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We consider the effect of magnetic impurities, modeled by classical spins, in a conventional superconductor.
We study their effect on the quasiparticles, specifically on the spin density and local density of states. As
previously emphasized, the impurities induce multiple scatterings of the quasiparticle wave functions, leading
to complex interference phenomena. Also, the impurities induce quantum phase transitions in the many-body
system. Previous authors studied the effect of either a small number of impurities �from 1 to 3� or a finite
concentration of impurities, typically in a disordered distribution. In this work, we assume a regular set of spins
distributed inside the superconductor in such a way that the spins are oriented, forming different types of
domain walls, assumed stable. This situation may be particularly interesting in the context of spin transfer due
to polarized currents traversing the material.
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I. INTRODUCTION

The effect of perturbing the superconducting state is a
topic of interest since it often provides information about the
superconducting state, its nature, and origin. It also provides
information about its parent normal state. This has gained
particular interest due to the elusive nature of pairing in
high-temperature superconductors. In particular, the effect of
magnetic fields in its various forms has attracted interest for
a long time, such as the effect of vortices in type-II super-
conductors and, in general, the interplay between supercon-
ductivity and magnetic field.

Also, the effect of impurities has been studied considering
both nonmagnetic and magnetic impurities in conventional
and unconventional superconductors.1 In the case of non-
magnetic impurities and s-wave pairing, Anderson’s theorem
states that, at least for low concentrations, they have little
effect since the impurities are not pair breaking.2 In d-wave
superconductors, however, nonmagnetic impurities cause a
strong pair breaking effect.3 In the limit of strong scattering,
it was found that the lowest energy quasiparticles become
localized below the mobility gap, even in a regime where the
single-electron wave functions are still extended.4 This result
has been confirmed solving the Bogoliubov–de Gennes equa-
tions with a finite concentration of nonmagnetic impurities.5

However, allowing for angular dependent impurity scattering
potentials, it has been found that the scattering processes
close to the gap nodes may give rise to extended gapless
regions.6

Several conflicting predictions have appeared in the litera-
ture regarding the effect of the presence of impurities. Some
progress toward understanding the disparity of theoretical
results has been achieved realizing that the details of the type
of disorder significantly affect the density of states.7 Particu-
larly in the case of d-wave superconductors, in contrast to
conventional gaped s-wave superconductors, the presence of
gapless nodes is expected to affect the transport properties.
Using a field theoretic description and linearizing the spec-

trum around the four Dirac-like nodes, it has been suggested
that the system is critical. It was obtained that the density of
states is of the type ���������, where � is a nonuniversal
exponent dependent on the disorder, and that the low energy
modes are extended states �critical metal�.8 Taking into ac-
count the effects of internodal scattering �hard scattering�, it
has been shown that an insulating state is obtained instead,
where the density of states still vanishes at low energy but
with an exponent �=1 independent of disorder.9 Using the
Bogoliubov–de Gennes �BdG� equations, it was found that
the d-wave superconductivity is mainly destroyed locally
near a strong scatterer. The superfluid density is strongly
suppressed near the impurities but only mildly affected
elsewhere.10 No evidence for localization of the low energy
states was found. The superfluid density is suppressed but
less than expected5,11 and, accordingly, the decrease of the
critical temperature with disorder is much slower than previ-
ously expected, in accordance with experiments.12 Similar
results of an inhomogeneous order parameter were also ob-
tained for s-wave superconductors.13 The results show that
the order parameter is only significantly affected close to the
impurity locations.

On the other hand, magnetic impurities induce in-gap
bound states in conventional superconductors, while, for in-
stance, in d-wave superconductors, due to their gapless na-
ture, they just induce virtual bound states. The local nature of
these bound states can now be studied in detail due to the
progress in experimental techniques such as scanning tunnel-
ing microscopy. In their pioneer work,14 Abrikosov and
Gor’kov considered the properties of a superconductor with
magnetic impurities. They demonstrated that the noninteract-
ing magnetic impurities suppress the superconductivity, so
that at some critical impurity density the superconducting
gap � shrinks to zero, which was later identified as a quan-
tum critical point.15

It was also shown long ago that the presence of few mag-
netic impurities �vanishing concentration� is enough to lead
to rather interesting quantum phase transitions �QPT’s�, in

PHYSICAL REVIEW B 76, 014512 �2007�

1098-0121/2007/76�1�/014512�21� ©2007 The American Physical Society014512-1

http://dx.doi.org/10.1103/PhysRevB.76.014512


particular in the total magnetic moment of the condensate.16

In the simplest case, the magnetic impurities can be treated
as classical spins inserted in the superconductor, acting as
local magnetic fields. Indeed, it was shown that if the cou-
pling is weak enough, the Kondo coupling can be overlooked
and a much simpler treatment of the classical case provides a
good description.17 Actually, even though there are similari-
ties between the interaction of the electrons with an impurity
both in the standard Kondo effect in metals and the coupling
to the magnetic impurity in the superconductor, while the
Kondo effect is merely a crossover between a free spin at
high energies or temperatures and the Kondo singlet �for an
S=1/2 impurity in a single s band� at low energies,18 in the
case of the superconductor there is a true first order quantum
phase transition.19 The phase transition occurs through a
level crossing between two states as the coupling between
the spin density of the electrons and the impurity spin grows.
The level crossing occurs between one state that describes an
uncompensated local spin �at smaller coupling� and a state
where the impurity spin is compensated �partially since for
the classical description to be valid the spin has to be large�.

The case of two �or three� impurities has also been
studied20,21 and quantum phase transitions have been identi-
fied both as a function of coupling and also as a function of
other parameters such as the distance between the impurities
and the angle between their spin orientations. Varying judi-
ciously these parameters, one may cross various phase tran-
sition points. The richness of these alternations was ex-
plained in terms of interference effects between the locally
induced states at the impurity sites, in a related way to the
study of mirages and other interference effects in other
systems.21–25

In the case of interacting magnetic moments in a super-
conductor, the nature of the superconducting transition
changes and the critical temperature slightly increases.26 Re-
cently, Galitski and Larkin studied27 the effect of a spin-glass
ordering of magnetic impurities on the superconductivity.
They showed that the superconducting properties depend on
the state of the magnetic system and found a shift of the
superconducting quantum critical point. A related problem is
the mechanism of the exchange interaction of magnetic mo-
ments in the superconductor. In the case of normal metal,
this is the Ruderman-Kittel-Kasuya-Yoshida �RKKY� inter-
action due to Friedel oscillations of the magnetic density in
the electron gas, induced by a single moment. In the case of
a superconductor, the RKKY interaction is affected by the
gap at the Fermi surface.28 This effect was revisited in some
recent works.27,29 The main result is that the form of the
RKKY interaction in superconductors is mainly preserved
but the interaction contains a decaying exponential factor
which vanishes when �→0.

As is well known, in the case of dominating ferromag-
netic long-range ordering of the moments, the competition
between superconductivity and ferromagnetism leads to the
absence of superconductivity. In other words, ferromag-
netism suppresses the superconductivity, acting like an exter-
nal magnetic field. However, it is possible to reach a coex-
istence of the magnetization in magnetic domains with the
superconducting state.30 On the other hand, the coexistence
of superconductivity and antiferromagnetism is much more

favorable, since on average a Cooper pair, if the coherence
length is large enough, will feel a zero magnetic field. In
general, the two phases compete with each other but in some
cases there is a coexistence. Competition between antiferro-
magnetic and superconducting orders is an important charac-
teristic of heavy-fermion systems,31 which is also shared by
high-Tc materials32 and low-dimensional systems.33 Heavy-
fermion systems that exhibit both superconductivity and an-
tiferromagnetism exhibit ratios between the Néel tempera-
ture TN and the superconducting critical temperature Tc that
can vary substantially �of the order of TN /Tc�1–100�, with
coexistence of both types of order below Tc. The coexistence
of both types of order can be tuned by external parameters
such as externally applied pressure and chemical pressure
�involving changes in the stoichiometry�.31,34 It has
recently been found that UPd2Al3 �TN=14.3 K and Tc=2 K�
and UNi2Al3 �TN=4.5 K and Tc=1.2 K� show co-
existence of superconductivity and local moment
antiferromagnetism.31,35–38 However, in the Ce-based heavy-
fermion, magnetism typically competes with superconductiv-
ity. It has been found in the context of the Anderson model
that, both in the problem of local moment formation in the
superconductor39 and in the context of the Anderson lattice
model, in a certain regime, a quantum phase transition is
found40 which is characterized by an abrupt expulsion of
magnetic order by d-wave superconductivity, as an exter-
nally applied pressure increases. This transition takes place
when the d-wave superconducting critical temperature Tc in-
tercepts the magnetic critical temperature Tm under increas-
ing pressure.

In our theoretical model, the magnetic moments are con-
sidered as a certain magnetic structure embedded into a su-
perconductor. There are different ways to realize it practi-
cally by using modern nanotechnology. One of them is
related to the formation of a magnetic structure on top of the
superconducting layer. As another example, it can also be a
laterally organized magnetic superlattice or a hybrid
ferromagnet/superconductor �F/S� structure.41–44

Various types of heterostructures of superconductors and
ferromagnets have been considered in the recent
literature.45–47 Also, the influence of magnetic dots �ran-
domly or regularly distributed� coupled to a superconductor
has received attention.48 In the first case, the proximity effect
due to the vicinity of the various systems, where both mag-
netic fluctuations penetrate the superconductor and supercon-
ducting fluctuations penetrate the magnetic system,49 has re-
ceived particular attention due to potential device
applications. The penetration of the magnetic field in the
superconductor splits the up and down spin electron bands,
due to the Zeeman effect, in addition to the orbital effect
through the vector potential. The Cooper pairs have a finite
momentum due to the band splitting and the order parameter
oscillates in the superconducting phase. If the size of the
superconducting region is small enough, these oscillations
have noticeable consequences, such as, for instance, oscilla-
tions in the critical temperature of the superconducting re-
gion in F/S/F structures45 or varying relative phases of the
superconducting wave functions in S/F/S structures if the
thickness of the superconducting region is changed. This has
been confirmed looking at the Josephson current through the
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heterostructure.45 In particular, the so-called � junctions,
where the Josephson current vanishes, have received atten-
tion in the literature.50,51 In the second case of a distribution
of magnetic dots in the close vicinity of the superconductor,
it has been shown that if the magnetic moments coupled are
oriented via an external field, they act as very effective pin-
ning centers for vortices present in the superconductor52

originating so-called frozen flux superconductors.53 The in-
sertion of magnetic rods in the superconductor is also
interesting.54–56

Now, the interest to the superconductivity on a magnetic
profile arises on a quite different ground. It was found that
electronic properties of magnetic nanostructures can be used
in various magnetoelectronic devices, in which the magnetic
state can be effectively controlled by the magnetic field or
electric current and, in turn, the variation of the magnetic
state changes strongly the electronic characteristics of de-
vices �and vice versa�.57,58 More recently, the semiconduct-
ing magnetic materials are included into consideration,59–62

and the superconductors are also used as some elements of
the hybrid structures for magnetoelectronic applications.63 It
seems therefore worthwhile to consider the same type of
phenomena in a superconductor with magnetic impurities
disposed in some form of ordering that may be controllable
from the outside.64–66 In particular, we have in mind finite
systems to which we may attach leads through which we
may insert currents that go through a superconducting mate-
rial with classical spins immersed with their spins oriented in
such a way that they form domain walls. These may be
achieved, for instance, by imposing different boundary con-
ditions between two sides of the material. Therefore, in this
work, we have in mind systems that are finite and with non-
periodic boundary conditions.

While it is interesting to consider the effect the supercon-
ducting state may have on the magnetic profile in view of
possible spintronics applications, it is also interesting to see
the effect of the patterned magnetization profile on the su-
perconducting properties. In this work, we focus on the latter
aspect of the problem imposing a fixed magnetic pattern.
Usually, people consider, say, a semiconductor in a potential
quantum well or a metal in a magnetic profile but not a
superconductor in a magnetic profile. We find that the impu-
rities affect the properties in a very local way and the pattern
of interferences between the impurity induced states is rather
complex. We also find quantum phase transitions in these
situations. Even though we present our results for a fixed
magnetic profile, we also study the stability of the magnetic
profile, taking as the stabilizing factor a possible RKKY in-
teraction between the impurities mediated by the quasiparti-
cles of the superconductor.

In Sec. II, we introduce the model that describes the mag-
netic impurities inserted in the BCS s-wave superconductor.
In Sec. III, we consider the quantum phase transitions origi-
nated by the change of the coupling between the classical
impurity spins and the conduction electron spin density re-
vealed in the structure of the energy levels, local spin den-
sity, local gap function, and global spin density. In Sec. IV,
we study the nature of the quasiparticle states revealed in the
local density of states and the local kinetic energy. In Sec. V,
we consider the stability of the domain wall, taking into ac-

count an effective interaction between the impurity spins that
may originate in a RKKY interaction, and in Sec. VI we
study the effect of a finite temperature, particularly on the
quantum phase transition. We conclude in Sec. VII.

II. MODEL

Consider a set of classical spins immersed in a two-
dimensional s-wave conventional superconductor. We con-
sider a two-dimensional system for computational simplicity
and because it is easier to experimentally control either the
location of the magnetic impurities or the local magnetic
fields induced by the vicinity of, for instance, magnetic dots.
We use a lattice description of the system. In some sites, we
place classical spins parametrized like

S� l

S
= cos �le�x + sin �le�z, �1�

where S is the modulus of the spin. Thus, we assume that the
spins lie in the x-z plane. The Hamiltonian of the system is
given by

H = − �
�i,j�,�

ti,jci�
† cj� − 	�

i�

ci�
† ci� + �

i

��ici↑
† ci↓

† + �i
*ci↓ci↑�

− �
i,,l,�,��

Ji,l�cos �lci�
† ��,��

x ci�� + sin �lci�
† ��,��

z ci��� , �2�

where the first term describes the hopping of electrons be-
tween different sites on the lattice, the second term includes
the chemical potential 	, the third one corresponds to the
superconducting s pairing with the site-dependent order pa-
rameter �i, and the last term is the exchange interaction of an
electron at site i with the magnetic impurity located at site l.
The hopping matrix is given by ti,j = t
 j,i+
+ t�
 j,i+
�, where 

is a vector to a nearest-neighbor site and 
� to a next-nearest
site. Most of our calculations will be performed taking t=1,
t�=0, and 	=−1. For this value of the chemical potential, the
band is between quarter and half-filling. The effects of intro-
ducing a next-nearest-neighbor hopping or varying the
chemical potential are discussed below. Note that both the
indices l and i , j specify sites on a two-dimensional system.
The indices i , j=1, . . . ,N, where N is the number of lattice
sites. We take Ji,l=J
i,l and therefore the last sum is over the
sites, l, where a spin is located. We assume that the spin
configuration is fixed and static. Later on, we will study the
stability of the spin configuration.

The diagonalization of this Hamiltonian is performed us-
ing the Bogoliubov transformation in the form

ci↑ = �
n

�un�i,↑��n − vn
*�i,↑��n

†	 ,

ci↓ = �
n

�un�i,↓��n + vn
*�i,↓��n

†	 . �3�

Here, n is a complete set of states, un and vn are related to the
eigenfunctions of Hamiltonian �2�, and the new fermionic
operators �n are the quasiparticle operators. These are chosen
such that in terms of new operators,

MAGNETIC IMPURITIES IN A SUPERCONDUCTOR:… PHYSICAL REVIEW B 76, 014512 �2007�

014512-3



H = Eg + �
n

�n�n
†�n, �4�

where Eg is the ground state energy and �n are the excitation
energies. As a consequence,

�H,�n	 = − �n�n,

�H,�n
†	 = �n�n

†. �5�

The coefficients un�i ,��, vn�n ,�� can be obtained by solving
the Bogoliubov–de Gennes equations.67 Defining the vector

�n�i� =

un�i,↑�
vn�i,↓�
un�i,↓�
vn�i,↑�

� ,

the BdG equations can be written as

H�n = �n�n, �6�

where the matrix H at site i is given by

H =

− h − 	 − Ji,l sin �l �i − Ji,l cos �l 0

�i
* h + 	 − Ji,l sin �l 0 − Ji,l cos �l

− Ji,l cos �l 0 − h − 	 + Ji,l sin �l �i

0 − Ji,l cos �l �i
* h + 	 + Ji,l sin �l

� ,

where h= �tŝ
+ t�ŝ
�� with ŝ
f�i�= f�i+
� and ŝ
�f�i�= f�i
+
��. The solution of these equations gives both the energy
eigenvalues and eigenstates. The problem involves the diago-
nalization of a �4N� �4N� matrix. The solution of the BdG
equations is performed self-consistently, imposing at each
iteration that

�i =
V

2
��ci↑ci↓� − �ci↓ci↑�� , �7�

where V is the effective attractive interaction between the
electrons. Using the canonical transformation, this can be
written as

�i = − V �
n,0��n���D

� fn�un�i,↑�vn
*�i,↓� + un�i,↓�vn

*�i,↑�	

−
1

2
�un�i,↑�vn

*�i,↓� + un�i,↓�vn
*�i,↑�	 , �8�

where �D is the Debye frequency, and fn is the Fermi func-
tion defined as usual like

fn =
1

e�n/T + 1
,

where T is the temperature. We note that the Bogoliubov–de
Gennes equations are invariant under the substitutions �n→
−�n, u�↑�→v�↑�, v�↑�→u�↑�, v�↓�→−u�↓�, u�↓�→−v�↓�.

We are interested in calculating various quantities. In par-
ticular, we calculate the quasiparticle spin densities,

sz�i� =
1

2
�ci,�

† ��,��
z ci,���

=
1

2�
n

�fn��un�i,↑��2 − �un�i,↓��2	 + �1 − fn���vn�i,↑��2

− �vn�i,↓��2	� ,

sx�i� =
1

2
�ci,�

† ��,��
x ci,���

=
1

2�
n

�fn�un
*�i,↑�un�i,↓� + un

*�i,↓�un�i,↑�	

− �1 − fn��vn
*�i,↑�vn�i,↓� + vn

*�i,↓�vn�i,↑�	� , �9�

where the sums are taken over the positive excitation ener-
gies. Also, we are interested in calculating the local density
of states,

���,i� = �
n,�

��un�i,���2
�� − �n� + �vn�i,���2
�� + �n�	 .

�10�

Since the system is finite, the states are discrete. This can be
written as

���,i� = �
n,�,�

����n,i,�� , �11�

where �=+ runs over the positive energy eigenvalues of Eq.
�6� �n

+ and �=− runs over the negative energies �n
−. There-

fore,

�+��n,i,�� = �un�i,���2
�,�n
+ + �vn�i,���2
�,�n

− �12�

and
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�−��n,i,�� = �vn�i,���2
�,�n
+ + �un�i,���2
�,�n

−, �13�

where �n
�=−�n

−�.
Consider now the possibility that there is a line of impu-

rities, S� l, such that their spin orientations are correlated. For
simplicity, we consider a one-dimensional array of spins that
traverse the two-dimensional material from one border to the
other along the x direction. A dense impurity distribution will
destroy superconductivity if the spin coupling is strong
enough. Therefore, to study the effects of interference, we
limit ourselves to lines of spins in the two-dimensional elec-
tronic system. One may impose a magnetic field at each side
of the sample such that it orients the first and last spins.
Choosing different boundary conditions, we may create dif-
ferent domain walls assuming that there are interactions be-
tween the spins that tend to orient them. These interactions
may either be ferromagnetic or antiferromagnetic and may
have its origin in RKKY-type interactions via the supercon-
ducting substrate. As we mentioned before, the form of the
interactions mediated by the quasiparticles has a form similar
to the one of a standard metal.

Clearly, if the number of spins increases considerably
and/or their coupling to the electron density increases,
enough superconductivity will be destroyed. We will be fo-
cusing on situations where superconductivity prevails, as
evidenced by the self-consistent solution of the BdG equa-
tions. In particular, if we consider a fully two-dimensional
distribution of classical spins, unless the coupling is small, in
general, superconductivity will be destroyed.

The various cases considered are displayed in Fig. 1. Be-
sides the cases of one impurity and two impurities previously

considered, and that we briefly consider here to compare
with the new results, we consider various situations where,
for instance, we have a domain wall of the Néel type �here
limited to a line of spins to simplify� where the leftmost spin
is either oriented along the chain �defined as the x direction�
or perpendicularly to it �these are the cases DW1 and DW2,
respectively�. Specifically, in the case of domain wall DW1,
we choose

�l =
�

2
+

�

2
tanh

x − xc

�
, �14�

and, for the domain wall DW2,

�l =
�

2
tanh

x − xc

�
. �15�

The other configurations are characterized by �l=
�
2 ��−x�

− �
2 ��x�, for the domain wall DW3, �l=���−x� and �l=0 for

x�0, for DW4, and �l=
�
2 �1+ �−1�x	, for the antiferromag-

netic �AF� case, DW5.
Most of our results were obtained for a system of 15

15 sites. Increasing the system size does not affect quali-
tatively the results. For instance, we have considered a sys-
tem of 2525 sites and the results are very similar. The only
visible difference is the reduction of the finite size effects
near the borders of the system. We used parameters such that
superconductivity is stable and the superconducting gap is
relatively large so that the in-gap states are easily identified.
Choosing units where the hopping t=1, we get a gap of the
order of 0.4 choosing V=4t. Typically, we choose �=3.

x

z
DW1

>

> > > > > > > >

(a)

(b)
x

z

DW2

> > > > > > > > >

(c)

(d)

x

z

DW3

> > > > >< < < < <

x

z

DW4

> > > > >

> > > > >

FIG. 1. Various Néel-type do-
main walls considered in this
paper.
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III. QUANTUM PHASE TRANSITIONS

A. Energy levels

We begin by revisiting some results for a situation where
we have one or two impurities immersed in the material. As
is typical of an s-wave pairing, the clean system has a gap.
Introducing one magnetic impurity generates two bound
states in the gap. One is at positive energies and the other is
at a symmetric negative energy. This is clearly shown in Fig.
2. The nature of the wave functions corresponding to the two
eigenstates will be discussed later. If we introduce two im-
purities, the number of states in the gap doubles. In general,
if there are Ni impurities, there are 2Ni states in the gap, Ni at
positive energies and the same at negative energies. As the
coupling between the electron spin density and the impurity
spin grows, the energy of the bound state lowers and ap-
proaches the Fermi level. Increasing further the coupling, the
level is repelled from the chemical potential. The nature of
the ground state has changed, as we will see below.

In Fig. 2, we also show the energy spectra for the domain
wall DW1 for different values of the coupling. There are now
as many bound states as impurity spins �for positive ener-
gies�. For small coupling, the energy levels are close to the
top of the gap, but as the coupling grows the trend is similar
to the single impurity case. For a large system, the gap will
be virtually filled close to the transition where the level
crossing�s� takes place. As we will see, there are several level

crossings as the coupling varies. Note that J actually means
JS, where S is the magnitude of the local spins. Therefore,
we may consider S=1/2 and change the Zeeman term cou-
pling value. However, we can as well consider that the cou-
pling is not changing much but we are inserting impurity
spins with different values of S. This is truly the classical
limit. Previously, the effect of the change in the relative
angles or distances between two impurities was considered.20

These changes also induce changes in the energy spectra and
affect the various level crossings. The change in relative
angles and/or distances between two impurities in the case of
domain walls corresponds to the change in the width of the
domain wall, �. However, the analysis of these interference
effects on the states is more complex due to the multiple
scatterings, as we will show below.

In contrast to the case of a small number of isolated mag-
netic moments creating a number of levels in the gap, an
ordered array of impurities creates some minibands. It can be
clearly seen in Fig. 2, even though we performed our calcu-
lations for a finite system.

The detail of the level crossings is better studied consid-
ering the evolution of the lowest level �with positive energy�
as a function of the coupling J. This is shown in Fig. 3 for
various systems. In the case of a single impurity, there is a
single level crossing, which for our parameters occurs at a
value between J=1 and J=2. In the case of the domain
walls, there are several level crossings, as illustrated in Fig.
3. For the same set of parameters, the level crossings are
contained in an interval of coupling strengths that is of the
same order. We recall that at each level crossing, the lowest
energy does not strictly reach zero. At a finite value of the
coupling, the crossing occurs without closing the gap, indi-
cating that the quantum phase transition is actually a first
order one. The same occurs in the cases of the domain walls.
However, since the number of bound states inside the gap
increases, the minigaps near the various transitions are quite
small and in the thermodynamic limit should become vanish-
ingly small. Even for a small system, considering, for in-
stance, a two-dimensional distribution of impurity spins, one
expects that the gap will be filled with states. Actually, for a
moderate coupling of the order of J�1, the superconductiv-

-1.5

-1

-0.5

0

0.5

1

1.5

1 impurity (15x15)

J=0.1 0.5 1 2 4 6
(a)

(b)

-1.5

-1

-0.5

0

0.5

1

1.5

DW1 (15x15)

J=0.1 0.5 1 2 4 6

FIG. 2. �Color online� �a� Energy levels for one impurity. There
is one pair of bound states originated by the impurity. As J grows,
the level appears to “cross” zero energy. The crossing is between
J=1 and J=2 �see below�. �b� Energy levels for DW1 domain wall.
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FIG. 3. �Color online� Lowest energy level as a function of J for
the various domain walls. Note the various level crossings �near
zeros� for the various cases. The crossings are concentrated for 1
�J�2. Note that for the antiferromagnetic chain, there is a single
level crossing. Domain walls DW1 and DW2 have the same lowest
state energy and the same happens with domain walls DW3 and
DW4.
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ity can be destroyed by the local magnetic fields created by
the impurities. The states in the gap are localized, as will be
shown later.

B. Local gap function

A characteristic of the order in the system is given by the
behavior of the superconducting order parameter, as a func-
tion of space.68 In Fig. 4, we study the effects of system size
and boundary conditions on the gap function in the case of a
single impurity located at the center of the system. We see

that for open boundary conditions, the finite size effects are
important near the border of the system. Increasing the sys-
tem size, these diminish. In the case of periodic boundary
conditions, the finite size effects are virtually absent. Note
that away from the borders, the results for the cases 15
15 and 2525 are qualitatively the same. Therefore, in the
rest of the paper, we will illustrate the results considering
either system size preferring, however, the smaller system
size since this decreases the computational time. Also, as
discussed above, we are aiming at the equilibrium properties
of a system which is finite, and therefore we will consider the
open boundary conditions instead of the more standard peri-
odic boundary conditions.

In Fig. 5 we consider � for the typical coupling J=2 for
the case of one impurity. The first thing to notice is that the
order parameter is only affected very close to the impurity
site. Since we are using open boundary conditions, the be-
havior of the order parameter and other quantities is also
affected near the border. If we were to use periodic boundary
conditions, these effects would be strongly reduced and for a
relatively large system they would be almost vanishing. We
note, however, that near the impurity, the boundary condi-
tions have no effect as expected. We note the previously
observed � shift of the order parameter when J is large
enough. This effect prevails when we have several impuri-
ties. We see from Figs. 6 and 7 that the � shift is observed
for the more complex structures, indicating once again that
some properties are of a local nature. Also, we see that the
orientation of the spins does not affect significantly the order
parameter. This is to be expected since we are considering
singlet pairing and therefore rotationally invariant. While the
spin density is obviously strongly dependent on the impurity
spin orientation, the order parameter is only mildly affected
particularly at the center of the solitoniclike spin configura-
tion. If the coupling is strong enough, the order parameter is
basically constant along the impurity line.

As the level crossings occur, there is a change of phase of
� locally, as evidenced by the single impurity results. There-
fore, as the various level crossings occur in the cases of
several impurities, there may be inhomogeneities since the

(a)

(b)

(c)

FIG. 4. Comparison of the spatial dependence of the gap func-
tion for the case of a single impurity, for the cases �a� 1515 and
�b� 2525 for open boundary conditions and �c� periodic boundary
conditions, for J=1.

FIG. 5. � for J=2 for one impurity. � decreases at the impurity
site �this is the same as for a nonmagnetic impurity�. Note that there
is a � shift in � �it becomes negative� at the impurity site in con-
trast to the case for J=1, shown in Fig. 4�b�.
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capture of the electrons by the impurities is not necessarily
uniform, as evidenced by the nonhomogeneous changes of
local spin density. Therefore, it is natural to expect some
inhomogeneities along the chain. This is also seen in the
local density of states �LDOS� shown below.

A simple explanation for the occurrence of the � shift is
not available.1 It is argued that it is related to the � junctions
referred to above, but these occur for specially commensu-
rate widths of the ferromagnetic slab in /S/F/S heterostruc-
tures. Here, the effect is quite local and therefore a relation is
not clear.

C. Local spin density

In Figs. 8�a� and 8�b�, we show the behavior of the elec-
tron spin density in the presence of two impurities. Since the
impurity spin acts like a local magnetic field, we expect that
the spin density will align along the local field. At the impu-
rity site, the spin density is aligned, as shown in the figure. In
Fig. 8, we compare two values of the coupling. For J=1,
note the negative spin density around the impurity site. At
the impurity site, it is positive, as expected. For larger J such
as J=2, notice that the spin density in the vicinity of the
impurity site is now positive. We will see that for J=1, the
total sz=0, while for larger values of J it is positive �this is
one of the hallmarks of the phase transition�. One interpre-
tation is that if J is strong enough, the impurity captures one
electron breaking a Cooper pair leaving the other electron

unpaired and the overall electronic system becomes polar-
ized. At zero temperature, where the quantum phase transi-
tion occurs, the magnetization reduces to

sz�i� =
1

2 �
n,�n�0

��vn�i,↑��2 − �vn�i,↓��2	

=
1

2 �
n,�n�0

��un�i,↑��2 − �un�i,↓��2	 , �16�

and therefore may be calculated either from the hole states at
positive energies �given by vn� or by the particle states at
negative energies �given by un�. At zero temperature, there
are no quasiparticles and therefore all the states of positive
energies are empty. We will see later the nature of the states
as a function of coupling and their relation to the spin orien-
tation.

In Figs. 8�c�–8�f�, we show the results for the spin density
for two typical cases, DW1 and DW4, for the same cou-
plings. For J=1, the first level crossing has not yet occurred
and the total magnetization is zero, as for the single impurity
case. This implies that the system responds to the local po-
larization of the electronic spin density at the impurity site
by an overall negative polarization, to yield a total magneti-
zation that vanishes. Since the effect of the impurities is
quite local, it is around the impurity line that the magnetiza-
tion is negative. This happens for both domain walls. In-
creasing the coupling, for instance, J=2, the situation

FIG. 6. � for DW1 for J=1,2. Note that for J=2, there is again
a � shift. FIG. 7. � for DW4 for J=1,2. Once again there is a � shift.
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changes. It is clear from the figures that around the impurity
line, the magnetization is no longer negative. The influence
of the impurity spins is now strong enough to polarize the
electronic system, not only at the impurity sites but also in
their vicinity. The total magnetization no longer vanishes but
has a finite value. This is further discussed below.

As the coupling changes, in general, the magnetization
varies in a continuous way. However, as the system goes

through the various phase transitions, the spin density
changes discontinuously consistently with a first order quan-
tum phase transition. Since there are now several spins that
may bind electrons in succession, there is now a sequence of
phase transitions. These changes are not, in general, uniform
along the line of impurities. For instance, in the case of the
domain wall DW1 at the first transition �which, for the pa-
rameters chosen, occurs near J=1.55�, there is an increase

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. ��a� and �b�	 Plots of sz, the local z component of the electronic spin density for the case of two impurities for J=1,2. ��c� and
�d�	 Plot of sz for J=1,2 for DW1. Note that along the line of spins constituting the domain wall, the spin density is large and positive and
that for J=1 in the neighbors it is negative, and for the other case J=2 it is positive. As for the cases of one and two impurities, this transition
is associated with a transition from sz

T=0 to an sz
T�0. ��e� and �f�	 Plot of sz for J=1,2 for DW4. Note that now the total magnetizations are

zero but if we divide the system in two-halves, similar considerations apply.
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centered around the middle point of the chain; for the next
transition �around J=1.62�, the increase occurs both at the
middle point and at both ends of the chain; and at the next
transition �around J=1.8475�, there is a sharp peak at the
middle point and at the transition around J=2.215 the in-
crease has a broad maximum centered around the middle
point. This inhomogeneity is characteristic of the various do-
main walls, where the space distribution of the wave func-
tions is complex due to the multiple interferences of the qua-
siparticles off the various impurities.

D. Global spin density

The sequence of the quantum phase transitions is also
clearly displayed if we consider the total magnetization of
the system as a function of the coupling. In the cases of the
domain walls DW1 and DW2, the total value of sz

T and sx
T

changes as a function of the coupling in basically the same
way since one may obtain one case from the other by a
rotation in spin space. However, the other domain walls con-
sidered have no overall magnetization in any direction. We
may, however, consider only the left or right magnetizations

and these will display the same type of quantum phase tran-
sitions, even though the total magnetizations are in principle
zero.

The detail of the dependence on the coupling value is
better shown in Figs. 9–13 where we present various average
spin densities for the various domain walls. Due to the shape
of the domain walls, in some cases the total spin densities,
summed over all electron sites, vanish. However, the quan-
tum phase transitions are clearly shown if we take averages
over, say, half of the system. Associated with the various
level crossings, there are various phase transitions between
plateaus corresponding to an increasing spin density compo-
nent as the electron spins bind to the impurity spins.

The antiferromagnetic case is peculiar. There are no true
discontinuities but the left and right sx do not vanish and
show an interesting change of sign at a value of J�1.4. This
is probably a finite size effect that should disappear as the
system size increases.

E. Effect of changing the Fermi level and effect of next-
nearest-neighbor hopping

We have chosen to work with a chemical potential of 	
=−1. The electron density is therefore not fixed and has to be
determined self-consistently. We do not present here the re-
sults for the electron density but will consider them in future
publications, particularly in the context of transport proper-
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FIG. 9. �Color online� Various quantities for DW1 as a function
of J. We plot sz
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r. Here, l and r stand for left half
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phase transitions.
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ties where the density of charge carriers will play an impor-
tant role. The results do not depend in a significant way on
the value of the chemical potential. The value of 	=−2 has
been chosen before since the system in this case is quarter
filled and the analysis of the interference pattern for the two
impurities case is simplified,21 since along the x axis the
Fermi momentum is � /2. In the case of this paper, 	=−1
means that the band filling is larger but is of the order of 0.65
and therefore is still quite far from half-filling. The change in
the chemical potential slightly affects the location of the

quantum phase transitions but the results are qualitatively the
same. However, changing the chemical potential affects the
band filling. The band filling is also affected by the spin
coupling. As the coupling grows, the band filling increases
since electrons are trapped by the impurities. We note that if
we consider a more realistic situation, where we take into
account next-nearest-neighbor hopping, the results are also
qualitatively the same. The effect of this extra term is to
change the location of the quantum phase transition points.
Both decreasing the band filling and introducing the next-
nearest-neighbor hopping decrease the order parameter and
therefore increase in proportion the importance of the cou-
pling between the spin density and the impurity spin antici-
pating the appearance of the quantum phase transition.

We note that considering the case of a more dense impu-
rity spin distribution will both tend to destroy superconduc-
tivity for smaller values of the coupling and also to increase
the band filling approaching the half-filling situation for
moderate values of the coupling. This effect will be consid-
ered elsewhere.

IV. NATURE OF STATES

A. Local density of states: �„� , i…

As mentioned before, since the spectrum is discrete and
symmetric, the density of states is composed by a series of
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FIG. 13. �Color online� Various quantities for the AF spin con-
figuration �DW5� as a function of J. We plot sz
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FIG. 14. LDOS for the lowest energy state �with positive en-
ergy� and the second lowest state �also with positive energy� for J
=1 in the case of a single impurity.

FIG. 15. LDOS for the lowest energy state �with positive en-
ergy� for J=2,6 in the case of a single impurity.
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delta function peaks, where for each energy �for instance,
positive� there are two contributions, one from a level of
positive energy, for instance �n, with weight �un�i ,���2 and
another from the symmetric energy level with energy −�n
with weight �vn̄�i ,���2, where n̄ is the level symmetric to the
level n.

Consider first the case of a single impurity. The true na-
ture of the bound state of positive energy is better evidenced
by the LDOS at the energy of the lowest level. Specifically,
and calling this energy level n=1, the LDOS is given by

��� = �1,i� = �
�

��u1�i,���2 + �v1̄�i,���2	

= �+��1,i,↑� + �+��1,i,↓� . �17�

This is shown in Fig. 14, where the LDOS of the second
level �located in the continuum� is also shown for compari-
son. The LDOS of the second level is spread over the sys-
tem. The lowest state is localized near the impurity site. The
LDOS of the lowest peak is nicely confined around the im-
purity site and has a large spectral weight. Here, we consid-
ered J=1. Notice that the oscillations are strongly damped
beyond the nearest neighbors. In Fig. 15, we consider higher
values of the coupling J=2,6. Notice that for J=2, the peak
has broadened but is still quite localized. Also, the oscilla-
tions are now less damped particularly along the diagonals of
the square. Note also that the spectral weight at the impurity
site is now reduced. In the case of a large coupling J=6, the
peak is still localized but has several new features. It has a
broader spectral weight and there is no peak at the central

FIG. 16. LDOS for DW1 for the first seven levels for J=1 and a state in the continuum.
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point. At the impurity site, the gap function is still negative
even though its magnitude decreases for this large J value.
Instead of a central peak, there are now four peaks in the
nearest neighbors of the impurity site and a square symmetry,
even though the state is still quite localized. Note the exten-
sion of the wave functions along the diagonals of the system.

If we consider the case of two impurities, there are now
two bound states. The behavior is quite similar to the case of
a single impurity with two maxima localized in the vicinity
of the impurity sites. The third level and beyond are ex-
tended, as expected.

In the cases of a few impurities, like two or three impu-
rities, a study of the relation between the phase transitions
and the level structure is possible.21 However, increasing the
number of impurity spins, this analysis is complicated by the
multiple interferences of the wave functions of the bound

states. We may, however, look at the LDOS for the lowest
levels and examine their structure. This is shown in Figs. 16
and 17 for the domain wall DW3 for the couplings J=1,2.

The case of J=1 is similar to the case of a small coupling,
where no phase transition has occurred, and the local mag-
netic field is a small perturbation. Clearly, as the coupling
increases, the shielding of the perturbation in the vicinity of
the impurity site increases but no qualitative change is ob-
served until the first level crossing. There are now as many
bound states as impurities and therefore there are several
“localized” states. In Fig. 16, we show the LDOS for the first
seven positive energy levels and for a level in the continuum.
The states in the gap have a structure along the line of im-
purities and, in that sense, they are localized. However, since
there are several impurities, there is a series of maxima and
minima at the impurity sites. In the single impurity or two

FIG. 17. LDOS for DW1 for the first seven levels for J=2 and a state in the continuum.
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impurity cases, the bound states have maxima at the impurity
locations but we see from Fig. 16 that this is not so. For
instance, the lowest level wave function has a series of peaks
at alternating sites symmetrically around the central point
�note that the number of sites is odd�. On the other hand, the
second level has a zero at the central point indicative of an
antisymmetric state. This is reminiscent of the results ob-
tained for two impurities21 where there are naturally two
states, one symmetric and one antisymmetric. On the other
hand, the third peak is quite spread along the domain wall
and extends further along the perpendicular direction. As the
energy increases, the states are still fairly localized with
more or less complex structures. As before, the state in the
continuum is of a different nature and spread through the
system, even though not homogeneously. The spectral
weights are similar even though their magnitudes are corre-
lated inversely with their extension, as expected.

Increasing the coupling to J=2 changes somewhat the
wave functions. The first levels are still localized but with
different spatial distributions. For instance, the two lowest
levels display two broad peaks and deep minima at the cen-
tral position of the domain wall. The third level is somewhat
similar to the case of J=1. Also, we see an alternancy of
symmetric and antisymmetric states as the energy increases.

We should note that the results obtained for the 1515
system are not general. For instance, considering the case of

a 2525 system, the details of the LDOS are different. In
particular, due to the increased number of bound states, the
sequence of states is more complex. Also, the increased num-
ber of states in the gap increases the near degeneracies of the
states and mixes their symmetry properties. As discussed
above, as the spin coupling grows, the impurities capture
electrons. In the case of the extended spin configurations,
since the states are extended along the chain of spins, even
though the lowest states are localized in the perpendicular
direction, it is not possible to disentangle the capture of the
electrons by each impurity since the states are a superposi-
tion over many sites.

B. Local density of states: ��„� , i ,�…

It is perhaps clearer if we look into greater detail into the
LDOS, separating the spin components and trying to under-
stand better the difference between the positive and the nega-
tive energy states. Consider once again the case of a single
impurity. Let us focus our attention on the first two levels,
the first localized and the next in the continuum. Actually,
these constitute a set of four states due to the positive and
negative energies. The analysis of the LDOS shows that for
J=1, considering first the positive energies, the first level has
only a contribution from spin ↑ and the first level with nega-
tive energy �symmetric to the other level� has only contribu-

(a)

(b)

(c)

(d)

FIG. 18. LDOS for a single impurity. �a� �+��1 , i , ↑ � for J=1, �b� �−��1 , i , ↓ � for J=1, �c� �+��1 , i , ↓ � for J=2, and �d� �−��1 , i , ↑ � for
J=2. �Note that in the vertical axis, labels u=↑ and d=↓.�

SACRAMENTO, DUGAEV, AND VIEIRA PHYSICAL REVIEW B 76, 014512 �2007�

014512-14



tion from spin ↓. The magnitude of the spectral weight at the
impurity site is different for the two states, as already noticed
before.21 In Fig. 18, we show the results for the bound states
for both J=1 and J=2. Considering now the second level
located in the continuum, both at positive and negative ener-
gies, we obtain that there is a mixture of both spin compo-
nents, even though in the case of the state at positive energy
the magnitude of the peak is larger for the case of spin ↑ than
for the case of spin ↓ and in the case of the state in the
continuum at negative energy the relative magnitudes of the
two spin components are reversed. Considering now the case
of J=2, where the level crossing has occurred, the nature of
the states changes. The positive energy bound state has now
only a contribution from the spin ↓ component and vice
versa, and the first negative energy state has only contribu-
tion from the spin ↑ component. As the level crossing oc-
curred, the spin content has changed. In Fig. 18, we only
show the nonvanishing contributions. The other contribu-
tions vanish. On the other hand, in the first state in the con-
tinuum, where the two spin components contribute, the mag-
nitude of the ↑ component is now much larger than the ↓
component, while in the case of J=1 the magnitudes were of
similar sizes. Also, the ↓ component of the second state of
negative energy is now much smaller than the ↑ component.
The second state has to compensate for the spin flip of the
lowest state by increasing the weight of the spin component
aligned with the external impurity spin.

In the case of two impurities, the behavior is similar to the
case of one impurity, except that now the second state is also

localized. Therefore, for J=1, there are now two levels at
positive energies with only spin ↑ contribution and two states
at negative energies with only spin ↓ contribution. As one
crosses to higher values of the coupling, for instance, J=2,
the spin contributions for the bound states change in a simi-
lar way to the single impurity case. For the set of parameters,
we consider here that the two states are nearly degenerate
and therefore the states change their nature basically simul-
taneously. Otherwise, they would change their nature in
succession.21

One may also consider a ferromagnetic chain where all
the spins point in the z direction. This case is very similar to
the single impurity case, as expected. All the positive energy
states have the same spin content at low values of the cou-
pling. If the coupling is large enough, a similar situation will
occur where all the bound states have reversed their spin
content.

The case of the DW1 is, however, different. Even at a
small value of the coupling, in the sense that the first level
crossing has not yet occurred, such as J=1, the various states
have a mixture of the two spin components. This is shown in
Fig. 19. The bound states at positive energy have a mixture
of the two components, even though the magnitude at the
impurity site is larger for the ↑ component. For the negative
energies, the ↓ component has a larger magnitude. In Fig. 19,
we only show results for the lowest level but a similar trend
is found for the other localized states. Note that both com-
ponents have symmetric wave functions. This does not hap-
pen, for instance, for the case of the third level shown in Fig.
20. Even though the relative magnitudes of the spin compo-

(a)

(b)

(c)

(d)

FIG. 19. LDOS for the domain
wall DW1. �a� �+��1 , i , ↑ � for J
=1, �b� �+��1 , i , ↓ � for J=1, �c�
�−��1 , i , ↑ � for J=1, and �d�
�−��1 , i , ↓ � for J=1. �Note that in
the vertical axis, label u=↑ and d
=↓.�
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nents are the same, note that while the ↑ component has a
symmetric wave function, the spin ↓ has an antisymmetrical
wave function. For the third level at negative energy, this is
reversed.

Increasing the coupling to J=2 does not change the nature
of the first two level states. However, increasing further to
J=4, we see in Fig. 21 that there is once again a reversal of
the magnitudes of the two spin components of the first level.
Even though both spin components contribute, the magni-
tude of the ↓ component is now larger than the magnitude of
the ↑ component. This also occurs for the second level. For
the third level, however, the two components have very simi-
lar magnitudes.

As we have seen in some cases, the discrete states in the
gap correspond to well defined spin polarized states. Then,
the QPT changes the spin polarization of these states, leading
to a sort of magnetic phase transition. However, in the case
of the DW1 domain wall, each discrete level corresponds to
a mixture of spin up and down components because the spins
in DW are oriented along the x axis. In this case, the QPT
does not show explicitly the transition between spin up and
down states. Nevertheless, the different spin components of
the composition are also interchanged during the QPT. Thus,
the analysis demonstrates that the QPT can be seen in the
variation of magnetic state corresponding to the discrete lev-
els. As for the origin of the QPT, we show that it is related
only to the level crossing because at each crossing point the
ground state is reconstructed.

C. Kinetic energy

To further confirm the nature of the states, we have cal-
culated at T=0,

�ci�
† cj,��� = �

n

���vn�i,��vn�j,��� . �18�

We have considered two typical points in the system: the
central point and a point far from the central line �in the
bulk�. Also, we have considered both vertical �v� �along z�
and horizontal �h� �along x� displacements of the electrons.
In Figs. 22 and 23, we plot the hoppings for the cases of
� ,��=↑ and � ,��=↓ as a function of the coupling. We have
considered the cases of a single impurity, two impurities
�four lattice sites apart�, the domain wall DW1, and a ferro-
magnetic chain. In the bulk, we expect the states to be ex-
tended independently of the coupling. This is so and the
hoppings are basically independent of J both along the ver-
tical and horizontal directions and spin directions. The cen-
tral point is different, however, and when various impurity
spins are considered, the horizontal and vertical directions
are expected to be different. As shown in Figs. 22 and 23, we
see that as the coupling grows, in general, the hopping de-
creases, consistently with the “localized” nature of the states.
This is particularly so along the chain direction, for the lines
of spins. In the case of two impurities, and due to the rather
local nature of the effect of the impurity spins, the hoppings
at the central point do not change much as a function of the

(a)

(b)

(c)

(d)

FIG. 20. LDOS for the domain wall DW1. �a� �+��3 , i , ↑ � for J=1, �b� �+��3 , i , ↓ � for J=1, �c� �−��3 , i , ↑ � for J=1, and �d� �−��3 , i , ↓ �
for J=1. �Note that in the vertical axis, label u=↑ and d=↓.�
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coupling. As the ↑ spins are in majority, the hopping term for
the cases of ↑,↑ are typically larger. Interestingly, and even
though the hopping term of the Hamiltonian is diagonal in
the spin, in the case of the domain wall DW1, there is a
nonvanishing spin flip term, even though quite small.

V. STABILITY OF DOMAIN WALL

So far, we have assumed that the domain wall is stable.
We may solve this stability issue self-consistently and study
the stability of the domain wall. This may be achieved by
introducing effective interactions between the impurity spins,
possibly mediated by the quasiparticles. Let us approximate
these interactions by an Heisenberg-like term. The part of the
Hamiltonian involving the classical spins may be written in
mean field as

− �
i

J�Si
x��x�i + Si

z��z�i� −
1

2 �
�i,j�

Jf�Si
xSj

x + Si
zSj

z� , �19�

where we consider only the coupling between nearest neigh-
bors, assumed to be ferromagnetic for simplicity. In the
mean-field approximation for both electrons and spins, the
external impurity spins are determined from their mutual in-
teractions and the interaction with the average spin density of
the electrons. We look for the equilibrium impurity spin con-
figuration minimizing the energy with respect to the impurity

spin components. This equilibrium distribution is then in-
serted in the Bogoliubov–de Gennes equations and solved
self-consistently. The impurity spins satisfy the constraint

that �Si
x�2+ �Si

z�2= �S� i�2. An equivalent way is to minimize the
Hamiltonian with respect to the angles themselves, since in
this way the constraint is automatically enforced. Minimiz-
ing with respect to the angles �l, we get the set of equations

(a)

(b)

(c)

(d)

FIG. 21. LDOS for the domain
wall DW1. �a� �+��1 , i , ↑ � for
J=4, �b� �+��1 , i , ↓ � for J=4, �c�
�−��1 , i , ↑ � for J=4, and �d�
�−��1 , i , ↓ � for J=4. �Note that in
the vertical axis, label u=↑ and
d=↓.�
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FIG. 22. �Color online� Hopping matrix elements for up spin
electrons from a bulk point and the center point, in the horizontal
�along x� and vertical �along z� directions.
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− J��z�i cos �i + J��x�i sin �i + Jf sin �l cos �i+


− Jf cos �i sin �i+
 = 0, �20�

where 
= ±1. These equations hold at each impurity site.
The solution leads to a stable domain wall whose shape de-
pends on J

Jf
. The results are shown in Fig. 24. We see that the

profiles are stable. In the case of a small coupling between
the impurity spins �Jf =0.1�, for small J the profile is tending
to a large �, defined in Eqs. �14� and �15�, which implies an
almost linear profile between the end spins. As J increases,
the value of � decreases and there seems to be a rapid varia-
tion between J=1 and J=2. Increasing the value of Jf, the
stability is improved. For large Jj, the profile is almost inde-
pendent of J. Also note that by increasing Jf, the value of �
increases and the profile becomes almost linear for any value
of J.

We should note that one strictly does not have to intro-
duce an effective Heisenberg interaction between the impu-
rity spins, if we were to treat them as quantum mechanical.
The Kondo interaction would couple the impurity spins to
the conduction electron spin density, which in turn would
give rise dynamically to an effective long-range interaction
between the impurity spins. In our mean-field approach, this
interaction is introduced phenomenologically, much in the
same way as the attractive interaction between the electrons
to give rise to pairing. While a mean-field approach �BCS� is
quite good for the superconductivity order, the correct de-
scription of the Kondo effect is much more involved as well
as a proper treatment of the coupling between the impurity
spins. However, as shown before in a similar context,69 the
results are quite similar.

VI. EFFECT OF TEMPERATURE

In this section, we briefly study the effect of temperature
on the results. Clearly, the quantum phase transitions are
smeared out but the same trends prevail.

In Fig. 25, we show the order parameter and the spin
density for a single impurity and the DW1 as a function of
temperature for the two typical cases of J=1,2. We clearly
see that the critical temperature is basically the same when
we increase the number of spins. Note the critical tempera-
ture for one impurity and the DW1 at about T�0.5–0.6.
However, the behavior of the spin density is quite different
as a result of the underlying phase transition. In the case of
J=2, the spin density is finite and then decreases, while for
J=1 the increase in temperature increases the density due to
excitation to higher levels. Note for both cases the different
starting point of sz

T due to the quantum phase transition when
we go from J=1 to J=2.

Clearly, as shown in Fig. 26, the quantum transitions be-
tween the plateaus of the spin densities as a function of the
coupling are now smeared, but the same overall trend per-
sists. Even though the temperature smoothens the curves and
the quantum phase transitions disappear �they only occur at
T=0�, the behaviors are robust to temperature. In particular,
the regimes where at T=0 there is a finite value for one of
the average magnetizations, it persists at small finite tem-
peratures.
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bulk,h bulk,v

center,h center,v

FIG. 23. �Color online� Hopping matrix elements for down spin
electrons from a bulk point and the center point, in the horizontal
�along x� and vertical �along z� directions.
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FIG. 24. �Color online� Profile of Sx of the impurity spins for
DW1 and for for Jf =0.1,1 ,4 as a function of J.
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VII. SUMMARY

In this work we considered the effect of correlated mag-
netic impurities inserted in a conventional superconductor.
Previous results on few impurities revealed the existence of
sequences of quantum phase transitions, associated with
level crossings, that lead to discontinuous changes in the
properties of the system, such as the magnetization. We ex-
tended these results to the case when we have sets of impu-
rity spins that are correlated through mutual interactions that
may be originated via RKKY-type interactions mediated by
the electrons. In particular, we considered cases where the
impurity spins are organized in such a way that form domain
walls which, to simplify, we have limited in this work to
one-dimensional arrays of spins inserted in the supercon-
ductor. These domain wall structures may be obtained by
imposing different boundary conditions at different sides of
the mesoscopic systems considered here. As in the case of a
few impurities, we found a series of quantum phase transi-
tions that we have analyzed. In general, the introduction of

foreign objects in the superconductor originates interference
effects. These are revealed in the LDOS. We have presented
detailed results which show the complex nature of the mul-
tiple interference effects.

We have also shown that the domain wall structures con-
sidered here are stable, taking into account the mediated in-
teractions between the impurity spins. To simplify, we con-
sidered in this work classical spins. The case of a full
quantum problem where the impurity spins are described by
quantum operators leads to Kondo-like effects in the super-
conductor. This is much more involved and the use of the
Bogoliubov–de Gennes formalism requires that we take this
classical limit. Fortunately, at least if the coupling between
the electronic spin density and the impurity spins is not large,
the classical description is enough.

In this work, we focused on the effect of the impurity
spins on the superconductor. The opposite problem of the
effect of the superconductor on the impurity spins may be
interesting if, for instance, by passing a current through the
superconductor, the spin torque created by a spin polarized
current on the impurity spins changes their relative orienta-
tions. This is a problem that has received much attention in
the context of spintronics, where spin polarized currents
passing through a magnetic semiconductor move the position
of the domain walls. The related problem in the context of
the magnetic correlated impurity spins in the superconductor
will be considered elsewhere.
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