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We present a combined experimental, computational, and semianalytical study of the magnetization dynam-
ics of permalloy disks and nanostructured rings with a systematically varied ring width. We investigate the
dynamics of the quasisaturated state. In the case of wide rings the spin wave mode spectrum is similar to that
of a disk. The small inner hole can be viewed as a weak perturbation. When the central hole increases, its
influence becomes more important and two characteristic modes form gradually. They become localized at
different positions in the ring. We explain the localization by the increasing inhomogeneity of the internal
magnetic field and the formation of domain wall regions as the rings grow more narrow. In narrow rings one
of the modes is clearly confined to the two segments where the internal field Hint is at a maximum and the other
to the domain wall region where Hint is small. Dynamic magnetic simulations agree well with the measured
spectra and confirm this interpretation. We also applied a semianalytical model, which confirms that the mode
localization is driven by the internal field inhomogeneity.
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I. INTRODUCTION

There is an ongoing research of the spin wave mode spec-
trum in small confining geometries.1–17 The motivation is
driven by both technological applications and scientific inter-
est. The application of bit patterned magnetic recording me-
dia requires a thorough understanding of the spin-wave mode
spectrum of nanomagnets to engineer fast reversal
speeds,18–24 minimize noise,25 and provide high stability
against unintended switching.26–29 Magnetic rings are among
the candidates for such applications as they display a stable
flux-closure state with vanishing stray field.30,31 The dynam-
ics of this so-called vortex state has recently been addressed
experimentally by different groups.10,32 Switching the circu-
lation direction in a deterministic way might however in-
volve the transient formation of the polarized onion state.33

Scientific interest originates from the prospect of under-
standing magnetic excitations in confined geometries. The
lateral dimensions of magnetic elements can readily be fab-
ricated to have dimensions similar to wavelengths of magne-
tostatic spin waves. The mode spectrum has been found to
depend on the device geometry and to exhibit discrete
eigenfrequencies.6,33–35 In addition spin waves are a type of
waves with inherently anisotropic dispersion36,37 and a low
nonlinearity threshold.38 They display a range of fascinating
phenomena such as room-temperature Bose-Einstein
condensation39 or soliton formation.16

Even in the linear regime the spectrum of spin waves can
become complicated if the symmetry of the confining geom-
etry is low. An example is given by a rectangular magnetic
element which exhibits triangular domains in the flux-closure
state. Here, the spectrum consists of a quasicontinuum of
spin waves.40 Even in simple device geometries the spatial
profile of the internal field Hint is in general inhomogeneous.
As Hint is the determining factor the spin wave spectrum
analysis is complicated and often only feasible if one uses

computational micromagnetics. Therefore studying well-
defined device geometries and internal field profiles is a
helpful basis to understand spin dynamics in more compli-
cated cases. Spin wave dynamics for the onion state of
permalloy8,9 and Co rings11 have recently been reported.

We investigated the spin wave mode spectrum of mag-
netic permalloy �Ni80Fe20� disks and rings. The ring widths
were varied systematically between w=300 and 930 nm.
Broadband spin dynamics measurements were performed in
the quasisaturated state. Applying the same external in-plane
field Hext the different geometrical parameters varied the spa-
tial profile of Hint. The experiments and computational re-
sults show that the spin wave eigenmodes become more and
more localized when we decrease the width w. The localiza-
tion occurs due to the field inhomogeneity: modes are local-
ized either at the maximum of the internal magnetic field or
in the domain wall regions, where Hint is minimal. Starting
from the localized character of the eigenmodes at small w we
developed a semianalytical description, which helps to �i�
model the measured spin wave eigenfrequencies without
time-consuming micromagnetic simulations, �ii� illustrate in
detail the microscopic process of localization, and �iii� clas-
sify the spin waves. A similar approach has recently turned
out to be powerful to explain the nature of spin waves in the
vortex state in rings.10 In this paper we focus on the quasi-
saturated state.

The paper is organized as follows. We give an introduc-
tion to experimental and computational details in Sec. II. The
experimental and computational results are presented in Sec.
III. In Sec. IV we discuss the microscopic process of the
mode localization transition, first qualitatively in Sec. IV A
then with a semianalytical approach in the following Secs.
IV B and IV C. Our conclusions are presented in Sec. V.

II. BASICS OF EXPERIMENT AND SIMULATION

We investigated arrays consisting of 750 nanostructured
disks or concentric rings. Within each array the rings were
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nominally identical and had a constant width w. The ring
widths were varied systematically from array to array. De-
vices were prepared by electron beam lithography and sub-
sequent lift off. The magnetic material was thermally evapo-
rated permalloy. All rings in this study had a thickness of
t=14 nm as measured by atomic force microscopy. The rings
had an outer diameter of D0=2 �m and a center to center
spacing of 4 �m to minimize coupling between the rings.
The ring arrays were incorporated on a coplanar waveguide
structure �CPW� on a GaAs substrate. The center conductor
was used for the excitation of the magnetization dynamics
and its inductive detection. A sketch of the setup and an
atomic force micrograph of a part of the central conductor
with integrated ring array are shown in Fig. 1. The CPW was
optimized to exhibit an impedance Z0 close to 50 �. To ap-
ply the excitation current and to detect the absorption of the
rings we connected the CPW with high bandwidth probes to
a vector network analyzer in transmission geometry. The
bandwidth of our setup is 45 MHz to 20 GHz. Static mag-
netic fields of up to �0Hext=100 mT were applied in the
plane of the ring arrays.

In the setup a sinusoidal high frequency current is passed
through the waveguide and produces a corresponding mag-
netic field. Since the waveguide supports quasi-TEM modes
the field component in the propagation direction is negligible

hx� �hy ,hz�. If the current density were uniform over the
conductor the field would lie almost perfectly in the plane of
the rings and perpendicular to the direction of the wave-
guide. In this case an analytical expression for the magnetic
field is given by �0hrf=�0iexc/2wC.42–44 Here, iexc is the ex-
citation current through the waveguide and wC=15 �m is the
width of the central conductor. At GHz frequencies the cur-
rent is pushed toward the conductor edges due to the self-
inductance of the conductor.41 We have used free commercial
software45 to calculate the current density distribution in the
CPW at 20 GHz.46 From this distribution we calculate the
excitation magnetic field profile using the Biot and Savart
law. The result is shown in Fig. 2. The in-plane component
of the field hy over the central conductor is almost constant
across the rings but grows larger towards the conductor
edges. The fact that the outer ring rows are subject to a
slightly stronger in-plane field component should not play an
important role as long as the excitation field strength is small
and in the linear regime of spin wave dynamics. The hori-
zontal line indicates the analytically expected value assum-
ing a homogeneous current density. This constant value be-
comes true in the dc limit, and is a good approximation for
frequencies in the low MHz range. The out-of-plane field has
a high absolute value only at the edges outside the ring rows.
The inhomogeneity should therefore play a minor role. To
substantiate this assumption we have performed some micro-
magnetic simulations with both, a realistic excitation field
profile and a fictitious homogeneous excitation field. We
have not detected a difference in the calculated spectra.

The magnetic response of the rings m�� , t�
= �̂���hrf�� , t� induces a voltage in the waveguide, which
after Ref. 42 is calculated from reciprocity as
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FIG. 1. �a� Schematics of the broadband spin wave spectrometer
based on a vector network analyzer and a coplanar wave guide
�CPW�. A magnetic field Hext may be generated by two orthogonal
electromagnets at any in-plane direction. �b� Atomic force micro-
graph of a CPW with an integrated ring array on the central con-
ductor having a width of 15 �m. The coordinate system used
throughout the paper is shown. The ellipse illustrates the approxi-
mate shape of the excitation field.
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FIG. 2. Magnetic excitation fields 100 nm above the center con-
ductor of the CPW calculated according to Biot-Savart’s law �Ref.
41� with a realistic current density. The black and grey lines are the
in-plane and out-of-plane fields, respectively. The sketched inset
shows the cross section of the center conductor �grey rectangle� and
the ring rows �black rectangles� to scale. The dashed line indicates
the level of the magnetic field for a fictitious constant current
density.
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Vind =
�0N

2
�

ring
h̃

dm�r,t�
dt

d3r . �1�

This voltage is picked up by the waveguide. Here, �̂ is the
tensor of the complex magnetic susceptibility, and the inte-
gration extends over the whole ring. N is the number of rings

in each array. h̃ is the magnetic field per unit current of the
CPW and reflects the spatial profile of the excitation mag-
netic field hrf. Equation �1� shows that due to the excitation
field profile only the transverse component of the dynamic
magnetization mt= �my ,mz� is excited and detected. Roughly
speaking, the ratio of in- and out-of-plane components
mz /my is similar to the small aspect ratio t /D0�1. Therefore
the detected signal is dominated by my. When the dynamic
magnetization is at resonance the phase shift between the
excitation current and the induced current iind=Z0Vind is �
�destructive superposition� and absorption peaks occur at the
eigenmodes of the rings. At resonance, the shift between
magnetization m and excitation magnetic field hrf is � /2
because then the real part of the susceptibility is zero. Due to
the derivative in Eq. �1� there is an additional phase shift of
� /2 adding to a total phase difference of � between iind and
iexc.

To detect only those changes in the transmission signal
caused by the absorption due to spin waves in the rings,
traces are measured with the ring magnetization saturated
perpendicularly to the wave guide �reference� and along the
wave guide.8,42,43,47 In perpendicular saturation, excitation
and detection of magnetization dynamics are vanishingly
small because �i� the torque on the static magnetization is
tiny, i.e., �=hrf	M�0 and �ii� in this perpendicular con-
figuration the dynamic magnetization is oriented such that
the induced voltage is very small, given mainly by the out-
of-plane precessional component mz, i.e., hrf ·dm /dt
� i�hzmz�0. This holds because at the position of the rings
hrf is mainly in the plane of the CPW �see Fig. 2 and Eq. �1��.
Therefore, in the perpendicular saturation we measure a ref-
erence absorption spectrum where absorption features due to
spin waves are at a minimum or even absent. This reference
spectrum is subtracted from the data taken at �0Hext
=90 mT applied along the CPW’s central conductor, and the
difference spectrum then displays spin wave absorption
peaks with an optimized signal-to-noise ratio.

To interpret the measured eigenmode spectra of the rings
we performed micromagnetic simulations with the LLG
code48 and a semianalytical calculation. Combining the two
approaches later is instructive to clarify the microscopic
mechanism underlying the mode localization. For the LLG
code a single ring was discretized in a mesh with 400
	400	2 cells �5	5	7.25 nm3�. The geometrical ring pa-
rameters were taken from scanning electron microscopy and
atomic force microscopy. The gyromagnetic ratio was 

=28 GHz/T, the saturation magnetization �0MS=1.36 T,
both determined from a witness sample deposited in the
same deposition step as the rings. The exchange constant A
was 1.05	10−11 J /m. The damping constant � was chosen
to be 0.01. This value was chosen about ten percent higher
than determined from a witness film. By taking this larger

value we intended to mimic the FMR linewidth obtained on
an array where besides the intrinsic damping also array in-
homogeneities might provoke a broadening of resonances
�e.g., due to variations in ring widths or local oxidation of
inner and outer edges that are not present in the witness
film�. As will be seen later, the simulation parameters pro-
vide consistent spectra for almost all the different arrays in-
vestigated in the experiments. Only for rings with w
=930 nm the damping is overestimated such that a satellite
mode might be merged with the main mode. We used free
boundary conditions. Based on these data we simulated the
equilibrium magnetic configuration at 90 mT. These equilib-
rium states were used as the initial state for the dynamics
simulations. To evaluate frequencies up to 40 GHz the
Landau-Lifshitz-Gilbert equation was integrated with time
steps of 0.25 ps and for a time duration of 7 ns. The time
evolution of each cell m�xn ,yn ,zn , t� was recorded after a
delta-pulse type of excitation hrf�t�=h0��t�êy with �0h0

=0.3 mT. This value is slightly higher than that calculated
from the power of the VNA output and the CPW geometry
but it shows that we are well within the linear regime. Then
we performed a fast Fourier transformation and plotted the
spectral amplitude at a given frequency for each cell.
Thereby the eigenmodes of the rings were visualized. The
experimentally measured quantity, the induced voltage Vind,
is proportional to the susceptibility weighted by the fre-
quency. Therefore, to compare the simulated and measured
spectra, the simulations were also weighted by the
frequency.49 Spatial profiles of the static internal field were
separately simulated using the free OOMMF code50 with a 2D
solver but otherwise identical simulation parameters. Com-
parisons between OOMMF and LLG solver revealed nearly
identical magnetization states. Results for the equilibrium
magnetizations are shown in Fig. 3. For all ring widths we
find the quasi-saturated state with both ring arms magnetized
in parallel.

To clarify in detail the localization process we adapted a
semi-analytical calculation and interpreted the data on the
basis of a WKB-like approximation. The model is presented
in detail in Sec. IV. This model highlights the physics behind
mode localization in rings.

III. EXPERIMENTAL AND COMPUTATIONAL RESULTS

A. Experimental results

In Fig. 4 we present absorption spectra of the investigated
arrays at 90 mT. This external field generates the quasi-
saturated state �Fig. 3� in all samples. For disks �Fig. 4�a��,
i.e., a hole diameter of zero, we observe a very dominant
mode, labeled B, at 9.9 GHz. There are several higher and
lower modes but with substantially smaller absorption
strength in the spectrum. The frequency of the main mode B
is slightly smaller than the uniform mode of the unpatterned
permalloy film at the same magnetic field. In the presence of
a small hole of 140 nm diameter, i.e., w=930 nm, satellite
modes �labeled A� appear at the high frequency side of the
main absorption peak B �Fig. 4�b��. The dominant mode B is
shifted to a lower frequency. For the rings with w=830 nm
�Fig. 4�c�� the splitting fAB= fA− fB between modes B and A
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becomes more pronounced. The relative absorption strength
�AB= pA / pB, where pA and pB are the absorbed power in the
respective mode, grows larger than in the disk sample. At a
ring width of 480 nm �Fig. 4�d�� the absorption strengths of
mode A and B are equal, i.e., �AB�1 and their splitting has
further increased. Additional satellites appear as shoulders on
the low-frequency side of both modes A and B. For the nar-
rowest rings �Fig. 4�e�� mode A is the dominant mode ��AB

�1� and the splitting is largest. In addition to the main peaks
two satellites are seen clearly below mode A for rings with
w=300 nm.

We note that the characteristic features of the mode spec-
trum remain similar throughout the magnetic field regime
where the rings are in the onion state �not shown�. With
decreasing external magnetic field the peaks are found to
shift to lower and lower frequencies as expected �see Refs. 8
and 11�. Some of the satellite peaks disappear at fields
slightly higher than the switching field at the transition from
the onion to the vortex state. Summarizing the experimental
data, we observe prominent absorption peaks which are
caused by the spin-wave eigenmodes of disks and rings.
There is a systematic development of the modes as a func-
tion of the hole diameter.

B. Computational micromagnetics results

Computational micromagnetics spectra are displayed in
Figs. 5�a�–5�e�. The eigenfrequencies of the modes A and B,

their relative absorption strengths, and the presence of pro-
nounced satellite modes are in good agreement with our ex-
perimental observations. With increasing hole diameter,
starting from the disk and going to the narrowest rings, the
simulations reproduce the appearance and systematic devel-
opment of the frequency splitting fAB and the gradual shift
of absorption strength from mode B to mode A �AB. Only the
linewidths of the simulated mode eigenfrequencies are larger
than the measured spectra because we overestimated the
damping � in the calculations.

For the spectrum of rings with w=930 nm we find that the
computed linewidth of mode B is large. One reason is cer-
tainly again that the assumed damping �=0.01 is higher than
the experimental one. But we also believe that the higher
linewidth leads to a merging of closely spaced satellite peaks
into the broad main peak. A detailed comparison of com-
puted spectra for the disk and the ring with w=930 nm
shows that the peak of mode B of the ring is broader than for
the disk despite the same damping parameter �. So it is
likely that the satellite which we measure at 10.5 GHz in the
experiment in Fig. 4�b� is also present in the computation but
becomes merged with the peak of mode B in the simulation.
Figures 6�a� and 6�b� summarize the experimental and com-
putational relative absorption strength �AB and the frequency
splitting fAB, respectively.

Due to the good agreement between measured and simu-
lated spectra we have used computed eigenmode profiles,

Hext

FIG. 3. Computational magnetization configuration for the disk
and rings at �0Hext=90 mT. The calculation was performed with
geometrical parameters from AFM measurements and magnetic pa-
rameters from measurements on a witness sample. For all ring
widths we find the quasisaturated state with the magnetization in the
ring arms in parallel.
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FIG. 4. Measured absorption spectra of disks and rings at
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els�. The insets show scanning electron micrographs of an indi-
vidual ring from each array.
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i.e., the spatial distribution of the spin wave amplitude, to
understand the systematic development of the modes. Com-
puted eigenmode profiles for the modes A and B are pre-
sented in Fig. 7.

Before we start to discuss the individual graphs it is in-
structive to review general features of spin waves in micro-
magnets. Spin wave eigenmodes can be classified in three
main categories. First, there are modes with nodes and hence
finite wave vector k perpendicular to the static magnetiza-
tion. They exhibit Damon-Eshbach �DE� character.36,37

Damon-Eshbach modes obey a positive group velocity
dfDE/dk�0. That means that a higher wave vector causes a
higher eigenfrequency. Second, there are modes with nodes
and k-vector parallel to the magnetization. The modes have
backward volume magnetostatic wave �BVMSW�
character.36,37 BVMSW modes have a negative group veloc-
ity dfBVMSW/dk�0 below a certain wave vector kmin in the
range 0�k�kmin.

37 In this range an increasing number of
nodes means a decreasing eigenfrequency of the BVMSW. In
general the eigenmodes will have a mixed DE and BVMSW
character. Third, there exist spin-wave well modes. The
“wells” are typically narrow regions at the edges of a micro-
magnet with a low internal field and the modes are exchange
dominated.6 The existence of all these modes has already
been identified in rectangular prism shaped
micromagnets.7,51–53 They also appear in disks but are dis-
torted to fit the curved boundary.12

We index the observed modes by the number of nodes
�n ,m�. Here, n counts the nodes perpendicular to the magne-
tization and m counts the nodes along the magnetization.
From Fig. 7 it is obvious that for wide rings and disks Car-
tesian coordinates are the more appropriate description,
whereas for narrow rings cylindrical coordinates are more
adequate. Note, that we use the same indices for Cartesian
and cylinder coordinates. In the case of a homogeneous ex-
citation field hrf one expects to excite only modes with an
even number of nodes �or odd number of crests equiva-
lently�. Modes with n or m odd cannot be excited due to the
vanishing odd Fourier components of the excitation magnetic
field.54

Let us first discuss the disk and in particular the mode
profile of mode B which dominates the eigenspectrum. The
disk mode B is indexed by �0,0�, and resembles coarsely a
uniform, Kittel-like mode. Due to the applied in-plane field it
has no perfect radial symmetry. The mode has a wave vector
in both in-plane directions due to the confinement but is
uniform otherwise. Mode A in the disk, indexed by �2,0�, is a
Damon-Eshbach type of mode. For the disk, the middle crest
row, i.e., the row of maximum spin-wave amplitude inter-
secting the center of the disk, and the edge crest rows �the
rows of maximum amplitude on either side of the middle
crest row� have nearly the same precession amplitude and
precess out of phase.

For the ring with w=930 nm, i.e., with small hole diam-
eter d=140 nm, the mode profiles show a resemblance to
disks. The inner hole introduces diagonal nodal lines in mode
B. Due to these additional nodes the mode acquires a higher
wave vector along the magnetization direction, and the re-
sulting eigenfrequency is slightly lower compared to the cor-
responding disk mode. This was also observed in the experi-
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FIG. 5. Calculated absorption spectra for a disk and rings with
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ment. Mode A is also influenced by the small hole but is still
Damon-Eshbach-like with two nodal lines. Panel �i� depicts
the phase information of mode A �compare colorbar�. In this
representation it becomes clear that the middle row and the
edge rows precess out of phase with each other reflecting two
nodal lines. In the simulations there is ripple with high spa-
tial frequency superimposed. This is assumed to be a conse-
quence of choosing the cell size not significantly smaller
than the exchange length.7,55

The inner hole modifies the spectrum more severely for a
ring with w=830 nm. Here, the hole diameter is 340 nm.
Mode B now shows localization in the head and tail of the
ring. In these portions of the ring the mode is relatively uni-
form. In the side arms the spin wave amplitude is vanish-
ingly small. Mode A, which has a higher eigenfrequency than
mode B, is very interesting here. It is still reminiscent of the
disk mode �2,0�. The edge crest rows, however, do not ex-
tend from the head to the tail anymore. A substantial contrac-
tion of the spin precession amplitude in the side arms is
visible. The spin-wave amplitude in the middle crest row is
very weak and vanishes completely for the narrower rings.

Rings with w=480 nm display a clear localization for
both mode A and B. Here mode B, the counterpart to the disk
mode �0,0�, resides well confined in the ring’s head and tail.
Mode A, the counterpart to the disk mode �2,0� has maxima
in the side arms only; the middle crest row of the spin wave
excitation no longer exists at w=480 nm. As we will outline
in detail later, this is due to the fact that the internal field
Hint�x ,y� is spatially inhomogeneous. Hint in the side arms
and head and tail has become increasingly different as a
function of increasing hole diameter. The middle crest row
spins can no longer precess at the same frequency as the
edge row spins in this eigenmode.

The narrowest ring �w=300 nm� follows the trend. Modes
A and B are spatially separated. Mode A is found in the side

arms and mode B in the head and tail. The ring segments
where we find appreciable precessional amplitude are
smaller than in the ring with w=480 nm. Panel �ii� in Fig. 7
shows in addition the satellite at 12.0 GHz below mode A.
We find that it is localized in the same side arms as mode A
but has two nodes along the azimuthal direction. Again, due
to the homogeneous excitation we cannot excite modes with
an odd number of nodes. Analyzing the satellite at eigenfre-
quency 11.6 GHz yields four nodes along the azimuthal di-
rection �not shown�. As a consequence these satellite modes
are indexed by A�2,0� and A�4,0�. “A” is introduced to
avoid potential confusion with modes of type B which can
exhibit the same mode indices in the case of rings. Although
at first sight the spin-wave mode profiles in narrow rings
have little in common with the original disk modes, our re-
sults show that they can be traced back to the disk modes
�0,0� and �2,0�.

IV. LOCALIZATION OF DIPOLAR MODES IN RINGS

A. Qualitative considerations

We now provide a qualitative explanation of the mode
localization by addressing the observed frequency splitting
fAB. The splitting increases with decreasing width �Fig.
6�b��. The frequency of a mode is governed by the internal
field value for a particular mode and its wave vector knm,
therefore we have to look at both quantities in the cases of
disks and rings.

In a disk the internal field Hint�x ,y� is relatively homoge-
neous with the exception of the edges perpendicular to the
direction of the external field Hext. In this case the eigenfre-
quencies of allowed modes are mainly determined through
the value of the corresponding wave vectors. If we introduce
a hole in the disk we add the inner edges to our micromagnet
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FIG. 7. �Color� Calculated mode profiles for the 2-�m-wide disk and the different ring widths as indicated at the column bottom �for
details see text�. In the simulation an external field of 90 mT lies along the horizontal axis. We show the mode profiles of the main modes
A and B in the two bottom rows. Panel �i� on the top depicts the phase of mode A for the ring with w=930 nm and panel �ii� the satellite
mode at 12.0 GHz below mode A for w=300 nm. For color coding compare the colorbar.
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and create an internal field inhomogeneity. Figure 8�a� de-
picts the internal field of a ring with w=300 nm �largest
inhomogeneity� in a gray-scale plot. The calculations show
that the field is relatively homogeneous in the radial direction
except for the domain wall region. We can therefore obtain
all essential information about the internal field by looking at

an azimuthal cut through the internal field Hint�R̄ ,�� with

R̄=D0 /2−w /2 fixed. In Fig. 8�b� we present such an azi-
muthal cut. The field inhomogeneity �= �Hint

max−Hint
min� /Hint

max

is as large as 30% along the azimuthal direction. Spins
around 0° and 180° have a component perpendicular to the
inner and outer edges and produce a demagnetizing field
Hdm, which is oriented such that it decreases the internal
field. On the other hand, where the spins are along the edges
�“side arms”� the internal field is only slightly decreased
from the external field value. From this consideration it is
consistent that mode A lies mainly in the high internal field
region and mode B in the low internal field region.

Let us now turn to the wave vectors. The precessional
motion of spins produces a dynamic demagnetizing field. In

the side arms ��=90° ,270° � the concomitant energy penalty
is minimized by effectively pinning the spins at the ring
edges.56,57 A detailed analysis of simulated spin-wave pat-
terns in Fig. 7 reveals that modes A�0,0� in the localization
regime �w�480 nm� do have a smaller amplitude at the side
arm edges compared to the side arm centers. Although per-
malloy is usually considered to have negligible pinning the
precession amplitude is decreased towards the edges due to
the dynamic demagnetizing field. This results in a finite wave
vector on the order of kr=� /w, which increases the fre-
quency of a spin wave in this ring segment. Combined with
the large Hint it becomes clear that spins in the side arms
must have a far higher eigenfrequency than those in the head
and tail of a narrow ring.

The frequency splitting �Fig. 6�b�� provides important in-
formation for a microscopic understanding of the mode lo-
calization. The inner hole produces an inhomogeneity in the
internal field compared to the disk. A spin wave eigenmode
obviously maintains a constant frequency throughout a mi-
cromagnet, i.e., fnm�r ,��=const. When the internal field is
inhomogeneous the wave vector has to change spatially to
compensate for the change in internal field. In Fig. 9 we
show the internal field profile along the azimuthal direction

at R̄ calculated for the ring widths of this work. �Note the
different scales for the vertical axis in Fig. 9.� It is found that
a decreasing ring width leads to a strong field inhomogeneity.
Localization of spin waves takes place for rings where the
internal field varies so much as a function of angle � that
wave vectors for an eigenfrequency become imaginary. This
will be discussed quantitatively in Sec. IV.

In disks a spin wave can extend throughout the disk, be-
cause here all spins can precess at the same frequency. In
rings, there is a breakup in high and low frequency segments.
The mode localization occurs as soon as a constant fre-
quency cannot be maintained in the different regions of the
ring. The ring with w=830 nm is close to the transition to
mode localization: mode A still extends over the ring but
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with very small spin-wave amplitude in the head and tail
�middle crest row�. In contrast, mode B, i.e., the spin wave
excitation at smaller eigenfrequency, is found to localize in
the two segments of small internal field. The middle crest
row of mode A and mode B are expected to have similar
frequencies because they both precess in the head and tail
region and have a similar wave vector. In the calculated
spectrum in Fig. 5�c� there is still a frequency overlap of
modes A and B. Therefore we conclude that also the middle
crest row can still be driven at the eigenfrequency fA. In
narrower rings the middle crest row is no longer excited, the
internal field difference between the outer crest rows and the
middle crest row being too high. The localized mode A in
narrow rings is thus derived from the disk �2,0� mode but the
middle crest row does not exist anymore and the outer crest
rows are strongly contracted.

B. Approximate mathematical treatment of narrow rings

So far we have discussed the underlying mechanism of
the mode localization. We now present a semianalytical
model to provide a quantitative understanding. In principle,
to calculate the spin wave spectrum one would have to solve
the Landau-Lifshitz equation with the full effective magnetic
field58

Heff = Hext +
2A

�0MS
2�2M + �

V

G�r,r��M�r,r��dr . �2�

Here, Hext is the external magnetic field, the second term
is the exchange field with A the exchange constant and
G�r ,r�� the tensorial Green’s function that relates the dy-
namic magnetization to a dynamic demagnetizing field and
the static demagnetizing field to the static magnetization.
�M=M0+m�k , t� contains static and dynamic parts of the
magnetization.� Taking into account all field terms leads to
an integrodifferential equation that can be found in similar
form, for example in Ref. 51. A full-fledged analytical solu-
tion of this equation is possible only in certain cases. To
achieve more insight into the problem than by using the full-
micromagnetic integration of the LLG we seek for an ap-
proximate solution that still allows us to understand the
mode localization.

For the semianalytic description we assume that modes
can be described as plane waves with a spatially varying
wave vector

m�k,t� = mmn�r�exp�i�kmn�r� · r − �mnt�	 . �3�

The basic idea is thus the same as in the description of spin
wave well modes,6 spin wave modes in inhomogeneously
magnetized stripes,5,35,59,60 and closely related to the local-
ization of dipolar spin waves in rectangular prisms.7,51

The angular dependence of the wave vector is extracted
by noting that the frequency of a mode �mn is constant
throughout the internal field profile:

�mn = �mn�Hint�r�,kmn�r�� = const. �4�

If the dispersion is known, then the spatially dependent wave
vector can be reconstructed from the intersections of the lo-

cal dispersion curves with the experimental mode
frequency.6 Note that this is mathematically analogous to the
WKB approximation of a quantum mechanical wave func-
tion in a potential. The stepping stone is, of course, that one
does not know the exact dispersion relation and has to resort
to an approximate one.

We closely follow Guslienko et al.51 and Bayer et al.7

who have argued that if the aspect ratios of a magnetic ele-
ment are small t /w , t /R�1, then the dynamical dipole-
dipole elements in all matrices are negligible. As a conse-
quence one can use the dispersion of an infinite film with
wave vectors whose form is dictated by the symmetry of the
magnetic element under consideration. We do the same in the
case of rings. The wave vectors will then be given by

kn� =
�n + 1��

�
and km� =

�m + 1��
weff

. �5�

Here, �= R̄�0 denotes the arc length in azimuthal direc-
tion over which the mode exists and weff is the effective
width of the ring as defined in Ref. 56. Using these wave
vectors, the dispersion relation becomes

�mn
2 = ��mn

H + D�M�mn
2 � 	 ��mn

H + D�M�mn
2 + �MFmn��mnt�� .

�6�

�mn
2 =kn�

2 +km�
2 denotes the total in-plane wave vector. The

inhomogeneity of the internal field is taken into account by
an average of the micromagnetically calculated Hint�� ,��
weighted with the mode profile51

�mn
H = 


�0�Hint�mmn

=
� Hintmmn

2 d2r

� mmn
2 d2r

. �7�

Within this approach, in principle, one must start from
known mode profiles to calculate the dispersion and check
the consistency. As in the case of rectangular structures we
assume that a factorization is possible so that the normalized
mode profiles have the form

mmn��,�� = ��km�,����kn�,�� . �8�

In particular, the functions � and � can be expressed by
cosine and sine functions for even and odd indices n ,m,
respectively.51 This functional form is consistent with the
results of the micromagnetic simulations shown in Fig. 5
for the strongly localized modes A. Based on such
assumed mode profiles, �mn

H acquires the form �mn
H = 


�0H

− 


�0�Hdm�mmn
�see Ref. 58�, with

�Hdm�mmn
=

4


�0

��Ro
2/2 − Ri

2/2�

	 �
Ri

Ro �
��−�0�/2

��+�0�/2

Hdm���mmn
2 �r − R̄,��drrd� .

�9�

Here, Ri and Ro are the inner and outer radius, respectively,
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and R̄ is the radius at half the ring width. For completeness,
the matrix element F��mnt� is given by37,51

Fmn��mnt� = 1 − P��mnt� kn,�
2

�mn
2 � + P��mnt� 	 �1 − P��mnt��

	 �M

�mn
H + D�M�mn

2 � km,�
2

�mn
2 � �10�

with

P��mnt� = 1 −
1 − exp�− �mnt�

�mnt
. �11�

C. Approximate analytical results for narrow rings

We have performed the calculation outlined in the previ-
ous subsection for the case of mode A in a ring with w
=300 nm. The result is presented in Fig. 10. In panel �a� the

internal field along the azimuthal direction � at R̄ is repro-
duced for an external field of 90 mT. In panel �b� dispersion
curves are displayed which are calculated for positions indi-
cated by the markers in �a�. We find that intersections with
the experimental frequency exist only for dispersion curves
at positions which are between the vertical grey lines �posi-
tions xl and xr�. Here, the wave vector k� has a real value.
Outside this ring segment wave vectors become imaginary
and spin waves are exponentially damped. �Due to the sym-
metry of the onion state we need only look at the region of
real wave vectors near �=90°, the region around �=270° is
identical.� The points xl and xr act as turning points for the
localized spin wave. The distance �0 between the turning
points can be converted to the localization length ��0,0�

= R̄�0�1200 nm of mode A�0,0�. In Fig. 11 we repeat the
results from the micromagnetic calculation for modes A�0,0�
and A�2,0� of the ring with w=300 nm and compare them
with the mode profiles based on the approximate analytical
formalism. For the ring with w=300 nm the LLG computa-
tion yields ��0,0�

C �1340 nm. Here, the turning points are

taken to be the points where the amplitude has dropped to
10% of the maximum amplitude, which is also the baseline
value of the computed profiles. Both values, from the LLG
computation and from the WKB approach �Figs. 10 and 11,
right hand column� are in good agreement. Following the
WKB approach we find that the localization length of mode
A�2,0� is increased. We get ��2,0��1800 nm. The LLG com-
putation suggests ��2,0�

C =1780 nm. These two values are
again in good agreement. The larger localization length ��2,0�
is a consequence of the lower frequency of this mode.

The WKB approach allows one to perform a consistency
check by evaluating the phase integral
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In = �
xl

xr

kn���mn,Hint����R̄d� . �12�

The value of this integral is expected to be In= �n+1�� �as-
suming no phase jumps at the turning points� to yield con-
structive self-interference. The numerical values for the
modes A�0,0� and A�2,0� are I�0,0�=3.579 �larger than � by
15%� and I�2,0�=12.3315 �larger than 3� by 25%�. It has
been conjectured in other publications that phase jumps
might occur at turning points which are not negligible.35 The
phase integral is generally considered an order-of-magnitude
check.

The calculation presented in the previous section explains
the mode localization of mode A in the side arm of a narrow
ring with reasonable accuracy. The calculation is, however,
not easily extended to the wider rings because “guessing” the
mode profiles for the calculation is not trivial. The same
holds true for the B-type modes in the head and tail regions.
What the calculation clearly demonstrates, however, is that
the inhomogeneity of the internal field is responsible for con-
fining mode A in a segment of length � in the azimuthal
direction and how in principle the localization can be under-
stood. The part of the argumentation summarized in Eq. �4�
holds true qualitatively also for mode B in the narrow rings:
Here the spin waves are confined in the internal field mini-
mum and an increase in the internal field away from the
positions �=0,� cannot be compensated by the wave vector.

From the semianalytical approach no obvious rule of
thumb can be inferred at what value wth the crossover be-
tween localized and extended spin wave modes occurs. It
depends on all the geometrical parameters �not only the exact

width�. The WKB approach, however, explains the funda-
mental process for mode localization qualitatively for all
other localized modes and ring widths.

V. CONCLUSIONS

We have presented an experimental and theoretical study
of the internal-field driven spin wave eigenmode localization
transition in mesoscopic rings in the quasisaturated state. We
found a systematic development of the spectra with the ring
width consisting of a frequency splitting of two main modes
and a gradual shift of absorption strength from one mode to
the other. This observation was explained as a gradual mode
localization as a function of increasing hole diameter �de-
creasing ring width�. Up to a threshold width wth, the mode
profiles characteristic for disks were still recognizable in
rings. Below wth the modes break up in distinctly localized
modes. We have applied a WKB approach, which explains
the mode localization quantitatively for narrow rings. The
localization results from the increasing internal field inhomo-
geneity.
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