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The mixed-spin-�1/2 ,SB,SC� Ising model on a decorated square lattice with two different kinds of decorat-
ing spins SB and SC �SB�SC� placed on its horizontal and vertical bonds, respectively, is exactly solved by
establishing a precise mapping relationship with the corresponding spin-1 /2 Ising model on an anisotropic
square �rectangular� lattice. The effect of uniaxial single-ion anisotropy acting on both types of decorating
spins SB and SC is examined, in particular. If decorating spins SB and SC are integer and half-odd-integer,
respectively, or if the reverse is the case, the model under investigation displays a very peculiar critical
behavior that had bearing on the spontaneously ordered “quasi-one-dimensional” spin system, which appears
as a result of the single-ion anisotropy strengthening. We have found convincing evidence that this remarkable
spontaneous ordering virtually arises even though all integer-valued decorating spins tend toward their “non-
magnetic” spin state S=0 and the system becomes disordered only upon further increase of the single-ion
anisotropy. The single-ion anisotropy parameter is also at an origin of various temperature dependences of the
total magnetization when imposing the pure ferrimagnetic or the mixed ferro-ferrimagnetic character of the
spin arrangement.
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I. INTRODUCTION

One of the most fascinating and challenging topics in
equilibrium statistical physics are phase transitions and criti-
cal phenomena of rigorously solvable interacting many-body
systems.1 The planar Ising model represents perhaps the sim-
plest lattice-statistical model for which a complete exact so-
lution is known since Onsager’s famous solution2 and the
model simultaneously undergoes a nontrivial phase transi-
tion. Although the spin-1 /2 Ising model on two-dimensional
�2D� lattices with noncrossing bonds is, in principle, exactly
soluble problem within the Pfaffian method,3 its precise
treatment usually requires an application of sophisticated
mathematical methods, which consequently lead to consider-
able difficulties when applying them to more complex mod-
els describing spin systems with interactions beyond nearest
neighbors,4 frustrated spin systems,5 or higher-spin models
with or without single-ion anisotropy and biquadratic
interactions.6 It is noteworthy, however, that exact solutions
of the spin-1 /2 Ising model have already been reported
on several Archimedean lattices �square,2 triangular and
honeycomb,7 kagomé,8 extended kagomé,9 bathroom-tile,10

orthogonal-dimer,11 and ruby12 lattices� and more recently,
also on a variety of more complex irregular lattices such as
union jack,13 pentagonal,14 square-kagomé,15 as well as two
topologically different square-hexagonal16 lattices. An im-
portance of the rigorously solved 2D Ising lattices can be
viewed in providing guidance on the scaling and universality
hypotheses17 and moreover, these exact results provide very
valuable information about an accuracy of different approxi-
mative theories used to study spin systems where the rigor-
ous treatment is inapplicable. Even though the Ising model
has been originally designed for describing essential features
of insulating magnetic materials,18 throughout the years vari-
ous modifications of this model have found rich applications
in seemingly diverse research areas.19

Over the last few decades, the mixed-spin Ising models
have attracted a great deal of research interest on behalf of
much richer critical behavior they display compared with
their single-spin counterparts. Actually, the mixed-spin Ising
models are often convenient candidates for displaying tric-
ritical phenomenon or other complicated change of a usual
critical point to a multicritical point. Despite much effort,
there are only a few exactly solvable mixed-spin Ising mod-
els, yet. Using the generalized decoration-iteration and star-
triangle mapping transformations, the mixed-spin-�1/2 ,S�
Ising model on the honeycomb, diced, and several decorated
planar lattices has exactly been treated by Fisher and Yamada
many years ago.20 Notice furthermore that an extension of
the generalized mapping transformations enabled one to ac-
count also for the single-ion anisotropy effect. The effect of
uniaxial and biaxial single-ion anisotropies has been subse-
quently exactly examined in the mixed-spin Ising models on
three-coordinated honeycomb21 and bathroom-tile22 lattices,
diced lattice,23 and some decorated lattices.24,25 To the best of
our knowledge, these are the only mixed-spin planar Ising
models with generally known exact solutions except several
mixed-spin Ising models on the Bethe lattices studied within
the framework of exact recursion relations.26 Among the
striking models for which a precise solution is restricted to a
certain subspace of interaction parameters only, one should
further mention the mixed-spin Ising model on the union
jack �centered square� lattice, which can be mapped onto a
symmetric �zero-field� eight-vertex model with continuously
varying critical exponents.27

Exactly solvable Ising models on 2D decorated lattices,
the bonds of which are decorated in various fashions by ad-
ditional spins, are therefore of particular research interest
�see Ref. 28 and references cited therein�. In the class of
exactly solved decorated Ising models belong the original
ferrimagnetic model introduced by Syozi and Nakano,29
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partly30 and multiply31 decorated models showing reentrant
phase transitions, axial next-nearest-neighbor �ANNNI�
models,32 diluted models of ferromagnetism,33 decorated
models with classical �-dimensional vector spins,34 Fisher’s
superexchange models and its numerous variants,35 as well
as the models with higher decorating spins.20 It is worthwhile
to remark that rigorous solutions of these models have fur-
nished answers to questions interesting both from the aca-
demic point of view �scaling and universality hypotheses,
reentrant phase transitions� as well as from the experimental
point of view �dilution, technological applications of ferri-
magnets�. The vast potential of ferrimagnets with respect to
technological applications has also stimulated exploration of
the effect of single-ion anisotropy upon ferrimagnetic fea-
tures of the mixed-spin-�1/2 ,S� Ising models on the
wholly24 and partly25 decorated lattices.

Recently, Kaneyoshi36 has proposed another notable ex-
ample of the decorated Ising model on a square lattice, the
horizontal and vertical bonds of which are occupied by two
different kinds of decorating spins. Up to now, this remark-
able model system has been studied using the approach
based on the differential operator technique,37 whereas an
accuracy of obtained results determined the Bethe-Peierls-
Weiss approximation used for the undecorated lattice.36

Therefore, the main aim of the present work is to extend the
class of exactly solved Ising models by providing an accurate
solution for this mixed-spin-�1/2 ,SB,SC� Ising model on the
square lattice with two different kinds of decorating spins SB
and SC �SB�SC�. Exact results for the system under consid-
eration are obtained by applying the generalized decoration-
iteration transformation28 establishing an exact mapping cor-
respondence with an effective spin-1 /2 Ising model on the
anisotropic square �rectangular� lattice. Owing to this fact,
the known exact solution of the latter spin-1 /2 Ising model
on the rectangular lattice2 straightforwardly enables us to
acquire exact results for the former decorated mixed-spin
model. Within the framework of this exact method, we will
concentrate our attention first of all to the influence of the
single-ion anisotropy on the critical behavior and phase dia-
grams. Besides, temperature dependences of the total mag-
netization will be also particularly examined.

The outline of this paper is as follows. In Sec. II, the
detailed description of the considered model system is pre-
sented in the first instance. Then, some details of the map-
ping method will be clarified along with the derivation of
exact expressions for the magnetization and critical tempera-
tures. The most interesting results are presented and dis-
cussed in detail in Sec. III for two particular sets of the
quantum spin numbers �SA,SB,SC�= �1/2 ,1 ,3 /2� and
�1/2 ,2 ,3 /2�. Finally, some concluding remarks are men-
tioned in Sec. IV.

II. MODEL AND METHOD

Suppose the square lattice with two different kinds of
decorating spins SB and SC placed on its horizontal and ver-
tical bonds, respectively, as it is diagrammatically depicted in
Fig. 1. As it can be clearly seen, the displayed magnetic
structure can also be viewed as the three sublattice �ternary�

mixed-spin system in which each vertex of the original
square lattice is occupied by the spin-SA atom �sublattice A�,
while each its horizontal and vertical bonds are decorated by
the spin-SB �sublattice B� and spin-SC �sublattice C� atoms,
respectively. As a result, the nearest-neighbor Ising model
defined upon the underlying lattice is given by the Hamil-
tonian

H = JAB �
�i,j��horiz

Si
ASj

B + JAC �
�i,k��vert

Si
ASk

C

− DB�
j=1

N

�Sj
B�2 − DC�

k=1

N

�Sk
C�2, �1�

where Si
A= ± 1

2 , Sj
B=−SB,−SB+1, . . . ,SB, and Sk

C=−SC,−SC
+1, . . . ,SC denote three different kinds of Ising spins differ-
ing in value, their superscript determines the sublattice to
which spins belong, whereas their subscript specifies lattice
points where the spins are placed. The first two summations
are carried out over the nearest-neighbor A-B and A-C spin
pairs, respectively, and the last two summations are taken
over all decorating B and C sites. Accordingly, the param-
eters JAB and JAC label pairwise exchange interactions be-
tween the nearest-neighbor A-B and A-C spin pairs, while
the single-spin parameters DB and DC measure a strength of
the uniaxial single-ion anisotropy acting on decorating spins
SB and SC, respectively. The essence of both single-ion an-
isotropy parameters DB and DC lies in a uniaxial magnetic
anisotropy, which comes from a crystal field of ligands from
a local neighborhood of magnetic centers.38

The crucial step in our approach represents evaluation of
the partition function, i.e., a sum over all possible spin con-
figurations, which usually represents a formidable math-
ematical task in a highly cooperative spin system with many
microscopical degrees of freedom. Fortunately, the problem
connected with the calculation of the partition function of
decorated models can be simply avoided by the use of a
well-known trick, which consists in performing the summa-
tion over spin degrees of freedom of all decorating spins SB
and SC before summing over spin degrees of freedom of the
vertex spins SA. In doing so, the partition function can be
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FIG. 1. A cross section of the three sublattice �ternary� mixed-
spin Ising model on the decorated square lattice. Open circles de-
note lattice positions of the spin-1 /2 atoms �sublattice A�, while
black and hatched circles label lattice positions of the decorating
spin-SB atoms �sublattice B� and the spin-SC atoms �sublattice C�,
respectively.
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partially factorized into the following product:

Z = �
�Si

A�
�
j=1

N

WB�Sj1
A + Sj2

A ��
k=1

N

WC�Sk1
A + Sk2

A � , �2�

where the symbol ��Si
A� stands for the summation over all

available spin configurations on the sublattice A and the first
�second� product is performed over all decorating spins SB
�SC� occupying the horizontal �vertical� bonds. Furthermore,
the function W��x�, which depends on two vertex spins Si1

A

and Si2
A from the sublattice A coupled indirectly via the ith

decorating spin, marks the expression

W��x� = �
n=−S�

+S�

exp��D�n2�cosh��JA�nx� , �3�

where �=B or C and �=1/ �kBT�, with kB the Boltzmann
constant and T the absolute temperature.

In order to proceed further with calculation, the general-
ized decoration-iteration mapping transformation28 can be
now employed,

W��Si1
A + Si2

A� = A� exp��R�Si1
ASi2

A�, � = B or C. �4�

The physical meaning of the mapping �4� is to remove all
interaction parameters associated with one decorating spin
�SB or SC� and to replace them by a new effective interaction
�RB or RC� between the remaining vertex spins Si1

A and Si2
A. It

is worthwhile to remark that a self-consistency condition of
the mapping relation �4� unambiguously determines both un-
known mapping parameters A� and R�, since it must hold
independently of the spin states of both vertex spins included
in this transformation. As a matter of fact, the direct substi-
tution of four possible spin combinations of two vertex spins
Si1

A and Si2
A indeed gives just two independent equations from

formula �4�, which subsequently unambiguously determine
the mapping parameters A� and R�,

A� = �W��1�W��0��1/2, � = B or C, �5�

�R� = 2 ln�W��1�/W��0��, � = B or C. �6�

At this stage, let us substitute transformation �4� into expres-
sion �2� in order to gain the relation

Z��,JAB,JAC,DB,DC� = AB
NAC

NZ0��RB,�RC� , �7�

which relates the partition function Z of the mixed-spin Ising
model on the decorated lattice with the partition function Z0
of the undecorated spin-1 /2 Ising model on the anisotropic
square �rectangular� lattice with two different nearest-
neighbor couplings RB and RC in the horizontal and vertical
directions, respectively. Nevertheless, it should be mentioned
here that the mapping relation �7� between both the partition
functions represents a central result of our calculation, since
it formally completes an exact solution of the partition func-
tion Z with regard to the known exact result for the partition
function Z0 of the spin-1 /2 Ising model on the rectangu-
lar lattice2 given by the effective Hamiltonian H0
=−RB��i,j�

horizSi
ASj

A−RC��k,l�
vertSk

ASl
A.

Now, we turn to the calculation of the sublattice magne-
tization. With the help of commonly used mapping
theorems,39 one easily proves a validity of the following re-
lation for the spontaneous magnetization mA of the sublattice
A:

mA 	 
Si
A� = 
Si

A�0 	 m0, �8�

where the symbols 
¯� and 
¯�0 denote canonical ensemble
averaging performed within the decorated and its corre-
sponding undecorated model system, respectively. Appar-
ently, the sublattice magnetization mA directly equals the
magnetization m0 of the corresponding spin-1 /2 Ising model
on the rectangular lattice with the effective horizontal and
vertical coupling constants given by Eq. �6�. When taking
into account the exact result of Potts and Chang40 for the
spontaneous magnetization of the spin-1 /2 Ising model on
the rectangular lattice, it is possible to write the following
expression for the sublattice magnetization mA:

mA =
1

2
�1 − sinh−2�RB

2
�sinh−2�RC

2
��1/8

, �9�

or equivalently,

mA =
1

2�1 −
16WB

2 �1�WB
2 �0�WC

2 �1�WC
2 �0�

�WB
2 �1� − WB

2 �0��2�WC
2 �1� − WC

2 �0��2�1/8

.

�10�

Next, it is also of particular interest to derive exact expres-
sions for the spontaneous magnetization of the sublattices B
and C constituted by the higher decorating spins SB and SC,
respectively. For this purpose, the exact Callen-Suzuki41 spin
identity formulated generally for both kinds of decorating
spins can be successfully utilized,

m� = 
Si
�� =��

Si
�

Si
� exp�− �Hi�

�
Si

�

exp�− �Hi� � , �11�

in which �=B or C and the Hamiltonian Hi labels such a
part of the total Hamiltonian �1�, which contains all interac-
tion terms of one decorating spin Si

�. By making use of the
mapping relation �7� and the exact spin identity �11�, it can
be easily proved that the sublattice magnetizations mB and
mC satisfy the equality

m� = 
F��Si1
A + Si1

A��, � = B or C, �12�

where the function F��x� is defined as follows:

F��x� = −

�
n=−S�

S�

n exp��D�n2�sinh��JA�nx�

�
n=−S�

S�

exp��D�n2�cosh��JA�nx�

. �13�

By employing the differential operator technique37 together
with the exact van der Waerden identity exp�aSi

A�
=cosh�a /2�+2Si

A sinh�a /2� into Eq. �12�, one readily finds
that both the sublattice magnetizations mB and mC can be
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expressed solely as a function of the sublattice magnetization
mA, in fact,

m� = 
exp��Si1
A + Si1

A�d/dx��F��x� = 2mAF��1� . �14�

The above result completes an exact solution for the sublat-
tice magnetizations mB and mC in view of the formerly de-
rived exact result �Eq. �9�� or �Eq. �10�� for the sublattice
magnetization mA.

Finally, let us turn our attention to the critical behavior of
the model under investigation. It is quite obvious from Eq.
�14� that all sublattice magnetizations tend necessarily to
zero if and only if the sublattice magnetization mA goes to
zero. Accordingly, the critical temperature can be located
from the condition which is consistent with Onsager’s criti-
cal condition for the spin-1 /2 Ising model on the rectangular
lattice,2

sinh��cRB/2�sinh��cRC/2� = 1, �15�

where �c=1/ �kBTc� is being defined as the inverse critical
temperature in energy units, Tc denotes the critical tempera-
ture, and the effective coupling constants RB and RC are
given by Eq. �6�. It is also interesting to mention that the
critical temperature can be obtained from the alternate con-
dition, which is of course equivalent to condition �15�, but
without referring to the effective coupling constants of the
undecorated rectangular lattice. Expression �10� for the sub-
lattice magnetization mA indeed yields the following critical
condition:

��WB
c �1��2 − �WB

c �0��2���WC
c �1��2 − �WC

c �0��2�

= 4WB
c �1�WB

c �0�WC
c �1�WC

c �0� . �16�

The superscript in the aforementioned expressions means
that the inverse critical temperature �c enters into the rel-
evant expression �3� instead of �.

III. RESULTS AND DISCUSSION

Before proceeding to a discussion of the most interesting
results, let us make a few remarks on a validity of the results
to be obtained in the preceding section. Notice initially that
the obtained results are rather general; actually, they hold
regardless of whether ferromagnetic or antiferromagnetic in-
teractions JAB and JAC are considered, irrespective of the
value of the decorating spins �SB and SC� and even both the
single-ion anisotropy parameters DB and DC can be taken
independently of each other. It is noteworthy, however, that
several studies reported previously have already involved
some particular cases of the model under investigation. By
imposing SB=SC, JAB=JAC, and DB=DC, for instance, our
results reduce to those acquired for the mixed-spin Ising
model on a symmetrically decorated square lattice adapted to
study essential features of the ferrimagnetism.24 In the
present paper, we will therefore restrict our attention only to
the particular case with two different kinds of decorating
spins SB�SC. More specifically, one of the two decorating
spins �say, SB� is assumed to be integer valued, while the
other one �say, SC� is anticipated to be half-odd-integer. For
simplicity, another constraint introduced through an equality

between the single-ion anisotropy terms DB=DC=D will be
supposed in order to reduce the number of free parameters
involved in the model Hamiltonian �1�. Other particular
models in which both the decorating spins are integer or
half-odd-integer, respectively, will be explored in the subse-
quent separate works.42,43

First, let us take a closer look at the ground-state behavior.
In Fig. 2, the ground-state phase diagrams in the
D /JAB-JAC/JAB plane are depicted for two particular
models with �SA,SB,SC�= �1/2 ,1 ,3 /2� and �SA,SB,SC�
= �1/2 ,2 ,3 /2�. As one can see, the interaction parameters
JAB and JAC energetically favor the highest spin state of the
decorating spins SB and SC, respectively. Contrary to this, the
easy-plane single-ion anisotropy �D�0� has a tendency to
lower the spin states of the decorating atoms. An eventual
spin arrangement is thus determined by a mutual competition
between the exchange interactions and the single-ion aniso-
tropy. It is quite obvious in Fig. 2 that there is considerable
similarity between both the displayed phase diagrams. As a
matter of fact, the only difference consists in the phase
boundary that accompanies the transition 2↔1 of the spin-
SB atoms, which is of course missing in the first phase dia-
gram. Finally, it is worthy to note the general condition al-
locating ground-state phase boundaries associated with the
spin change S�↔S�−1,

DS�,S�−1

JA�

=
1

1 − 2S� , � = B or C. �17�

Next, let us investigate in detail the effect of the single-ion
anisotropy on the critical behavior of the considered model
system. For this purpose, we have plotted in Fig. 3 the finite-
temperature phase diagram in a form of the critical tempera-
ture vs single-ion anisotropy dependence for the two inves-
tigated spin systems. It should be pointed out that the unique

FIG. 2. Ground-state phase diagrams in the D /JAB-JAC/JAB

plane for two particular spin cases with �a� �SA,SB,SC�
= �1/2 ,1 ,3 /2� and �b� �SA,SB,SC�= �1/2 ,2 ,3 /2�. Round brackets
indicate spin order to emerge within different sectors of the phase
diagram of the pure ferrimagnetic model with JAB�0 and JAC�0.
Different symbols defined in the legend characterize a change in the
spin state that occurs at the displayed phase boundaries. Note that a
sign change in JAB �JAC� leads merely to a sign change in the spin
state of the spin-SB �SC� atoms. The hollow-square line represents
transitions between the ordered and disordered phases �for details,
see the text�.
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solution of the critical condition �15� �or equivalently Eq.
�16�� gives all the displayed phase boundaries, which conse-
quently represent the lines of second-order �continuous� tran-
sitions between the spontaneously ordered phases and disor-
dered �paramagnetic� phase. Furthermore, it is worth
noticing that the interaction parameters JAB and JAC enter
within the critical conditions �15� and �16� only into the ar-
guments of even functions. In this regard, the depicted phase
boundaries remain in force irrespective of a sign of the in-
teraction parameters JAB and JAC, which means that the same
phase boundaries hold regardless of whether the pure ferri-
magnetic, the mixed ferro-ferrimagnetic, or even the pure
ferromagnetic system is considered.

The most striking finding resulting from the finite-
temperature phase diagram shown in Fig. 3 is that the lines
of phase transitions do not reach zero temperature at the
boundary value of the single-ion anisotropy D1,0 /JAB=−1,
which is sufficiently strong to bring all the integer-valued
decorating spins SB into their “nonmagnetic” spin state SB

=0. Namely, one would intuitively expect that all the phases
with the nonmagnetic decorating spins SB �i.e., the phases
appearing in Fig. 2 in the parameter space where D�D1,0�
should be, in fact, disordered due to their “quasi-one-
dimensional” �quasi-1D� character. In the zero-temperature
limit, one actually finds that the effective coupling constant
�RB substituting the integer-valued decorating spins SB tends
to zero; however, the effective coupling constant �RC substi-
tuting the half-odd-integer decorating spins SC tends to infin-
ity. In the consequence of that, the 2D decorated mixed-spin
system indeed behaves as the quasi-1D spin system, since it
effectively splits into a set of the independent mixed-spin-
�SA,SC� Ising chains. On the other hand, one should bear in
mind that the system is spontaneously long-range ordered if
and only if sinh��RB/2�sinh��RC/2��1, while it becomes
disordered just as sinh��RB/2�sinh��RC/2��1 in accord
with the critical condition �15�. In the limit of zero tempera-
ture, it can be easily verified that

lim
T→0

�sinh�RB

2
�sinh�RC

2
��

= �� if D � − JAB −
1

2
JAC

0 if D � − JAB −
1

2
JAC,�

which means that the threshold single-ion anisotropy below
which the system becomes disordered �at zero as well as any
nonzero temperature� is given by the constraint Do−d=−JAB

− 1
2JAC. This nontrivial phase boundary, which cannot be ob-

tained from simple energetic arguments, is depicted in the
ground-state phase diagram �Fig. 2� as a hollow-square line.
This result straightforwardly proves that all the phases ap-
pearing above this order-disorder line are at sufficiently low
temperatures spontaneously long-range ordered in spite of
their quasi-1D nature. In agreement with the aforementioned
arguments, the nonzero critical temperatures to be observed
in the parameter space where D�D1,0 manifest the order-
disorder transition between the spontaneously ordered phase
and the disordered phase even though all the spin-SB atoms
reside in the ground state of the ordered phase the nonmag-
netic state SB=0 �see Fig. 3�. In this respect, the part of
second-order phase transition lines starting at D=−JAB and
terminating at D=−JAB− 1

2JAC �cf. Figs. 2 and 3� can be iden-
tified as the critical line at which the spontaneous long-range
order of the quasi-1D spin systems disappears.

In order to provide an independent check of the aforemen-
tioned scenario, the total and sublattice magnetizations will
be analyzed in detail for the decorated model with
�SA,SB,SC�= �1/2 ,1 ,3 /2�. Before starting our further analy-
sis, it is worthwhile to mention that this spin system exhibits
all generic features of the models with other decorating spin
values, as well. The total magnetization mT= �mA+mB+mC�
reduced per one atom of the sublattice A is shown in Fig. 4
for the pure ferrimagnetic system with JAB�0, JAC�0 �Fig.

FIG. 3. Critical temperature as a function of the single-ion an-
isotropy for several values of the ratio �JAC � / �JAB� in two investi-
gated spin systems with �a� �SA,SB,SC�= �1/2 ,1 ,3 /2� and �b�
�SA,SB,SC�= �1/2 ,2 ,3 /2�. Different symbols characterize the same
spin transition as explained in the legend of the ground-state phase
diagram shown in Fig. 2. Broken lines connecting different spin
transitions are guides for the eyes only.

FIG. 4. Temperature dependences of the total magnetization for
the decorated mixed-spin system with �SA,SB,SC�= �1/2 ,1 ,3 /2�
when the ratio �JAC � /JAB=1.0 is fixed and the single-ion anisotropy
strength D /JAB varies. �a� shows the situation in the pure ferrimag-
netic system with the exchange constants JAB�0 and JAC�0,
whereas �b� corresponds to the mixed ferro-ferrimagnetic system
with JAB�0 and JAC�0. Different line styles correspond to differ-
ent phases.
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4�a�� and the mixed ferro-ferrimagnetic system with JAB
�0, JAC�0 �Fig. 4�b��. Note that different line styles are
used to distinguish between different spin orderings to
emerge in the zero-temperature limit �ground state�. Since
the sign change in JAC leads merely to the sign change in the
sublattice magnetization mC �mC is an odd function of JAC�,
all temperature variations of the total magnetization can be
explained via the same temperature variations of the sublat-
tice magnetization.

For this reason, we depict in Fig. 5 all three sublattice
magnetizations as a function of the temperature for those
particular values of the single-ion anisotropy for which the
most significant thermal variations of the total magnetization
occur. It is quite apparent in Fig. 5�a� that a steep decrease in
the total magnetization of the ferrimagnetic system to be
observed at D /JAB=−0.45 can be explained through the vig-
orous thermal excitations 3

2 → 1
2 of the decorating spins SC,

which can be clearly seen in the temperature dependence of
the sublattice magnetization mC. On the other hand, the op-
posite thermal excitations 1

2 → 3
2 are responsible for a rapid

increase of the sublattice magnetization mC �see, for instance,
the case D /JAB=−0.55 shown in Fig. 5�b��, which in turn
causes a gradual temperature-induced increase of the total
magnetization. As far as the mixed ferro-ferrimagnetic sys-
tem with JAB�0 and JAC�0 is concerned, the initial de-
crease in the total magnetization at D /JAB=−0.45 can be
again attributed to the vigorous thermal excitations 3

2 → 1
2 of

the decorating spins SC. However, it is easy to observe in
Fig. 5�a� that the thermal excitations of the decorating spins
SB overwhelm in the region of moderate temperatures �i.e.,
the sublattice magnetization mB declines more rapidly with
increasing temperature than the sublattice magnetization
mC�, which consequently leads to a slight increase of the
total magnetization in the mixed ferro-ferrimagnetic system
�remember that the sublattice magnetization mB is now ori-
ented opposite to the sublattice magnetizations mA and mC�.
At D /JAB=−0.55, the total magnetization of the ferro-
ferrimagnetic system starts from zero because the sublattice

magnetizations mB effectively cancels out both the sublattice
magnetizations mA and mC. The observed temperature-
induced increase of the total magnetization can be mainly
related to the thermal excitations 1

2 → 3
2 of the decorating

spins SC, which are reflected in the temperature-induced in-
crease of the sublattice magnetization mC.

Other notable temperature dependences of the total mag-
netization occur in the vicinity of the boundary value
D1,0 /JAB=−1 at which the decorating spins SB change their
spin state. As a result, the relatively sharp decrease of the
sublattice magnetization mB to be observed at D /JAB=−0.9
leads in the ferrimagnetic system to the relevant decrease of
the total magnetization �Fig. 4�a��, while in the mixed ferro-
ferrimagnetic system �Fig. 4�b�� it is responsible for an ef-
fective increase of the total magnetization since the sublat-
tice magnetizations mA and mC are almost completely
independent of temperature �Fig. 5�c��. Last but not least, the
most interesting temperature dependences of the total mag-
netization could be expected in the parameter space, where
the 2D decorated mixed-spin system should effectively be-
have as the quasi-1D system. Figure 5�d� shows the sublat-
tice magnetization for the particular value of single-ion an-
isotropy D /JAB=−1.1, which is sufficiently strong to force
all the integer-valued decorating spins SB toward their non-
magnetic state SB=0 at zero temperature. As one can see in
this figure, the sublattice magnetization mB indeed starts
from zero in agreement with our expectations and it is
merely the effect of temperature that causes a steady rise of
the sublattice magnetization mB on behalf of promoting the
0→1 excitations of the decorating spins SB. Altogether, it
might be concluded that in the ferrimagnetic system the
shape of temperature dependence of the total magnetization
is almost entirely determined by the sublattice magnetization
mB �the sublattice magnetizations mA and mC almost com-
pletely cancel out�, while in the mixed ferro-ferrimagnetic
system the rising magnetization mB lowers the mutual con-
tribution of the sublattice magnetizations mA and mC to the
total magnetization.

FIG. 5. The absolute value of the sublattice
magnetizations mA �dotted lines�, mB �solid
lines�, and mC �dashed lines� for �JAC � /JAB=1
and several values of the single-ion anisotropy
parameter: �a� D /JAB=−0.45, �b� −0.55, �c� −0.9,
and �d� −1.1.
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IV. CONCLUDING REMARKS

In the present paper, the generalized decoration-iteration
mapping transformation has been utilized to obtain an exact
solution of the mixed-spin-�SA,SB,SC� Ising model on the
decorated square lattice with the two different kinds of deco-
rating spins SB and SC placed on its horizontal and vertical
bonds, respectively. Within the framework of this exact
method, the sought exact solution for the model under inves-
tigation has been attained by establishing a simple mapping
relationship with the corresponding spin-1 /2 Ising model on
the anisotropic square �rectangular� lattice whose exact solu-
tion is known since Onsager’s pioneering work.2 In addition,
the applied transformation method is of immense practical
importance, since this method is rather general and it enables
further interesting extensions. Actually, it is quite straightfor-
ward to extend the applied procedure to account for �i� the
interaction between the next-nearest-neighboring spins SA,
�ii� the multispin interaction between the decorating spins
and their nearest neighbors, �iii� the biaxial single-ion aniso-
tropy acting on the decorating sites, �iv� other decorated lat-
tices such as decorated honeycomb or triangular lattices with
�two or even three� different decorating spins, �v� decorated
lattices with two or more decorating spins per one bond, etc.
It is noteworthy, moreover, that the applied method is, in
principle, applicable also to three-dimensional �3D� deco-
rated lattices, but unfortunately we cannot present an exact
solution of the 3D decorated models because of the unknown
exact solution of the corresponding spin-1 /2 Ising model on
the 3D lattice �however, some results with a high numerical
accuracy are available even for 3D lattices44�.

The most interesting result to emerge from the present
study consists in providing an exact evidence for the sponta-
neous long-range order, which surprisingly appears in the 2D
decorated spin system in spite of its “quasi-1D” character. As
a matter of fact, we have found a convincing evidence that
the 2D decorated spin system remains spontaneously long-
range ordered even if all the integer-valued decorating spins
SB are driven by a sufficiently strong �but not too strong�
single-ion anisotropy toward their “nonmagnetic” state SB

=0 and the system becomes quasi-1D due to the effective
splitting into a set of independent mixed-spin-�SA,SC�
chains. This finding has obvious relevance to the understand-
ing of the quasi-1D spin systems prone to spontaneous long-
range ordering below some critical temperature, which nec-
essarily need not arise from interactions establishing 3D
connectivity �3D magnetic lattice�, but it may represent an
inherent feature of the quasi-1D system. It is worthwhile to
remark that this outstanding feature cannot be found in the
decorated spin system with both the half-odd-integer deco-
rating spins SB and SC,43 while it might be found in the
decorated spin system with both the integer-valued decorat-
ing spins SB and SC provided that they are coupled to the
vertex spins SA through two different exchange interactions
JAB�JAC, respectively.42 From this point of view, the deco-

rated spin system with the integer and half-odd-integer deco-
rating spins SB and SC exhibits the spontaneous ordering re-
lated to an appearance of the quasi-1D spin system the most
naturally, and hence, this exactly solved model would be of
major importance if some experimental realization of it
would confirm an appearance of the spontaneous ordering
�and consequently nontrivial criticality� notwithstanding of
its quasi-1D character.

Although the Ising model description may not be fully
realistic for true magnetic materials, it is quite reasonable to
expect that the exact solution of this simplified model illus-
trates many important vestiges of the real critical behavior.
Besides, the exact solution may also bring other valuable
insights into the thermodynamical properties �magnetization,
entropy, specific heat� of real magnetic materials without be-
ing affected by any crude and/or uncontrollable approxima-
tions. According to this, the main stimulus for the study of
the mixed-spin-�SA,SB,SC� Ising model on the anisotropi-
cally decorated square lattice can be viewed in connection
with possible experimental realization of this remarkable and
rather curious magnetic lattice. It is therefore of particular
interest to mention that polymeric compounds, which have
the decorated square network assembly as the magnetic
lattice, have been rather frequently prepared in an attempt
to design novel bimetallic coordination compounds.
The magnetic structure of the decorated square lattice
is indeed peculiarity of two numerous series of
polymeric coordination compounds with the general
formula �Ni�L�2�2�Fe�CN�6�X ·nH2O �Ref. 45� and
A�MB�L��2�MA�CN�6� ·nH2O �MA=Fe,Mn,Cr,Co; MB

=Mn,Fe�.46 In the former series, the magnetic Fe3+ �SA

=1/2� ions reside on the square lattice sites and Ni2+ �SB

=1� ions decorate each its bond, while in the latter series the
high-spin MB

3+ ions such as Mn3+ �SB=2� or Fe3+ �SB=5/2�
occupy the decorating sites and the low-spin MA

3+ ions such
as Fe3+ �SA=1/2�, Mn3+ �SA=1�, or Cr3+ �SA=3/2� reside on
the square lattice sites. Even though we are not aware of any
trimetallic polymeric compound whose network assembly
would consist of two different kinds of magnetic metal ions
�decorating spins SB�SC� placed on the square net made up
by the third magnetic metal ion �vertex spin SA�, the vast
number of the bimetallic coordination compounds from the
aforementioned series give us hope that a targeted synthesis
of such trimetallic compound �tailored from two structural
derivatives with different decorating magnetic ions� could be
successfully accomplished in the near future.
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