 4�b� 0.15053�1�
YBCO 3-Cu Fig. 5�a� 0.31162�2�
YBCO 3-Cu Fig. 5�b� 0.32890�2�
YBCO 3-Cu Figs. 5�b� and 5�c� 0.36098�2�

Ba

Cu

O

Y

Doped Cu

Chain O

(a)

(c)

(b)

FIG. 5. Doping constraints used for YBa2Cu3O6+� calculations
shown in Table III. The O chain and its three doped Cu sites are
shaded gray. Three different doping scenarios are shown. �a� The O
chain dopes a fixed Cu triple. �b� The O chain randomly dopes one
of the two possible Cu triples. No triple may be doped by two
adjacent O chains. �c� If two O chains are in the same cell, the two
Cu doping configurations where the triples are closest to each other
are not permitted.
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To compute the dynamical polaron spin susceptibility,
consider an applied magnetic field Bei�t normal to the spin
quantization axis. The alternating field induces transitions
between the two states if �=�.

Let W=W↑↓=W↓↑ be the induced transition rate between
the two spin states. The total absorption rate is

�P���� = 
�W�n↓ − n↑� . �25�

Using Eq. �23�,

�P���� = 
�W�f�− ���� − f������ , �26�

�P���� = 
�W tanh�����/2� . �27�

The absolute values of � are used above because the absorp-
tion rate is independent of which spin state is lower in en-
ergy. The transition rate W is

W��� =
2�



�B

2B2��� − ���� . �28�

Averaging W over all spin quantization directions multiplies
Eq. �28� by 2/3,

�W���� =
4�

3

�B

2B2��� − ���� . �29�

Let ���� to be the probability distribution of energy differ-
ences for spin and chirality flips. Summing over all polarons,
the total absorption rate is

�P���� = 
�� d�����tanh�����/2��W���� , �30�

�P���� = �4�

3
���B

2B2����� + ��− ���tanh���

2
� , �31�

�P���� = �8�

3
���B

2B2����tanh���

2
� , �32�

where ��−��=���� because there is an equal number of po-
larons with an up spin lower in energy than a down spin and
polarons with down spins lower in energy than up spins.

The absorption rate can be written in terms of the imagi-
nary part of the polaron susceptibility as

�P���� =
1

2
��p����B2, �33�

leading to the imaginary susceptibility per polaron of

�p���� = �16�

3
��B

2����tanh���

2
� . �34�

The probability density of polaron energy separations
���� is taken to be uniform with �d�����=1 and is of the
form

���� = 
 1

2�max
, − �max � � � �max

0, ��� � �max,

 �35�

where �max is doping dependent, �max=�max�x�.
Equations �34� and �35� show that the polaron suscepti-

bility is a function of � /T and has the approximate form seen
in experiments.10,18 The functional form of �p� increasing
from �p��0�=0 and saturating for ���1 arises from the ther-
mal occupations of polaron states with energy splitting �.
When ���1, the two states have almost equal occupations
and the absorbed energy is small from Eqs. �25� and �26�.
For ���1, the lower energy state is always occupied and
the higher energy spin state is always unoccupied. In this
case, the absorption saturates. Since the polaron spin density
���� is constant up to �max, it is �� that determines the
amount of absorption due to the difference of the two Fermi-
Dirac occupation factors. Finally, if there are no spin-flip
energies smaller than �min, then �p���� is zero for ���min.

The measured susceptibility for La2−xSrxCuO4 at x=0.04
is normalized and fitted by the expression10,18

� 2

�
�tan−1�a1���� + a3����3� , �36�

with a1=0.43 and a3=10.5. This curve rises to the saturating
value of 1 faster than our expression in Eq. �34�.

The contribution to the susceptibility from the undoped d9

spins and the metallic x2−y2 band has not been included. The
band contribution is on the order of � /Ef, where Ef is the
Fermi energy and can be neglected. The imaginary suscepti-
bility from the undoped d9 spins is on the order71 of � /�,
where � is several Jdd to Ef and can also be neglected. The
real part of the d9 susceptibility is approximately constant up
to the energy ���. We may therefore take the d9 suscepti-
bility to be real and � independent for small �. Thus, the �
dependence of the total susceptibility arises from the polaron
susceptibility in Eq. �34�.

The q dependence of the susceptibility is incommensurate
from the calculations of the next section and is of the form71

��q� =
�B

2 �̃0��/a�2

1 + �q − Q�2��/a�2 , �37�

where Q is the incommensurability peak vector and � is the
correlation length. From the computations in the next sec-
tion, Q is shifted from �� /a ,� /a� along the Cu-O bond
direction and agrees with experiment. ��a /	x is the mean
separation between Sr.

∆ = 2µBBeff
f(−∆)

f(∆)

FIG. 6. Energy difference � between up and down spin po-
larons. f�−�� and f��� are the equilibrium occupations of the spin
states where f��� is the Fermi-Dirac function, f���=1/ �e��+1�. Beff

is the effective magnetic field that splits the spin energies by �. The
chiralities of the two states are different for low energies, leading to
a broad peak in �p��q ,�� at �� ,��.
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Summing the random phase approximation diagrams in
Fig. 7 leads to

���q,��
�B

2 �−1

= ���q�
�B

2 �−1

− xU2��p���
�B

2 � , �38�

��q,�� =
�B

2 �̃0��/a�2

1 + �q − Q�2��/a�2 − �̃0U2��p���/�B
2�

�39�

where we have used �� /a�2x=1 for the �p term.
Using the integral

Im � d2q

A + Bq2 − iC
= �

0

+� �2�C�qdq

�A + Bq2�2 + C2

= ��

B
���

2
− tan−1�A

C
��

= ��

B
�tan−1�C

A
� , �40�

and defining �̃p���=�p��� /�B
2 , the integrated imaginary sus-

ceptibility is

� ���q,��dq = ��B
2 �̃0 tan−1� �̃0U2�̃p����

1 − �̃0U2�̃p����� . �41�

In the above expression, �̃p= �̃p�+ i�̃p� has been expanded into
real and imaginary parts. Using �p��−��=�p���� and �p��−��
=−�p����, the equation can fit the experimental curve in Eq.
�36�.

B. Incommensurability

There is an antiferromagnetic coupling, Jpd, between the
polaron spin Sp and the neighboring d9 spins. The polaron is
delocalized over four Cu sites. The probability of the hole
residing on a particular Cu is 1 /4, leading to the estimate of
Jpd��1/4�Jdd, where Jdd is the undoped d9 AF coupling. The
effective coupling of a chiral polaron to the d9 spin back-
ground is known7,8,13 to induce a twist in the neighboring
spins. This can be encapsulated in a topological charge
term67 of the form 
Jch�Sp · �S1	S2��, where Sp is the po-
laron spin and Sd1 and Sd2 are adjacent d9 spins, as shown in
Fig. 8.

The expectation value �Sp · �S1	S2��=0 for states invari-
ant under a time reversal. Thus, the expectation value of the
topological charge is zero for the real polaron states Px�, Py�,

S, and Dxy. The complex linear combinations in the chiral
states lead to a nonzero topological charge. The above chiral
coupling term is the simplest coupling of chiral polarons to
the neighboring spins.

References 7, 8, and 13 considered holes in both the t-J
and three-band Hubbard models that can delocalize over a
four-site plaquette. In our model, x2−y2 spins delocalize on
the plaquettes, forming a band when the polarons percolate.
Our chiral coupling is between a polaron spin and the adja-
cent spin sites that may be undoped d9 or another polaron
spin. The specific form for the coupling is analogous to pre-
vious work.

The coupling of the x2−y2 band to the neighboring spins
is smaller than the chiral coupling of the polaron and d9

spins. The perturbation arising from the band spin coupling
selects incommensurability along the Cu-O bond directions,
as shown at the end of this section.

The polaron chiral coupling of Px�± iPy� to the neighbor-
ing d9 spins is

Hch = 
 Jch�Sp · �S1 ∧ S2� + Sp · �S3 ∧ S4� + Sp · �S5 ∧ S6�

+ Sp · �S7 ∧ S8�� , �42�

where Jch�0 and the spins are labeled in Fig. 8. The anti-
ferromagnetic coupling of polaron spins to undoped d9 spins
is

Hpd = JpdSp · �S1 + ¯ + S8� . �43�

Electronic hopping matrix elements are on the order of
0.5−1.0 eV. The chiral coupling Jch is estimated to be less
than or of the same order. Gooding et al.72 obtained Jch
�3Jdd from numerical simulations and by computing the
effective next-nearest-neighbor antiferromagnetic coupling
Jdd� induced by chiral polarons at very low doping. Jdd� is then
compared with Raman data to obtain Jch.

In the spin Hamiltonian of Gooding et al.,72 the chiral
coupling term is squared, −Jch�Sp · �S1∧S2��2, in contrast to
our linear terms in Eq. �42�. The overall energy scale of Jch is
similar. We take Jch=3Jdd, where Jdd�0.1 eV in our compu-
tations of the static neutron structure factor. We have found
that our results for the magnitude of the incommensurability

+ + ...
χd(q)

U

Uχd(q) χd(q)

χp(ω)

FIG. 7. Diagrams to sum the random phase approximation for
the dynamic susceptibility ��q ,��. The first term is the static sus-
ceptibility ��q� in Eq. �37�, and the shaded loop is the polaron
susceptibility �p��� with the imaginary part shown in Eq. �34�. U is
the coupling energy.
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4
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Px’− i Py’

FIG. 8. Coupling of chiral polarons to neighboring d9 spins. Sp

is the polaron spin, and it couples to four d9 pairs in the cyclic order
shown by the arrows and Eq. �42�. The chiral coupling for the px�
− ipy� polaron reverses the cyclic ordering of the spins, as seen in
the figure and leads to the same expression as the px�+ ipy� with
Jch→−Jch.
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are independent of the precise values of all of the parameters.
The only necessary feature to obtain incommensurability is
that the chiral coupling Jch is sufficiently large to break the
�� ,�� spin ordering from the antiferromagnetic spin cou-
pling Jdd.

There is an antiferromagnetic spin-spin coupling between
the polarons. Jpp is the coupling between Sp1 and Sp2 and Jpp�
is the coupling between Sp1 and Sp3 shown in Fig. 9. An
estimate of Jpp and Jpp� is obtained in a similar manner to Jpd.
For Jpp, the polarons have two adjacent pair sites. An anti-
ferromagnetic coupling occurs for every adjacent pair. This
occurs with probability �1/4�2=1/16. There are two pairs for
Jpp and one for Jpp� leading to estimates Jpp��1/8�Jdd and
Jpp� ��1/16�Jdd.

Figure 9 shows various chiral couplings when polarons
are adjacent to each other. Using a similar analysis, we esti-
mate the magnitude of the chiral couplings to be, Jppp
��1/4�2Jch, Jppd��1/4�Jch, and Jppd� ��1/4�Jch.

The total spin Hamiltonian for the d9 spins and polarons is

H = Hdd + Hpd + Hpp + Hch
tot, �44�

where Hdd is the antiferromagnetic d9 spin-spin coupling
with Jdd�0.1 eV. Hpd is the polaron-d9 coupling and Hpp is
the polaron-polaron spin coupling. Hch

tot is the total chiral cou-
pling.

The chiral coupling Hch
tot is invariant under a polaron time

reversal that flips the chirality of a single polaron Px�± iPy�
→Px�
 iPy� or �Jch→−Jch� and the polaron spin, Sp→−Sp.
Hpd→−Hpd is not invariant under the time reversal of the
polaron. When the chiral coupling is much larger than all
spin-spin couplings, Jch�Jdd�Jpd�Jpp�Jpp� , the ground
state energy becomes independent of the polaron chiralities.

This is an important point because it means that the en-
ergy to simultaneously flip the chirality and spin of a polaron
has an energy scale Jdd, while flipping either the chirality or
the spin, but not both, has an energy scale Jch.

Figure 10 shows the minimized spin ordering surrounding
a polaron when the chiral coupling Jch dominates the polaron
spin to d9 coupling Jpd. Increasing Jch further does not
change the spin ordering. This leads to an incommensurabil-
ity that is weakly parameter dependent. All the neighboring
d9 spins in the figure are orthogonal to the polaron spin. The
Hpd antiferromagnetic energy is zero. The energy difference
of the time-reversed polaron in the same background is also
zero. The spin-spin couplings, Jpd, etc., lead to nonzero en-
ergy differences.

The static neutron spin structure factor is computed by
minimizing the energy in Eq. �44� on a finite 2D lattice with
classical spins Si of unit length, Si

2=1. Each undoped d9 site
has a spin, and every polaron has an orbital chirality,
Px�± iPy�, and spin. All the terms for the classical Hamil-
tonian are described above along with the parameters used.
The only constraint on the polarons is that they may not
overlap, but are otherwise randomly placed in the lattice. At
this point, the effect of the delocalized x2−y2 band electrons
is ignored.

One can imagine additional constraints on the placement
of the polarons arising from polaron-polaron Coulomb repul-
sion. Also, calculations on 3D lattices with a small interlayer
antiferromagnetic spin coupling can be done. The addition of
polaron constraints and the third dimension does not change
the computed incommensurability or its location in the Bril-
louin zone. These effects are ignored in this paper.

Finally, calculations with periodic and nonperiodic
boundary conditions were performed to ensure that there is
no long range twist in the spins that is frustrated by periodic
boundary conditions. No major difference was found in the
computed structure factors. This is likely due to the small
energy difference between a polaron and its time-reversed
partner.

Computations were done on 256	256 lattices with po-
laron dopings of x=0.075, 0.10, and 0.125. A random con-
figuration of polarons was chosen subject to the constraint
that no polarons overlap. Starting spins and chiralities are
randomly generated, and the initial energy is calculated. The

Sp1 Sp2

Sp3

Sp4

Jppp

JppdJ’ppd

Jppd

FIG. 9. Schematic of adjacent polaron configurations. Jppp is the
chiral coupling between three polarons, Jppd couples two polarons
to a d9 spin, and Jppd� couples two polarons to a d9 spin when one
polaron is shifted by one lattice spacing. The couplings are shown
for the case where all the polarons are px�+ ipy�. For each opposite
chirality polaron, px�− ipy�, the coupling should be multiplied by
−1. The figure does not exhaust all possible couplings. For example,
there is another term Jppp� if Sp4 is shifted to the right by one lattice
spacing.

Px’+ i Py’

FIG. 10. Minimized energy configuration for a polaron with spin
pointing out of the page surrounded by eight d9 spins. Only Jdd and
Jch are nonzero. This represents the regime dominated by Jch.
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energy is minimized by performing local minimizations.73

A spin is selected and the effective magnetic field on the
site is computed. Since the Hamiltonian in Eq. �44� is linear
in the spins, the energy arising from the chosen spin is mini-
mized by aligning it with the magnetic field. If the spin is a
polaron spin, then the effective magnetic field is computed
for both orbital chiralities to determine the chirality and spin
that minimize the energy. The chirality is flipped if a lower
energy can be obtained. The program loops through all the
spins, determines the new energy, and compares it to the
previous energy to decide on convergence. Calculations were
performed on 5000 different polaron configurations for each
doping value.

The Grempel algorithm13,14 was used to obtain the global
minimum. This algorithm is similar to raising the tempera-
ture to allow the energy to climb out of local minima and
then to annealing. Unlike Gooding et al.,13 we found that the
Grempel steps minimally lowered the energy and made no
difference to the static neutron structure factor. It is likely
that this is due to our linear chiral coupling in Eq. �42�. A
squared chiral coupling, used by Gooding et al., makes the
minimization more difficult and computationally expensive.
Thus, we were able to minimize larger lattices and more
ensembles to obtain smaller error bars on the results. Our
calculations constitute a different physical model than Good-
ing et al.13 despite the similar computational methods used.

Finally, we found that including the polaron-polaron spin
and chiral couplings shown in Fig. 9 does not alter the re-
sults. The dominant couplings in terms of the minimized spin
structure are the d9 spin coupling Jdd and the chiral coupling
Jch. The results shown below exclude any chiral couplings
involving more than one polaron.

Figures 11 and 12 show our results for the spin correlation
at dopings x=0.075, 0.10, and 0.125 on a 256	256 lattice
averaged over an ensemble of 5000 configurations for each
doping. The structure factor is dimensionless and is normal-
ized such that its integral over the Brillouin zone is 1,
N−1�kS�k�=1, where N is the total number of cells. Figure 13
shows part of a minimized spin structure at x=0.10.

Due to the large number of ensembles, the error bars for
the plotted values are small. For x=0.075, they are ±0.12,
±0.15, and ±0.12 for the diagonal peak, �� ,��, and the Cu-O
bond peak, respectively. For x=0.10, the errors are ±0.09,
±0.08, and ±0.07. For x=0.125, the errors are ±0.07, ±0.05,
and ±0.05. The error decreases sharply and becomes negli-
gible on the scale of the figure as k moves past the peaks and
farther from �� ,��.

From Fig. 12, the diagonal incommensurate peak is
shifted from �� /a ,� /a� by �2� /a��x /	2��1,1� and is of
length �2� /a�x. The peak along the Cu-O bond direction is
shifted in the range from �2� /a�x�1/	2,0� to �2� /a�x�1,0�.
The Cu-O bond direction shift is experimentally observed for
the metallic range x�0.05 �Refs. 10 and 17� in
La2−xSrxCuO4, and the diagonal shift is seen in the spin-glass
regime 0.02�x�0.05.74

Since the difference between �2� /a�x�1/	2,0� and
�2� /a�x�1,0� is small, it is difficult to resolve the precise
peak doping value within our finite size computations. If the
structure factor derives from broadened Lorenztians centered

at the four diagonal points around �� /a ,� /a�, then a peak in
the Cu-O bond direction would be expected at
�2� /a�x�1/	2,0� from the two closest peaks. The contribu-
tions from the remaining two peaks shift the peak closer to
�� /a ,� /a� rather than away from it, as seen in Fig. 12.
Thus, the best we can currently say with the calculations is
that there is a ring of incommensurate peaks approximately a
distance k= �2� /a�x from �� /a ,� /a�. From the widths of
the peaks, the correlation length is approximately the mean
separation between the polarons, a /	x.

We present a heuristic derivation for why the spin struc-
ture factor is incommensurate with a shift from �� /a ,� /a�
of magnitude �2� /a�x. Similar to a previous work,13 our
calculations find that the minimum spin configuration con-
sists of undoped patches of d9 spins aligned antiferromag-
netically with the polarons acting to rotate the direction of
the antiferromagnetic alignment of adjacent patches. This is
seen in Fig. 13.

Consider an area A. The number of polarons in this area is
Np=Ax /a2. When the chiral coupling dominates, the effect of
a single polaron on the neighboring d9 spins is shown in Fig.
10. The polaron rotates each adjacent spin on opposite sides
of the polaron by � or 2� total. If this net 2� rotation is
rigidly transmitted to an antiferromagnetic patch, then the
polaron rotates a patch by an angle, ��=2� / �1/x�=2�x.
Thus, the net rotation per spin is Np��. If the area A is
chosen such that the net rotation per spin is 2�, or Np��
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Structure Factor x=0.1(a)

(b)

FIG. 11. �Color online� Static spin structure factor for d9 spins at
doping x=0.10. The structure factor is incommensurate with a ring
of radius k��2� /a�x around �� /a ,� /a�. The total sum over the
Brillouin zone satisfies the normalization, N−1�kS�k�=1, where N is
the total number of cells. �a� 3D plot of structure factor. �b� Contour
plot centered at �� /a ,� /a�.
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=2�, then A= �a /x�2. A translation by L=	A=a /x returns to
an identical antiferromagnetic patch. This leads to a shift of
the spin correlation peak from �� /a ,� /a� to �Q=2� /L or
�Q= �2� /a�x.

C. Kinetic energy of the x2−y2 band

The energy contribution from the delocalized x2−y2 band
electrons has not been included in the minimization of Eq.
�44�. A complete minimization would also compute the
change in the band energy to determine the direction to align
a given spin during our sweep through the lattice spins. This
effect is included in mean field below.

A d9 spin ordering of momentum q hybridizes band elec-
trons of momentum k and k+q with a coupling energy V on

the order of Jdd�0.1 eV. This mixing of k and k+q perturbs
the band energies and the total ground state energy. We cal-
culate the band energy change in La2−xSrxCuO4 for a ring of
q vectors at the computed incommensurate length q
= �2� /a�x. The q vector producing the lowest band energy is
the observed neutron incommensurability.

The idea that the band kinetic energy change in the d9

spin background determines the final neutron incommensu-
rability has been suggested by Sushkov et al.75–77 for the
t-t�-t�-J model. In their model, the magnitude of the incom-
mensurability arises from the doping x, the antiferromagnetic
d9 spin stiffness �s, the hopping matrix element t, and the
quasiparticle renormalization Z, where q= �Zt /�s��2� /a�x.
Their self-consistent Born approximation calculation of the
quasiparticle dispersion in a spin-wave theory background
finds values for the parameters such that Zt /�s�1. The mag-
nitude of the incommensurability is less dependent on the
detailed parameters for our Hamiltonian in Eq. �44�.

For a given spin incommensurability vector q and d9 to
x2−y2 band coupling, V�0.1 eV, the Green’s function satis-
fies

G−1�k,�� = G0
−1�k,�� − V2G0�k + q,�� − V2G0�k − q,�� .

�45�

The vector −q must be included with q because the coupling
Hamiltonian is Hermitian. Solving for G�k ,��,

G�k,�� = G0�k,���1 − V2G0�k,���G0�k + q,��

+ G0�k − q,����−1. �46�

Expanding to order V2,

G�k,�� = G0�k,�� + V2G0�k,���G0�k + q,��

+ G0�k − q,���G0�k,�� + O�V4� . �47�

The number of electrons in the k state up to energy � is
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FIG. 12. Static spin structure factor for d9 spins at dopings x
=0.075, 0.10, and 0.125 in La2−xSrxCuO4. Each figure plots S�k�
starting from k= �0,0� to �� /a ,� /a� and then to �0,� /a�. The
structure factor is incommensurate with a ring of radius k
��2� /a�x around �� /a ,� /a�. The vertical lines are drawn to high-
light specific incommensurate vectors. If the structure factor was
purely derived from the sum of four Lorenztians along the diago-
nals a distance �2� /a�x from �� /a ,� /a�, then the peak along the
Cu-O bond direction would be slightly less than the shift shown at
�Q= �2� /	2a ,0�. The normalization is the same as in Fig. 11.

FIG. 13. �Color online� Projection of spins onto the xy plane for
an x=0.10 minimized structure. The d9 spin staggered magnetiza-
tion is along the z axis out of the plane of the paper, and the mag-
netization of the d9 spins is along the x axis. Only a 30	30 subset
of the 256	256 lattice is shown. The undoped d9 spins are shown
in red and the polaron spins are green. The four Cu sites of each
polaron are indicated by black dots.
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n�k,�� = �
−�

�

d��−
1

�
Im G�k,��� , �48�

n�k,�� = n0�k,�� + V2�
−�

�

d��−
1

�
�Im�G0�k,���G0�k + q,��

+ G0�k − q,���G0�k,��� , �49�

where n0�k ,�� is the unperturbed occupation. The total den-
sity of states per spin at energy � is

N��� = �
k
�−

1

�
�Im G�k,�� =

�

��
�
k

n�k,�� . �50�

A percolating band has a Green’s function

G0�k,�� =
1

� − �k + i�k
, �k � 0, �51�

where �k is the linewidth. Using Eqs. �48� and �51�,

n0�k,�� =
1

2
+

1

�
tan−1� � f − �k

�k
� . �52�

The perturbation shifts the Fermi level to � f +�� f. The
total number of electrons is conserved, leading to the equa-
tion for �� f,

ntot = �
k

n�k,� f + �� f� = �
k

n0�k,� f� . �53�

The total energy of the band electrons per spin is given by

Etot�q,V� = �
−�

�f+��f

d���
k

n�k,�� . �54�

In Appendix A, the expressions for �� f and Etot�q ,V� to order
V2 are derived,

�� fN0�� f� + V2�
−�

�f

d��
k

�R�k,k + q,�� + R�k,k − q,��� = 0,

�55�

Etot�q,V� = EG + V2�
−�

�f

d��� − � f���
k

R�k,k + q,��

+ R�k,k − q,��� , �56�

where N0�� f� is the unperturbed density of states per spin, EG

is the unperturbed �V=0� energy, and

R�k,p,�� = �−
1

�
�Im� 1

�� − �k + i�k�2

1

�� − �p + i�p�� .

�57�

The integral �−�
�f R�k ,p ,��d� can be evaluated analyti-

cally, thereby allowing us to accurately compute the small
energy change of the Fermi energy �� f and Etot�q ,V�. This is
done in Appendix A.

The band energy is given by

�k = − 2t1�cos kx + cos ky� − 4t11 cos kx cos ky

− 2t2�cos 2kx + cos 2ky� + �x2−y2. �58�

We use the band structure parameters30,78,79 for
La2−xSrxCuO4 given by t1=0.25 eV, t11=−0.025 eV, and t2
=0.025 eV. t1 is the nearest-neighbor hopping, t11 is the
next-nearest-neighbor diagonal term, and t2 is the hopping
along the Cu-O bond direction from two lattices site away.
For x=0.10, �x2−y2 =0.133 eV leads to � f =0.

We calculated the Fermi energy shift and energy for in-
commensurability along the diagonal and Cu-O bond direc-
tion of magnitude q= �2� /a�x at x=0.10 with V=0.1 eV.
The electron linewidth �k is chosen to be the sum of an
s-wave and a d-wave term,

�k = �s + �d�cos kx − cos ky�2, �59�

where �s=0.01 eV and �d=0.01 eV. The addition of a
d-wave term to the linewidth arises from the k dependence
of the Coulomb scattering rate with polarons discussed in
Sec. VII A.

The energy changes and Fermi level shifts in eV are

�E�2�x
	2a

,
2�x
	2a

� = − 0.014 56, �� f = 0.0046,

�E�2�x

a
,0� = − 0.014 78, �� f = − 0.0056. �60�

The band energy is lower for incommensurability along the
Cu-O bond direction.

The Cu-O bond direction incommensurability is lower in
energy due to the additional umklapp scattering available for
q on the Brillouin zone edge rather than inside the zone for
diagonal q.

We have shown that chiral coupling of polarons to d9

spins leads to a ring of incommensurability centered at
�� /a ,� /a� of magnitude �2� /a�x. The perturbation to the
kinetic energy of the delocalized x2−y2 band electrons se-
lects incommensurability along the Cu-O bond direction due
to umklapp scattering on the Brillouin zone edge.

For 0.02�x�0.05,10,74 La2−xSrxCuO4 is a spin glass. No
x2−y2 band is formed because the plaquette polarons do not
percolate. The x2−y2 states triplet couple to polaron spins.
The spin interactions in the spin-glass phase are different
from the Hamiltonian in Eq. �44�.

The Cu x2−y2 cannot delocalize over an infinite polaron
swath in our model. We do not know if the x2−y2 states
remain localized on a single Cu or delocalize over the finite
swath of the polaron. Any delocalization leads to an effective
ferromagnetic coupling between neighboring polaron spins
due to the triplet coupling with the x2−y2 spin. In addition,
there is an asymmetry in the chiral coupling due to an ortho-
rhombic crystal symmetry arising from the tilt of the CuO6
octahedra. The one-dimensional incommensurability in the
spin-glass phase of La2−xSrxCuO4 �Ref. 74� is not explained
in this paper.
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VI. SUPERCONDUCTING PAIRING

Coulomb scattering of x2−y2 band electrons with chiral
plaquette polarons leads to an anisotropic Cooper pair repul-
sion. The maximum energy difference between a chiral po-
laron and its time-reversed partner is analogous to the Debye
energy in Bardeen-Cooper-Schrieffer superconductors. As
discussed in Sec. V B, this energy difference can be nonzero
and on the order of Jdd. We simplify the polaron wave func-
tions by absorbing the p� orbitals into the A1g orbitals on the
Cu sites for the pairing and transport calculations. This is
shown in Fig. 14.

The direct and exchange Coulomb terms coupling the x2

−y2 band with a polaron are

HU = U �
R,�,��

dR��
† zR�

† zR�dR��, �61�

HK = − K �
R,�,��

dR��
† zR�

† zR��dR�, �62�

where U�K�0. dR
† creates an x2−y2 electron at R and zR

†

creates an A1g electron at R.
The x2−y2 band state with momentum k is

dk�
† = N−1/2�

R
eik·RdR�

† , �63�

where N is the total number of Cu sites. A polaron state of
spin s is given by

zs
† = �

R
�RzRs

† , �64�

where the coefficients �R determine the type of polaron in
Fig. 14. The matrix elements for direct and exchange Cou-
lomb scattering of an x2−y2 band electron with a polaron
electron are

�k���,zs��HU�k�,zs� = �U

N
�M�k� − k������ss�, �65�

�k���,zs��HK�k�,zs� = �−
K

N
�M�k� − k���s����s, �66�

M�q� = �
R

�R�
*�Re−iqR. �67�

The Cooper pairing matrix element for scattering arising
from Fig. 15�a� with an initial polaron orbital state I↑ is

��k�↑,− k�↓�,I↑�H���k↑,− k↓�,I↑�

=
U�U − K�

N2 �M�q��2�
I�

1

2
� 1

Ef − En
+

1

Ei − En
� , �68�

where q=k�−k, Ei is the total energy of the initial state, Ef is
the final state energy, and En is the intermediate state energy.
The factor U−K comes from the left vertex where both di-
rect and exchange Coulomb matrix elements appear while
the factor U arises from the right vertex where there is no
exchange. Ei, En, and Ef are

Ei = 2�k + EI↑, �69�

En = �k� + �k + EI�↑, �70�

Ef = 2�k� + EI↑. �71�

Substituting Eqs. �69�–�71� into Eq. �68� leads to

��k�↑,− k�↓�,I↑�H���k↑,− k↓�,I↑�

=
U�U − K�

N2 �M�q��2�
I�

�EI�↑ − EI↑�

��k� − �k�2 − �EI�↑ − EI↑�2 .

�72�

Px’ Py’

S Dxy

x

x’
y’ y

FIG. 14. Effective polaron orbitals with p� absorbed into A1g on
the Cu sites.
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I’σ

No Spin Exchange
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↓′− k

↓− k↓I
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↑′I(c)
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↓′− k

↓− k↑I

↓′I

↑I

(d)

Spin Exchange

FIG. 15. Second-order Cooper pairing processes with polarons.
The Coulomb coupling is represented by a four-point vertex for
simplicity. The solid lines are the band electrons and the dashed
lines are the polaron states. I is the initial and final polaron orbital
state. I� is the intermediate state. �a� and �b� are the Coulomb cou-
plings with no spin exchange. �c� and �d� are spin exchange cou-
plings. In �c� and �d�, the final electrons are interchanged compared
to �a� and �b�, yielding an extra minus sign in the pairing matrix
element.
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The pairing matrix element is the probability weighted
average of Eq. �72� over all initial polaron states I. States
with EI��−EI��0 dominate the average because the polaron
is primarily in its lowest energy state. Since U�0 and U
−K�0, there is an attractive pairing with a momentum an-
isotropy determined by �M�q��2 for pairs close to the Fermi
level. The coupling is attractive for Cooper pairs near the
Fermi level within the polaron energy separation, ��k� and
��k��� �EI��−EI��. There are similar terms for I↓ and Fig.
15�b�.

For the spin exchange processes shown in Figs. 15�c� and
15�d�, the matrix element picks up an extra minus sign
compared to Figs. 15�a� and 15�b� due to the exchange of
k�↑ and −k�↓ in the final state,

��k�↑,− k�↓�,I��H���k↑,− k↓�,I��

= �− ��− K

N
�2

�M�k� + k��2�
I�

�

��k� − �k�2 − �2 , �73�

where �=EI�↑−EI↓. This leads to an overall repulsive inter-
action for pairs near the Fermi level. The direct on-site iso-
tropic Coulomb repulsion between Cooper pairs must be in-
cluded in the net pairing interaction in addition to the
second-order pairings in Fig. 15.

For hole-doped cuprates, one chiral polaron state is singly
occupied and the remaining polaron states shown in Fig. 3
are doubly occupied. The intermediate polaron state I� must
be a chiral state, Px�± iPy�. For electron-doped cuprates, the
initial state I is a chiral polaron. The pairing is identical
because the matrix element between I and I� is mod squared.
We focus on the hole-doped derivation here.

The momentum dependence of the pairing is determined
by �M�q��2, where q=k�−k for a nonspin exchange attrac-
tion and q=k�+k for a spin exchange repulsion. �M�q��2 is
the same for I=S and Dxy. From Fig. 14 and Eq. �67�,

�M�q��S,D
2 � sin2 1

2
�qx + qy� + sin2 1

2
�− qx + qy� , �74�

where we have dropped all constants and wave function nor-
malizations in the expression because they do not affect the
momentum dependence. For I= Px�± iPy� and I�= Px�
 iPy�,

�M�q��+−
2 � �cos

1

2
�qx + qy� − cos

1

2
�− qx + qy��2

. �75�

For a spin exchange repulsion, there is an additional possi-
bility where I�= I= Px�± iPy�. �M�q��++

2 is

�M�q��++
2 � �cos

1

2
�qx + qy� + cos

1

2
�− qx + qy��2

. �76�

Table IV shows the value of �M�q��2 for various vectors q.
There are several pairing possibilities.

First, consider nonspin exchange attractive pairing
through Figs. 15�a� and 15�b� added to a direct isotropic
repulsion. In this case, q=k�−k. �M�q��S,D

2 leads to a net
attraction for q= �� ,0�. An s-wave gap cannot occur because
the isotropic repulsion dominates. A gap of any other sym-
metry has a net repulsion for q= �0,0� and cannot lead to

superconductivity. �M�q��+−
2 also repels at q= �0,0� and does

not superconduct. M++ does not occur for a nonspin ex-
change. Thus, there is no superconductivity through a non-
spin exchange polaron coupling.

For the spin exchange repulsion in Figs. 15�c� and 15�d�
added to a direct isotropic repulsion, MS,D has the largest
repulsion for q=k�+k= �� ,0�, M+− for q= �� ,��, and M++

for q= �0,0�. M++ cannot be correct for the cuprates because
q=0 when k�=−k. This leads to a gap that changes sign for
k→−k and triplet spin pairing. For MS,D, there is no favor-
able Fermi surface nesting near k�+k= �� ,0�.

M+− has the time-reversed chiral polaron as the interme-
diate state and has a large repulsion for k�+k= �� ,��. For
k��� ,0� and k���0,��, there is a large repulsion between
pairs close to the Fermi surface. Pairing through spin ex-
change coupling with time-reversed polarons leads to d-wave
superconductivity.

As discussed in Sec. V B on the neutron spin incommen-
surability, the energy splitting between time-reversed chiral
polarons is on the scale of Jdd�0.1 eV. It is this scale that is
analogous to the phonon Debye energy in conventional su-
perconductors.

The energy separation between two time-reversed chiral
polarons, �Px�+ iPy� ,�� and �Px�− iPy� ,−��, is largest for low
dopings where there are more undoped d9 spins. The energy
splitting decreases with increasing doping, leading to a re-
duction in the energy range surrounding the Fermi surface
involved in Cooper pairing. Concurrently, the number of po-
larons that can induce Cooper pairing increases. The number
of band x2−y2 electrons available to form the superconduct-
ing ground state also increases with increasing doping. Fi-
nally, as the number of polarons increases, they crowd into
each other, eventually creating polarons localized on single
Cu sites, as found in UB3LYP calculations.9 The single Cu
state is not chiral and leads to an isotropic Cooper pair re-
pulsion. The competition between all of these factors leads to
the superconducting phase diagram in cuprates.

VII. NORMAL STATE TRANSPORT

A. Resistivity

The temperature dependence of the resistivity arising
from x2−y2 band electron Coulomb scattering from polarons
is shown to depend on the density of polaron energy separa-

TABLE IV. The values of �M�q��2 at special vectors in the Bril-
louin zone. For nonspin exchange couplings shown in Figs. 15�a�
and 15�b�, the last column does not apply because the intermediate
cannot be identical to the initial polaron state, I�� I. M�q� is de-
fined in Eq. �74�–�76�. q=k�
k for nonspin exchange and spin
exchange, respectively.

�qx ,qy� �M�q��S,D
2 �M�q��+−

2 �M�q��++
2

�0, 0� 0 0 4

�� ,0�, �0,�� 2 0 0

�� ,�� 0 4 0
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tions, ����. If the density is constant, then the resistivity is
linear in T.

The scattering rate of an x2−y2 electron initially in the
state k� to Coulomb scatter from a polaron to another band
electron and polaron is the sum

1

���k��
=

2�



�

k���

Is,I�s�

��k���,I�s��H��k�,Is��2P�Is�

	���k��� + EI�s� − �k� − EIs� , �77�

where H�=HU+HK is the total Coulomb interaction of band
electrons with polarons. HU and HK are defined in Eqs. �61�
and �62�. EIs and EI�s� are the initial and final polaron ener-
gies, respectively. P�Is� is the probability the polaron is ini-
tially in the state Is. The delta function enforces total energy
conservation,

�k� + EIs = �k��� + EI�s�. �78�

The matrix element in Eq. �77� is proportional to �M�k�
−k��2 defined in Eqs. �74�–�76�. To obtain the qualitative
temperature dependence, we simplify Eq. �77� by assuming
that the matrix element is constant for all momenta and there
are only two polaron states at any doped center. This does
not alter the temperature dependence but smears out the an-
isotropy of the scattering rate. The M�k�−k� have different
momentum dependencies for each polaron symmetry. Since
the scattering rate is a sum over all scattering channels, the
approximation of isotropic scattering is likely to be good.

There is a polaron Coulomb scattering process we have
neglected. This is a second-order hopping of a k x2−y2 elec-
tron into the unoccupied polaron state that then hops off into
a k� x2−y2 band state. Since the polaron is comprised of
orbitals with A1 symmetry, the hopping is zero for momenta
along the zone diagonal and largest at �±� ,0� and �0, ±��.
This term is approximately temperature independent and of
“d-wave” symmetry. The temperature dependence of this
term arises from the displacement of the apical O due to the
addition of an electron into the polaron. Since the initial and
final states in this second-order process have one hole on the
polaron, the temperature dependence is expected to be weak.
We neglect this additive temperature independent anisotropic
constant term in the remainder of this section.

The neglected term justifies the addition of a d-wave life-
time broadening of the band electrons for the computation of
the change in the band energy from the neutron spin incom-
mensurability in Sec. V C.

Consider an x2−y2 band electron with energy �1 and a
polaron with energy Ei scattering to an electron with energy
�2 and a polaron with energy Ef. �1 and �2 are measured
relative to the Fermi level, � f =0. The conservation of energy
is

�1 = �2 + �, � � Ef − Ei. �79�

The thermal occupations of a doped site with two polaron
states of energy Ei and Ef are given by the Fermi-Dirac func-
tions f�−�� and f��� defined in Eq. �24� and depend only on

the energy difference �. This is identical to the results in Eq.
�23�.

The total lifetime of a band state with energy �1 is given
by

1

���1�
=� d�2� d�����

2�



�H��2���2 − �1 + ��

	f�− ���1 − f��2�� , �80�

where ���� is the density of polaron sites with an energy
splitting � and �H��2 is taken to be a constant. The ���� used
here is different from the spin and chirality flipped density in
Sec. V A. ���� in Eq. �80� includes the energy splittings of
the S, Dxy, and the bonding combinations of the Px� and Py�
polaron states.

Integrating over the final electron energy �2,

1

���1�
=

2�



�H��2N�0� � d�����f�− ���1 − f��1 − ��� ,

�81�

where N�0� is the band density of states per spin.
For �1 at the Fermi level, �1=0, the integrand becomes

����f����1− f����, leading to a temperature dependence
T�+1 if �������. For a uniform distribution of polaron en-
ergy splittings, ����=�0 for �� � ��max and zero otherwise,
the integral in Eq. �81� is

1

���1�
=

2�



�H��2N�0��0

T

�1 − e−��1�
ln� e��max + e−��1

e���max−�1� + 1
� .

�82�

The energy scale for �max is determined by the scale for
the hopping matrix elements and is several tenths of an eV.
This is much larger than the temperature, ��max�1. For
��1���max, we may take the limit �max→ +� leading to

1

���1�
=

2�



�H��2N�0��0� �1

1 − e−��1
� . �83�

The �B that appears in the Boltzmann transport equation is
related to the linewidth and satisfies

1

�B��1�
= −

2



Im ���1� =

1

���1�
1

1 − f��1�
, �84�

1

�B���
=

2�



�H��2N�0��0� coth

1

2
�� . �85�

At the Fermi level, �=0, the scattering rate is

1

�B���
=

2�



�H��2N�0��0�2T� , �86�

leading to a linear resistivity.
If ������ for �����min and is constant for �min��

��max, then the resistivity is �T2 at low temperature and
crosses over to �T at high temperature. Different forms for
���� lead to different temperature dependencies for the re-
sistivity as seen in La2−xSrxCuO4 from 0.05�x�0.35.80
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The optical spectrum is composed of a Drude scattering
term for finite � in Eqs. �82� and �85� plus polaron to polaron
scattering due to photon absorption. The Drude scattering
rate becomes proportional to � for ���1, with the crossover
from T to � occurring when ���2. When the energy is
larger than the largest polaron splitting, ���max, the scatter-
ing rate saturates and becomes proportional to �max.

Direct optical absorption from S and Dxy polarons to
Px�± iPy� can occur for light polarized in the CuO2 planes.
This leads to the excess mid-IR absorption.81

Chiral polarons can lead to the logarithmic resistivity up-
turn at low temperatures due to a Kondo effect.69 As
La2−xSrxCuO4 is doped, polaron islands are formed com-
posed of exactly one polaron with no adjacent polarons. Is-
land polarons are surrounded by d9 spins. They have two
possible chiral ground states. An antiferromagnetic spin-flip
scattering with the x2−y2 band occurs in the second order
where the x2−y2 electron hops onto the polaron and either an
up or down spin polaron hops back to the x2−y2 band. This
leads to a Kondo effect.

The momentum dependence of the antiferromagnetic
Kondo spin exchange is largest for momenta near �±� ,0�
and �0, ±�� since the polaron is comprised of A1 orbitals.
The coupling is zero for momenta along the diagonal. The
resistivity in the plane is dominated by electrons with mo-
mentum near the diagonals and transport out of the plane by
momenta near �±� ,0� and �0, ±��. The resistivity upturn
due to Kondo scattering appears at a higher temperature for
out-of-plane transport. There is no Kondo effect from Cou-
lomb scattering with polarons from HU+HK defined in Eqs.
�61� and �62� because the spin coupling is ferromagnetic.

Figure 16 shows the number of islands per unit cell as a
function of doping for a 2D lattice with doped polarons. The
Kondo resistivity is expected to disappear as the number of
islands goes to zero. From Table III, the polarons percolate in
2D at x�0.15. This is approximately the doping where the
insulator to metal transition occurs for La2−xSrxCuO4.69

The above suggestion has several caveats that could in-
validate the conclusion. First, we do not know how many
islands exist with a small energy separation between the chi-
ral polaron time-reversed states.

Second, the g factor for these islands needs to be evalu-
ated to determine the energy splitting between the up and
down states. The Kondo effect is suppressed for temperatures
less than the splitting energy. 60 T pulsed magnetic fields
were used to suppress the superconductivity in order to ac-
cess the low-temperature normal state.69

The g factor of an electron spin is 2, ge=2. A 60 T field
splits the up and down electron spin energies by 80 K. For
g=0.1, the splitting is 4 K. The Kondo effect is active for
T�4 K.

An estimate of the polaron g factor, gp, is made in Sec.
VII B by fitting to the temperature dependent Hall effect for
La2−xSrxCuO4 at x=0.10. It is argued that gp�0.1. Also, for
island polarons, Fig. 10 shows the energy difference between
a polaron, and a time-reversed polaron is zero for large Jch.
This order of magnitude reduction in gp allows the Kondo
effect to remain active at low temperatures.

Third, the coupling to the band electrons needs to be
evaluated to determine if the logarithmic resistivity is of the
right magnitude.

B. Hall effect

Skew scattering has been proposed82 to explain the tem-
perature dependence of the Hall effect although the physical
nature of the excitations causing the skew scattering was
unclear. In this section, we derive and estimate the magni-
tude and temperature dependence of the skew scattering of
x2−y2 band electrons from chiral plaquette polarons. The
skew-scattering contribution to the Hall effect is an extra
term that is added to the ordinary Hall effect.

Skew scattering25–28,83,84 is a left-right scattering asymme-
try occurring when the scattering rate from k→k� is not
equal to the scattering rate from k�→k, w�k→k���w�k�
→k�. A combination of time-reversal and inversion symme-
tries leads to no skew scattering because w�k→k��=w�−k
→−k�� due to inversion and w�−k→−k��=w�k�→k� from
time-reversal invariance. An applied magnetic field breaks
time-reversal invariance by making the number of polarons
of up and down chiralities unequal.

Skew scattering first appears in third order for the scatter-
ing Hamilitonian, as can be seen in the simple example be-
low where we ignore the polarons and consider a band scat-
tering matrix element that is complex.

Let H� be the electron scattering Hamiltonian

H� = �
k,k��

Vk�kdk��
† dk�, �87�

where we ignore any spin dependence in the matrix element
Vkk�. Since H� is Hermitian, Vk�k=Vkk�

* . The scattering T
matrix is given by

T�E� = V + VG�E�V + ¯ , �88�

and the scattering rate is

w�k → k�� =
2�



��k��T��k��k��2���k� − �k� . �89�

Expanding the T matrix to second order,
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FIG. 16. Number of polaron islands per Cu as a function of
doping for a 2D Cu lattice. An island is defined as a four-site po-
laron having only undoped d9 spins as neighbors.
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�k��T��k��k� = Vk�k + �
k�

Vk�k�Vk�k

�k − �k� + i�
+ O�V3� . �90�

Substituting into Eq. �89� and neglecting terms of O�V4�,

w�k → k�� =
2�


 ��Vk�k�2 + �
k�

2 Re�Vk�kVkk�Vk�k��

�k − �k�

− 2��
k�

Im�Vk�kVkk�Vk�k�����k − �k������k − �k�� .

�91�

As a check, Eq. �91� is invariant under any redefinition of the
k states, Vk�k→ei��k�−�k�Vk�k.

If V is real, then there is no skew scattering since
w�k→k��=w�k�→k�. If V is complex, then interchanging k
and k� changes the sign of the third term. This is the lowest
order skew-scattering term. By interchanging k�↔k� in the
third term of the equation, the sum over k� of the skew term
satisfies �k�wskew�k→k��=0.

The applied magnetic field causes skew scattering by cre-
ating left-right asymmetries. The relevant question is not if
there is any skew scattering, but whether the scattering is
large enough to account for the experimental Hall effect and
its temperature dependence.

We derive the skew scattering from the Coulomb Hamil-
tonian HU in Eq. �61�. Including the exchange term HK in Eq.
�62� does not change the results below because it leads to an
average over U and U−K. Thus, we focus on HU and ignore
the electron spin.

Consider a single polaron. In the hole-doped cuprates, one
of the chiral polaron states, P±� Px�± iPy�, is initially unoc-
cupied and all the remaining polaron states shown in Fig. 14
are occupied. The matrix elements for scattering an x2−y2 k
electron and a polaron electron to a chiral polaron state with
a change in the x2−y2 band electron momentum to k� are

�k�P±�HU�kS� = � U

2N
��− i��sin qx� 
 i sin qy�� , �92�

�k�P±�HU�kDxy� = � U

2N
��− i��sin qx� ± i sin qy�� , �93�

�k�P±�HU�kP±� = � U

2N
��cos qx� + cos qy�� �94�

=�U

N
�cos

1

2
qx cos

1

2
qy , �95�

�k�P±�HU�kP
� = � U

2N
��cos qx� − cos qy�� �96�

=�− ��U

N
�sin

1

2
qx sin

1

2
qy , �97�

where q=k�−k and

qx� =
1

2
�qx + qy� , �98�

qy� =
1

2
�− qx + qy� . �99�

The chiral polaron to chiral polaron scattering terms in Eqs.
�95� and �97� are real and lead to no skew scattering, as
shown below. Second-order mixing with S and Dxy polaron
symmetries leads to skew scattering.

The Coulomb repulsion U in the above matrix elements is
positive, U�0. The matrix elements corresponding to Eqs.
�92�–�97� for hole polarons are obtained by the substitution
U→−U. We use the expressions in Eqs. �92�–�97� and re-
member to take U�0 for the hole-doped materials and U
�0 for the electron-doped materials.

The T matrix element is defined as

Tk�k
± = �k�P±�T�kP±� , �100�

where the hole resides in P± �the electron is in P
�. Expand-
ing Tk�k

± to order U2

Tk�k
± = Vk�k

�1� + �
I

Vk�k
�2��±��I� + O�U3� , �101�

where the sum is over all intermediate polaron states I. Vk�k
�1�

is defined as

Vk�k
�1� = �k�P±�HU�kP±� �102�

and is independent of the polaron chirality and real from Eq.
�95�. Thus, Vk�k

�1� =Vkk�
�1� . V�2� is

Vk�k
�2��±� = �

p

�k�P±�HU�pI��pI�HU�kP±�
�k − �p − �EI − E±� + i�

, �103�

where the sum is over all intermediate x2−y2 momenta p. E±

and EI are the chiral polaron and the intermediate polaron
energies, respectively. �p is the x2−y2 band energy for mo-
mentum p.

Since V�1� is real, �Tk�k
± �2 is

�Tk�k
± �2 = �Vk�k

�1� �2 + Vk�k
�1� �

I

2 Re Vk�k
�2��±��I� + O�U3� .

�104�

The skew-scattering contribution is antisymmetric under in-
terchange, k�↔k. The first term in Eq. �104� is symmetric,
and so is Vk�k

�2��±��I� for I= P±. The lowest order skew-
scattering term is

�Tk�k
± �s

2 = Vk�k
�1� · 2 Re�Vk�k

�2��±��S� + Vk�k
�2��±��Dxy�� . �105�

In Appendix B, it is shown that the antisymmetric terms in
V�2��±��S ,Dxy� are

Re Vk�k
�2��±��S� = 
 �U2

4N
��F1��k − �ES − E±��Ak�,k,

�106�
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Re Vk�k
�2±��D� = ± �U2

4N
��F1��k − �ED − E±��Ak�,k,

�107�

where the antisymmetric function, Akk�=−Ak�k, is

Ak�,k = sin kx� sin ky�
� − sin ky� sin kx�

� . �108�

Equations �98� and �99� define the x� and y� components of k
and k�. The function F1 is the sum over the Brillouin zone

F1��� =
1

N
�
p

1

2
�cos px + cos py���� − �p� . �109�

The Dxy contribution is negative of the S contribution, with
ED substituted for ES.

The skew-scattering term is

�Tk�k
± �s

2 = 
 � 1

N2�U3��

2
�cos

1

2
qx cos

1

2
qy�F1��k − �ES − E±��

− F1��k − �ED − E±���Ak�k, �110�

where q=k�−k.
Equation �110� is the skew scattering for a single polaron

with polaron orbital energies E±, ES, and ED. These energies
have probability distributions �±�E±�, �S�ES�, and �D�ED�.
The mean value of Eq. �110� is

��Tk�k
± �s

2� =� dE±dESdED�±�E±��S�ES��D�ED�

	�Tk�k
± �s

2�E±,ES,ED� . �111�

If polarons with S and Dxy symmetries have identical energy
distributions, then the � components of the skew scattering
are always zero.

The range of energies that E+ and E− span is �Jdd and is
much smaller than the hopping matrix element scale of ES
and ED� thop. Therefore, we set E±=0 in F1 and evaluate the
mean over ES and ED,

�F1�� f − ES�� = �
0

�max
S

d��S���F1�� f − �� =
�S

�max
S ,

�112�

where

�S = � 1

N
� �

�f−�max
S ��p��f

1

2
�cos px + cos py� �113�

and �S=1/�max
S in the interval 0����max

S and zero outside.
There is a similar expression for the mean over ED.

If � f −�max
S,D is less than the bottom of the x2−y2 band, then

�S=�D=�, where � is the sum over occupied states

� = � 1

N
��

occ

1

2
�cos px + cos py� . �114�

In general, −1���1. Cuprate band structures are occupied
at �0,0� and unoccupied at �� ,��, leading to 0���1. For

La2−xSrxCuO4 at x=0.10, �=0.19. Substituting the mean of
F1 into Eq. �110�,

��Tk�k
± �s

2� = 
 � 1

N2�U3��

2
�

	cos
1

2
qx cos

1

2
qy�� 1

�max
S −

1

�max
D �Ak�k,

�115�

wskew
± �k → k�� =

2�



��Tk�k

± �s
2����k� − �k� . �116�

The total skew scattering is

wskew�k → k�� = Np�n− − n+�wskew
+ �k → k�� , �117�

where Np is the total number of polarons and �n−−n+� is the
mean number of P− polarons minus the number of P+ po-
larons. This difference is nonzero in a magnetic field and is
proportional to the field B.

To evaluate �n−−n+�, consider a polaron with an energy
difference between P− and P+ of �, E+−E−=�. The field
changes the energies to E±=E±
gp�BB, where gp is the po-
laron g factor and �B is the Bohr magneton. The occupations
become

n− = f�− �� + 2gp�BB�−
�f

��
�

�=−�

B + O�B2� , �118�

n+ = f��� − 2gp�BB�−
�f

��
�

�=�

B + O�B2� , �119�

where f��� is the Fermi-Dirac function defined in Eq. �24�.
Taking the probability density of � to be uniform over the
range �min� �� � ��max makes the density �0=1/2��max

−�min�. The mean polaron difference is

�n− − n+� = 4gp�BB�2�0��
�min

�max

d��−
�f

��
� , �120�

�n− − n+� = 4gp�B
�f��min� − f��max��

�max − �min
B . �121�

All of the temperature dependence of the Hall effect is
contained in Eq. �121�. �max is on the order of Jdd�0.1 eV.
�min and �max are larger for small doping since there are
more undoped d9 spins to split the energy between time-
reversed polarons. The �max in Eq. �121� is smaller than the
�max in Eq. �82� since the latter includes the splittings of the
S, Dxy, and bonding combinations of Px�± iPy�. From Eq.
�121�, the difference �n−−n+� is zero for T��min and rises to
a maximum for some T between �min and �max. When T
��max, the difference decreases to zero as 1/T. The tem-
perature dependence from skew scattering is added to the
ordinary band contribution to the Hall effect. The ordinary
term is holelike and positive for the cuprates. The coefficient
that multiplies Eq. �121� in �xy

skew can be either positive or
negative depending on the details of the polaron energy dis-
tributions and the sign of the Coulomb repulsion U.
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The observed temperature and doping dependence of
La2−xSrxCuO4 �Ref. 29� is consistent with chiral plaquette
polaron skew scattering, as shown in Fig. 17. We fit the
experimental data to the expression

RH = R0�f��min� − f��max�� , �122�

where f��� is the Fermi-Dirac function defined in Eq. �24�.
There is a sufficient structure in the temperature dependence
derived above to account for the various temperature behav-
iors of the electron-doped materials, too.30

The additive contribution to the Hall resistivity arising
from skew scattering is derived in Appendix B and is

�xy
skew = 2� m2

n2e2�� 1

�
��− ��

k�k

�−
�f

��k
�

	
1

2
�vkxvk�y − vkyvk�x�wskew�k → k�� . �123�

To determine if the magnitude of the chiral polaron skew
scattering is large enough to be compatible with experimen-
tal data, we computed RHc=�xy

skew /B for La2−xSrxCuO4 using
the band structure in Eq. �58� at x=0.10 and estimates of
various parameters.

We take m to be one electron mass and n=4x /�cell to be
the number of charge carriers per volume �since each polaron
adds four x2−y2 band electrons in our percolating model�.
The polaron g factor is taken to be 1, gp=1. �max=454.1 K

and �min=16.7 K from the fit in Fig. 17. Finally, we choose
�max

S =1.0 eV and �max
D =1.5 eV for the energy distribution

widths of the S and Dxy polaron energies.
The reason we chose �max

D ��max
S is because the energy

separation of the Dxy states from the P± chiral polarons is
larger than S in Table II. This does not prove that �max

D

��max
S is always the correct choice, but it is suggestive of

the expected energy splitting. Also, our values for the aver-
age skew-scattering T matrix in Eq. �115� assume a uniform
energy density �S and �D, and this may not be correct. The
idea here is to get a reasonable order of magnitude estimate
for the size of the skew scattering.

The final parameter to choose is the Coulomb repulsion
matrix element energy U. U�1.0 eV is the correct energy
scale because U= �1/�cell�4�e2 /qD

2 , where qD=4�e2N�0� is
the Debye screening length arising from the many-body re-
sponse of the band electrons to a perturbing potential. N�0� is
the band density of states. A typical metallic density of states
is one state per eV per unit cell leading to U�1.0 eV. Since
the density of charge carriers is reduced to 4x
=0.40 per unit cell, the band electrons are less effective at
screening the Coulomb repulsion. This increases U by a fac-
tor of 1 /0.4=2.5. We take U=2.5 eV.

U is negative for the hole-doped cuprates because the
band structure arises from fully occupied polaron states, and
a hole in a chiral polaron state amounts to subtracting a Cou-
lomb matrix element. This was discussed previously follow-
ing Eqs. �92�–�97�. For the electron-doped systems, U is
positive. Since U3 appears in Eq. �115�, the sign difference in
the temperature dependence of the Hall effect between hole-
doped and electron-doped cuprates is obtained by assuming
that all the other parameters discussed above do not change.
We take U=−2.5 eV for La2−xSrxCuO4.

Calculating �xy
skew in Eq. �123�, we obtain RHc=5.39

	10−3 cm3/C at 100 K or a charge density of 0.116 carriers
per unit cell with the chosen parameters. The experimental
value29 for x=0.10 at 100 K is approximately 4
	10−3 cm3/C, as can be seen in Fig. 17. Our result is a
factor of 1.35 too large.

The largest errors in our calculation come from the esti-
mate of the Coulomb repulsion U, the effective �n /m�ef f, and
the value of the polaron g factor, gp=1. We used one electron
mass for m and chose n to be 4x=0.4 carriers per cell to
obtain �n /m�ef f. This is likely an overestimate of �n /m�ef f

since the carriers must traverse a percolating swath through
the crystal, and the scattering rate 1 /� for the ordinary con-
ductivity is not expected to be large. Since �n /m�ef f

−2 and U3

appear in �xy, small changes lead to a large enhancement of
the computed �xy. We conclude that the polaron g factor is
overestimated and may be an order of magnitude smaller,
leading to gp�0.1. A reduced gp allows the Kondo resistivity
discussed in Sec. VII A to remain active in the pulsed 60 T
magnetic fields69 used to suppress superconductivity and
measure the low-temperature resistivity.

The analysis of this section can be done for the real po-
laron states Px� and Py� instead of the chiral states. In this
case, the magnetic field creates the Van Vleck paramagnetic
states Px�+ iBPy� and Py�+ iBPx�. The B in the equations is a
constant times the applied field. The skew-scattering contri-
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FIG. 17. Fit to Hall effect data �Ref. 29� for La2−xSrxCuO4 using
the expression in Eq. �122�. For x=0.05, the parameters are �min

=12.6 K, �max=791.5 K, and R0=15.4	10−3 cm3/C. For x=0.10,
�min=16.7 K, �max=454.1 K, and R0=8.82. For x=0.15, �min

=0.0 K, �max=387.9 K, and R0=3.81. For x=0.25, �min=11.6 K,
�max=106.3 K, and R0=1.05.
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bution from a polaron where the energy of Py� is greater than
Px� by � exactly cancels the contribution from a polaron
where Px� is greater than Py� by �. Thus, real polaron states
cannot lead to skew scattering.

For a planar magnetic field, the g factor is substantially
smaller because the angular momentum of the chiral po-
larons is normal to the plane. Therefore, for planar magnetic
fields, the Hall effect should be temperature independent, as
is observed.

VIII. ANGLE-RESOLVED PHOTOEMISSION
SPECTROSCOPY

A. Pseudogap

The undoped d9 spins have antiferromagnetic fluctuations
with wave vector q��� ,�� that couple an x2−y2 band state
with momentum k to k±q. In this section, we show that this
coupling leads to a pseudogap at the Fermi energy with a
magnitude proportional to the square of the coupling.

At a fixed temperature, the coupling is larger for low dop-
ings because there are more undoped d9 spins. The coupling
decreases as the doping increases. This leads to a larger
pseudogap for low dopings, as observed.31–34

At a fixed doping, the strength of the antiferromagnetic d9

fluctuations decreases with increasing temperature. Thus, the
coupling to the x2−y2 band should decrease with increasing
temperature. This leads to the closing of the pseudogap with
temperature.

The momentum dependence of the pseudogap is deter-
mined by the shape of the Fermi surface. If the state with
momentum k±q is close to the Fermi surface, then mixing
with the k state leads to a reduction in the spectral function
and a pseudogap. Such nesting occurs for states near �±� ,0�
and �0, ±��. Along the Brillouin zone diagonals, there is no
nesting. This leads to a pseudogap that is zero along the
diagonal and increases as one moves toward �� ,0�. The
model does not guarantee a zero pseudogap along the diag-
onal although the magnitude of the gap is expected to be
small.

ARPES measures the spectral function A�k ,��
= �−1/��Im G�k ,��. Evaluating A�k ,�� for k vectors on the
Fermi surface, �k=� f, and at the Fermi energy, �=� f, deter-
mines the density of states suppression at the Fermi level and
its temperature dependence. The relative change in the spec-
tral function is

r�k,�,V� =
A�k,�� − A0�k,��

A0�k,��
, �124�

where A0�k ,�� is the V=0 spectral function and A�k ,�� is
the spectral function including the d9 interaction V. The
pseudogap is zero when V=0 at high temperature. Using Eq.
�47�,

r = V2 Im G0
2�k,���G0�k + q,�� + G0�k − q,���

Im G0�k,��
.

�125�

From Eq. �51�,

G0�k,�k� =
1

i�k
. �126�

The relative spectral function change at the Fermi level, �
=� f, is

r = − V2� 1

�k
�� �k+q

�� f − �k+q�2 + �k+q
2 +

�k−q

�� f − �k−q�2 + �k−q
2 � .

�127�

r is always negative, r�0, and r→0 as V→0 at high
temperatures. The density of states decreases at the Fermi
energy leading to a temperature dependent pseudogap that
closes as the temperature increases. The linewidths �k and
�k±q are of the order �0.01 eV due to the broadening of a k
state arising from the nonuniform percolating path in under-
doped systems. The coupling of the d9 spins to the x2−y2

band must be less than or of the order of Jdd�0.1 eV. The
relative density of states change is on the order of r
��V /�k�2. Thus, the change in the ARPES spectra arising
from coupling between the undoped d9 spins and x2−y2 is
large enough to qualitatively account for the observations.

B. 2212 bilayer splitting

There is an �0.1 eV splitting between the bonding and
antibonding x2−y2 bands in bilayer Bi2Sr2CaCu2O8+� for k
vectors near �� ,0� arising from coupling through out-of-
plane orbitals. The splitting along the diagonal is very small
and not experimentally resolvable. The �� ,0� splitting has
been observed85 by ARPES for overdoped systems. No split-
ting has been observed for underdoped systems. In addition,
the bilayer splitting disappears as the temperature is in-
creased, with the temperature separating the coherent �split-
ting� and incoherent �no splitting� regimes increasing with
further overdoping.85

XAFS64,65 and first principles calculations9 find that the
distance between an apical O and a planar Cu decreases
�0.2–0.3 Å due to Sr doping in La2−xSrxCuO4. Coherent
hopping from one CuO2 layer to another requires coupling of
x2−y2 with an out-of-plane orbital. The x2−y2 band state is
delocalized over the percolating polaron swath. Hopping
onto an out-of-plane polaron orbital induces a local structural
deformation. The matrix element is reduced due to the large
structural change as in the small polaron problem.86 The x2

−y2 band electronic response to the changed potential of the
doubly occupied polaron suppresses the matrix element due
to the orthogonality catastrophe.86

The second-order coherent bilayer hopping through an
out-of-plane polaron orbital is not completely suppressed by
the orthogonality catastrophe because the initial and final
polaron states have the same occupation. Bilayer splitting of
the x2−y2 band is induced by this coupling. The splitting is
strongly temperature dependent, and its magnitude decreases
with increasing temperature.

In Sec. VII A, a similar second-order hopping leading to a
d-like anisotropic scattering was argued to be weakly tem-
perature dependent. The difference between the previous in-
tralayer and the current interlayer process is that the matrix
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element for the latter is very sensitive to any out-of-plane
atomic displacement, leading to a strong temperature depen-
dence.

Qualitatively, for underdoped 2212, the effective inter-
layer hopping matrix element is small due to the reduced
number of Cu pairs between layers that are both part of the
percolating band swath. In this scenario, the bilayer splitting
is small and may not have been resolved by ARPES at low
temperatures.

As the doping is increased, adjacent Cu pairs between
layers become available for coherent hopping, and bilayer
splitting becomes resolvable. This splitting decreases with
increasing temperature in complete analogy to the small po-
laron problem. At high temperatures, the splitting disappears.

For highly overdoped materials, the splitting is large at
low temperatures. As the polaron plaquettes become more
crowded, any atomic distortion from hopping to or from the
out-of-plane orbitals is reduced. This leads to a higher tem-
perature before bilayer splitting becomes too small to be re-
solvable by ARPES.

IX. NMR

A potential problem with our chiral plaquette polaron
theory of cuprate superconductivity involves the NMR ex-
periments by Takigawa et al.38 on underdoped YBa2Cu3O6.63
that shows the same temperature dependent Knight shift for
both the planar Cu and O. The most reasonable conclusion
from this experiment is that only one electronic component is
involved in the cuprate NMR. Similar conclusions were
reached for La2−xSrxCuO4.87–89 This would appear to contra-
dict our assertion of an out-of-plane polaron because one
would expect the polaron to have different hyperfine cou-
plings to the planar Cu and O atoms compared to the x2

−y2 band, leading to a total Knight shift temperature depen-
dence �sum of the x2−y2 band plus polaron� that is different
for Cu and O.

On the other hand, small-tip angle spin-echo double reso-
nance measurements90 find that the electron mediated
nuclear-nuclear couplings between neighboring Cu-O and
Cu-Cu are incompatible with one-component cuprate theo-
ries. In addition, the high-temperature Y spin relaxation and
Knight shifts91 are incompatible with one-component cuprate
theories. Indeed, recent phenomenological fits92 imply that
there are two contributions to the Redfield correlation time.

Clearly, the effect of the out-of-plane orbitals in our
model cannot be ignored in interpreting the NMR data. In
our model, the polarons lead to a weakly temperature depen-
dent Knight shift of the form in Eq. �121� for the magnetic
susceptibility due to polarons and shown in Fig. 17 for the
temperature dependence of the Hall effect. The polaron hy-
perfine coupling to the planar Cu and O sites is weaker than
the x2−y2 band because the hole character is primarily in the
out-of-plane O pz orbital. This weak temperature dependence
is seen in fully doped YBa2Cu3O7 because the x2−y2 band
electron Knight shift contribution is constant with
temperature.91 For underdoped samples, the temperature de-
pendence of the polaron shift is masked by the larger tem-
perature dependence of the Knight shift from the x2−y2 band

electrons. The latter shift arises from the decrease in the
density of states of the x2−y2 band due to the coupling with
the undoped Cu d9 spins, as shown in Eq. �127� for the
ARPES pseudogap. We intend to develop the methodology
to estimate the size of these effects and their detailed tem-
perature dependence in order to compare the results with
experimental data. However, at the present time, the NMR
must be considered a possible Achilles heel for our chiral
plaquette polaron theory of cuprate superconductivity.

X. CONCLUSIONS

Ab initio quantum mechanical calculations find localized
holes in out-of-plane orbitals in contrast to the t-J model.
Based on the results of calculations with explicity doped Sr
in La2−xSrxCuO4, we postulated that chiral plaquette polarons
are created by doping and that a delocalized x2−y2 / p� band
is formed when the plaquette polarons percolate through the
crystal.

The d-wave superconductivity, temperature dependent
Hall effect, neutron � /T scaling, neutron incommensurabil-
ity, resistivity, doping value for the insulator-metal phase
transition, optical absorption, low-temperature log�T� resis-
tivity, ARPES pseudogap, and evolution of bilayer splitting
in Bi-2212 are explained by chiral plaquette polarons.

We have not shown ab initio that chiral plaquette polarons
are formed with doping. For La2−xSrxCuO4, ab initio evi-
dence for holes in out-of-plane orbitals has been demon-
strated. Out-of-plane hole orbitals are plausible for cuprates
where the doping arises from interstitial O atoms.
YBa2Cu3O7, where the Cu-O chain is completely full, is
most intriguing. We believe that there are local structural
deformations of the apical O atoms favoring localized out-
of-plane orbitals.

Detailed calculations of the spectral function for the x2

−y2 band measured in ARPES are necessary in order to study
the evolution of the background and linewidth as a function
of doping and temperature. For underdoped systems, the per-
colating path is not uniform through the crystal and leads to
a broadening of the k state spectral function. Mixing with the
A1 orbitals of the polarons increases the broadening near
�� ,0�.

A calculation using the coherent potential approximation
�CPA�93,94 may be the way to obtain quantitative estimates of
the ARPES. CPA calculations would lead to an accurate de-
termination of the magnitude of the resistivity and would
allow us to determine the correct value of �n /m�ef f to use in
the results for the magnitude of the skew-scattering contri-
bution to the Hall effect.

Since neutron spin scattering couples to the electron spin
and transport couples to its charge, we regard our results to
be strong evidence for the existence of chiral plaquette po-
larons.
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APPENDIX A: PERTURBED BAND ENERGY

In this Appendix, we derive the expressions used in Sec.
V C to compute the contribution of the x2−y2 band energy
for different incommensurate neutron q vectors.

Using Eqs. �49�, �51�, and �56�,

n�k,�� = n0�k,�� + V2�
−�

�

d�P�k,�� , �A1�

where we have defined,

P�k,�� = R�k,k + q,�� + R�k,k − q,�� . �A2�

The total number of electrons is ntot=�kn�k ,� f +�� f�. From
Eq. �A1�,

ntot = �
k

n0�k,� f + �� f� + V2�
−�

�f+��f

d��
k

P�k,�� .

�A3�

The first term on the right-hand side can be expanded in a
power series in �� f,

�
k

n0�k,� f� + �� f
�

����k
n0�k,� f�� + O��� f

2�

= ntot + �� fN0�� f� + O��� f
2� , �A4�

where we have used Eqs. �50� and �53�. N0�� f� is the unper-
turbed density of states per spin. The second term in Eq.
�A3� becomes

V2�
−�

�f

d��
k

P�k,�� + O�V2�� f� . �A5�

Since �� f �O�V2�, the second term is of the order of �� f
2

�O�V4� and can be neglected to the lowest order. Substitut-
ing into Eq. �A3� leads to

�� fN0�� f� + V2�
−�

�f

d��
k

P�k,�� = 0. �A6�

From Eq. �A2�, Eq. �A6� is identical to Eq. �55�.
Substituting Eq. �A1� into Eq. �54� for the total energy,

using Eq. �50�, and keeping terms up to O�V2�,

Etot�q,V� = EG + � f�� fN0�� f� + V2�
−�

�f

d���
k

P�k,�� .

�A7�

The second term proportional to �� f can be eliminated by
using Eq. �A6�, leading to

Etot�q,V� = EG + V2�
−�

�f

d��� − � f��
k

P�k,�� . �A8�

EG is the unperturbed �V=0� ground state energy. Using Eq.
�A2�, this is the result shown in Eq. �56�.

To compute the change in energy due to incommensura-
bility, we need to evaluate integrals of the form

I�E,E�,� f� � �
−�

�f d�

�� − E�2�� − E��
, �A9�

J�E,E�,� f� � �
−�

�f

d�
�� − � f�

�� − E�2�� − E��
, �A10�

where

E = � − i�, E� = �� − i��, and �,�� � 0. �A11�

From Eq. �57�,

�
−�

�f

R�k,p,��d� = �−
1

�
�Im I��k − i�k,�p − i�p,� f� .

�A12�

The imaginary part of J�E ,E� ,� f� appears in Eq. �A8�.
The integrand of Eq. �A9� can be expanded in partial

fractions,

1

�� − E�2�� − E��
= �E−2� 1

� − E�
−

1

� − E
� − �E−1 1

�� − E�2 ,

�A13�

where �E=E�−E. The second term on the right-hand side
can be integrated,

�
−�

�f

d�
�− �

�� − E�2 =
1

� f − E
. �A14�

Each individual integral in the first term is infinite. The inte-
gral is performed by substituting −� for −� and taking the
limit �→ +�.

Re �
−�

�f

d�� 1

� − E�
−

1

� − E
� = �

−�

�f

d�� �� − ���
�� − ���2 + ��2

−
�� − ��

�� − ��2 + �2� , �A15�

Im �
−�

�f

d�� 1

� − E�
−

1

� − E
� = �

−�

�f

d�� �

�� − ��2 + �2

−
��

�� − ���2 + ��2� .

�A16�

The real part can be solved,

�
�−�−���/��

��f−���/�� xdx

x2 + 1
− �

�−�−��/�

��f−��/� xdx

x2 + 1

=
1

2
ln� �� f − ���2/��2 + 1

�� f − ��2/�2 + 1
� +

1

2
ln� �− � − ��2/�2 + 1

�− � − ���2/��2 + 1
� .

�A17�

Taking the limit �→ +�, the real part becomes
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Re �
−�

�f

d�� 1

� − E�
−

1

� − E
� =

1

2
ln���2�x�2 + 1�

�2�x2 + 1� � .

�A18�

The imaginary part integrates to

Im �
−�

�f

d�� 1

� − E�
−

1

� − E
� = tan−1 x − tan−1 x�,

�A19�

where x= �� f −�� /� and x�= �� f −��� /��. Substituting into Eq.
�A9�,

I�E,E�,� f� = �E−2�1

2
ln���2�x�2 + 1�

�2�x2 + 1� �
+ i�tan−1 x − tan−1 x��� + �E−1 1

� f − E
,

�A20�

where E and E� are defined in Eq. �A11� and �E=E�−E.

Writing �−� f = ��−E��+ �E�−� f� in Eq. �A10� for
J�E ,E� ,� f�,

J�E,E�,� f� = �E� − � f�I�E,E�,� f� −
1

�� f − E�
, �A21�

leading to

J�E,E�,� f� =
�E� − � f�
�E� − E�2�1

2
ln���2�x�2 + 1�

�2�x2 + 1� �
+ i�tan−1 x − tan−1 x��� +

1

E − E�
. �A22�

APPENDIX B: HALL EFFECT

In this Appendix, we derive Eqs. �106�–�109� and �123� in
Sec. VII B. Equation �103� is

Vk�k
�2��±� = �

p

�k�P±�HU�pI��pI�HU�kP±�
�k − �p − �EI − E±� + i�

. �B1�

Expanding for I=S using Eq. �92�,

Vk�k
�2��±��S� = � U

2N
�2

�
p

�sin�k� − p�x� 
 i sin�k� − p�y���sin�k − p�x� 
 i sin�k − p�y��
*

�k − �p − �ES − E±� + i�
. �B2�

Expanding the numerator inside the summation into products sin kx�
� cos px�, etc.,

Num = ��sin kx�
� cos px� − cos kx�

� sin px�� 
 i�sin ky�
� cos py� − cos ky�

� sin py�����sin kx� cos px�

− cos kx� sin px�� 
 i�sin ky� cos py� − cos ky� sin py���
*. �B3�

This can be further expanded into terms with products of the
form cos2 px�, cos px� cos py�, cos px� sin py�, etc.

The denominator in Eq. �B2� only depends on p through
the energy �p and has a D4h crystal symmetry. Thus, for each
p, the sum includes terms with px�→−px� and py�→−py�.
The only nonzero terms in the numerator have products
cos2 px�, cos2 py�, cos px� cos py�, sin2 px�, and sin2 py�.

The real part of the numerator is

Re�Num� = ��sin kx�
� sin kx� cos2 px� + cos kx�

� cos kx� sin2 px��

+ �sin ky�
� sin ky� cos2 py�

+ cos ky�
� cos ky� sin2 py��� . �B4�

Using cos2 px�=1/2�1+cos 2px�� and sin2 px�=1/2�1
−cos 2px�� with similar equations for py�,

Re�Num� =
1

2
�cos�k� − k�x� + cos�k� − k�y�� −

1

2
�cos�k� + k�x�

+ cos�k� + k�y��cos 2px�, �B5�

where we have used cos 2py�=cos 2px� due to symmetry in

the summation. The definitions of the primed coordinates in
Eqs. �98� and �99� lead to

Re�Num� = cos
1

2
�kx� − kx�cos

1

2
�ky� − ky�

− cos 2px� cos
1

2
�kx� + kx�cos

1

2
�ky� + ky� .

�B6�

A similar expansion for the imaginary part leads to

Im�Num� = �
��sin kx� sin ky�
� − sin ky� sin kx�

� �cos px� cos py�

= Ak�k cos px� cos py�, �B7�

with Ak�k defined in Eq. �108�. Collecting the real and imagi-
nary terms,
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Vk�k
�2��±��S� = � U

4N
�2�F̃0��0�cos

1

2
�kx� − kx�cos

1

2
�ky� − ky�

− F̃2��0�cos
1

2
�kx� + kx�cos

1

2
�ky�

+ ky� 
 iF̃1��0�Ak�k� , �B8�

where �0=�k− �ES−E±� and the F̃ functions are defined as

F̃0��� = � 1

N
��

p

1

� − �p + i�
, �B9�

F̃1��� = � 1

N
��

p

cos px� cos py�

� − �p + i�
, �B10�

F̃2��� = � 1

N
��

p

cos 2px�

� − �p + i�
. �B11�

Expanding the cosines in Eqs. �B10� and �B11�,

cos px� cos py� =
1

2
�cos px + cos py� , �B12�

cos 2px� = cos�px + py� = cos px cos py − sin px sin py .

�B13�

The second term in Eq. �B13� averages to zero when

summed in F̃2. F̃1 and F̃2 become

F̃1��� = � 1

N
��

p

1

2
�cos px + cos py�

� − �p + i�
, �B14�

F̃2��� = � 1

N
��

p

cos px cos py

� − �p + i�
. �B15�

The equation for Vk�k
�2��±��D� is the same as Eq. �B8� with ES

→ED and 
�i�→ ± �i�.
From Eq. �105�, the real part of Vk�k

�2��±��S� is necessary for
the lowest order skew scattering. In addition, only terms an-
tisymmetric under the interchange of k� and k contribute to
�xy

skew. The last term in Eq. �B8� is antisymmetric, and only

the imaginary part of F̃1 contributes to the skew scattering.

Defining F1���= �−1/��Im F̃1���,

F1��� = � 1

N
��

p

1

2
�cos px + cos py���� − �p� , �B16�

leads to Eqs. �106� and �107�.
Equation �123� for the skew scattering is obtained by

solving the linearized Boltzmann transport equation for skew
scattering,82–84

� �fk

�t
�

field
+ � �fk

�t
�

scatt
= 0, �B17�

� �fk

�t
�

field
= � �f0

��k
��− e��vk · E� + � e


c
� �gk

�k
· �vk ∧ B� ,

�B18�

� �fk

�t
�

scatt
= −

gk

�k
+ �

k�

�− wskew�k → k��gk

+ wskew�k� → k�gk�� , �B19�

where e�0 and fk= f0+gk, with f0 as the Fermi-Dirac func-
tion at energy �k. 1 /�k is the ordinary scattering rate. This is
given by Eq. �85� in our model. From Eqs. �115�–�117�,
�k�wskew�k→k��=0, making the second term on the right-
hand side of Eq. �B19� vanish.

Substituting

gk = �−
�f0

��k
� k, �B20�

the transport equation becomes

− e�vk · E� + � e


c
� � k

�k
· �vk ∧ B�

−
 k

�k
− �

k�

wskew�k → k�� k� = 0. �B21�

 k can be expanded in the series

 k =  k
�0� +  k

�1��ord� +  k
�1��skew� + ¯ , �B22�

where  �0��O�E� and  �1��O�EB�.  k
�1��ord� is the ordinary

band contribution to the Hall effect. We do not write down
the expression for this term. The second O�EB� term,
 k

�1��skew�, is the additional contribution arising from the
skew-scattering term wskew. Substituting Eq. �B22� and �B21�
leads to

 �0� = − e��kvk · E� , �B23�

 �1��skew� = �
k�

�k�k�e�vk · E�wskew�k → k�� . �B24�

The current density per spin is

J = � 1

�
��

k

�− e�gkvk, �B25�

where � is the total volume. The O�EB� contribution to the
conductivity per spin �yx

skew from skew scattering satisfies
Jy

�1��skew�=�yx
skewEx,

�yx
skew = �− e2�� 1

�
��

kk�

�−
�f0

��k
��k�k�vkyvk�xwskew�k → k�� .

�B26�

Using �yx=−�xy from the crystal symmetry and �xy
=�xy /�2 for the Hall resistivity,
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�xy
skew�2 = �2e2�� 1

�
��

kk�

�−
�f0

��k
��k�k�vkyvk�xwskew�k → k�� ,

�B27�

with the additional factor of 2 on the right-hand side to in-
clude spin. The conductivity � is

� = e2�� n

m
�

ef f
, �B28�

where �n /m�ef f is the effective n /m, and we have taken �k to
be independent of k and equal to �. Since �yx=−�xy by sym-
metry, we symmetrize the expression for �xy by setting �xy
= �1/2���xy −�yx�, leading to Eq. �123�.
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