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We have studied the phase diagram of the one-dimensional S= 1
2 XXZ model with ferromagnetic nearest-

neighbor and antiferromagnetic next-nearest-neighbor interactions. We have applied the quantum renormaliza-
tion group �QRG� approach to obtain stable fixed points and the scaling of coupling constants. The QRG
prescription has to be implemented to the second order of interblock interactions to obtain a self-similar
Hamiltonian after each step of the QRG. This model shows a rich phase diagram which includes quantum
spin-fluid and dimer phases in addition to the classical Néel and ferromagnetic ones. We have found the border
between different phases by tracing the scaling of coupling constants.
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I. INTRODUCTION

There is currently much interest in quantum spin systems
that exhibit frustrations. This has been simulated in particular
by study of the magnetic properties of the cuprates which
become high-Tc superconductors when doped. Frustrated
spin systems are known to have many interesting properties
which are quite different from those of conventional mag-
netic systems.

The Heisenberg spin-1
2 chain with nearest-neighbor �NN�

and next-nearest-neighbor �NNN� interactions �which is
equivalent to a zigzag ladder� is a typical model with frus-
trations. In recent years, several interesting quasi-one-
dimensional magnetic systems have been studied
experimentally.1–3 Among them, some compounds contain-
ing CuO chains with edge-sharing CuO4 plaquettes were ex-
pected to be described by the XXZ model with next-nearest-
neighbor interactions. The nearest-neighbor �Cu-Cu� spin
interaction changes from antiferromagnetic �AFM� to ferro-
magnetic �FM�, as the angle � of the Cu-O-Cu bound ap-
proaches 90°. The next-nearest-neighbor interaction is al-
ways AFM and is not dependent on �.4 Several compounds
with edge-sharing chains are known, such as Li2CuO2,
La6Ca8Cu21O41, Ca2Y2Cu5O10, and Rb2Cu2Mo3O12, which
can be considered as an ideal model compounds with the
ferromagnetic NN interactions and antiferromagnetic NNN
interactions.5,6

The general Hamiltonian of such models on a periodic
chain of N sites is

H =
J

4��
i=1

N

��i
x�i+1

x + �i
y�i+1

y + ��i
z�i+1

z �

+ �
i=1

N

J2��i
x�i+2

x + �i
y�i+2

y + ��i
z�i+2

z �� , �1�

where J and J2 are the first- and second-nearest-neighbor
exchange couplings and the corresponding easy-axis
anisotropies are defined by � and �2=J2�. For a chain of
only NN interactions �J2=0� the ground-state properties are

well known from the Bethe ansatz.7 Adding the NNN inter-
action will change the ground-state behavior. The case of
positive coupling constants �J, J2, �, ��0� has been
investigated by several authors.8–18 In particular, it has
been shown that a transition from a gapless state to a dimer-
ized one takes place at �J2=0.24, �=�=1�.8 The point
�J2= 1

2 , �=�=1� corresponds to the well-known Majumdar-
Ghosh model where the exact ground state is constructed
from the direct products of dimers which leads to a gapful
phase.10

Relatively less is known about the model with ferromag-
netic NN �J�0� and antiferromagnetic NNN �JJ2�0� inter-
actions. Though this model has been a subject of many
studies,15–26 a complete picture of the phases in this model is
still being sought.21 It is well known that there is a critical
point �J2= 1

4 , �=−�=−1� where the ferromagnetic state is
unstable and the ground state is nontrivial at J2�

1
4 which

can be realized by different phases.22 Moreover, the exact
ground state can be represented in the resonating valence
bound state �RVB�.23,24 This state has been proposed as a
candidate for the spin-liquid ground state.27 One of the most
important and open questions is the possibility of the spon-
taneous dimerization of the system in the singlet phase ac-
companied by a gap in the spectrum.25 A controversial con-
clusion exists about the presence of a gap at J2�

1
4 . It has

long been believed that the model is gapless13,26 but one-loop
renormalization group analysis shows15,28 that the gap opens
due to a Lorentz-symmetry-breaking perturbation. However,
the presence of a gap is not obvious from the numerical data,
because the excitation energy values fit to 1

N �N is the chain
length� which is evidence for a gapless behavior.15 On the
basis of field theory considerations it was proposed16 that a
very tiny but finite gap exists which cannot be observed nu-
merically.

We have considered the one-dimensional anisotropic
S= 1

2 Heisenberg model with ferromagnetic NN and antifer-
romagnetic NNN interactions by implementing the quantum
renormalization group �QRG� method. We have calculated
the effective Hamiltonian up to second-order corrections. A
second-order correction is necessary to be taken into account
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to obtain a self-similar Hamiltonian after each step of the
QRG. In this approach, we have considered the effect of
whole states of the block Hamiltonian which are partially
ignored in the first-order approach. The present scheme al-
lows us to have analytic RG equations, which give a better
understanding of the behavior of the system by the scaling of
coupling constants. We have succeeded in obtaining a phase
diagram in good qualitative agreement with the numerical
ones.17

We have previously studied the antiferromagnetic model
�J�0, J2�0� in Eq. �1� for ��0 by the QRG method.14 For
0���1 the interplay of the two competing terms �NN and
NNN� in the presence of quantum fluctuations produces the
dimer phase for J2�J2

c�� ,�2�. The dimer or spin Peierls
phase has a spin gap and a broken translation symmetry �the
unit cell is doubled� in the thermodynamic limit. However,
we have determined the fluid-dimer phase transition by using
the scaling of couplings under the RG �see Fig. 3 of Ref. 14
or the complete phase diagram presented in Fig. 3 in this
article�. In the spin-fluid phase, the anisotropy and next-
nearest-neighbor couplings are irrelevant while in the dimer
phase they run to the triple point ��2

*=J2
*�0.155, �*=1�.

From a quantitative point of view at �=0 the RG analysis
gives J2

c �0.44 which can be compared with the numerical
result of J2

c �0.33 presented in Ref. 9. The Néel phase ap-
pears just by crossing the �=1 plane at �2=0 and J2=0. In
the �2=0 plane and for ��1, the model will pass through a
phase transition from Néel to dimer phase for J2�J2

c���. The
Néel order is also broken by increasing the anisotropy of the
NNN interaction.

In this paper we will complete the phase diagram of this
model for the whole range of parameters. We intend to con-
sider the XXZ model with ferromagnetic NN �J�0� and an-
tiferromagnetic NNN �JJ2�0� interactions which can be ful-
filled by extending the phase diagram to J�0 and JJ2�0.
To do so, we simply make the following rotation which maps
the ferromagnetic case �J�0, ��0� to the antiferromagnetic
one �J�0� with negative anisotropy ���0�. The other cou-
plings in Eq. �1� �J2, �� remain unchanged. If we implement
a 	 rotation around the z axis for the even sites and leave the
odd sites unchanged, the Hamiltonian �with J�0 and
JJ2�0� is transformed into the following form:

H =
J

4��
i=1

N

��i
x�i+1

x + �i
y�i+1

y − ��i
z�i+1

z � + �
i=1

N

J2��i
x�i+2

x

+ �i
y�i+2

y + ��i
z�i+2

z ��, J,J2,�,� � 0. �2�

The QRG procedure is implemented on the rotated Hamil-
tonian �Eq. �2�� which makes the calculations easier. How-
ever, the phase diagram and other figures presented in this
article are based on the couplings defined in Eq. �1� where
negative NN anisotropy ���0� corresponds to the ferromag-
netic NN case �J�0�.

The QRG approach will be explained in the next section
where the second-order effective Hamiltonian and the renor-
malization of the coupling constants are obtained. In Sec. III,
we will present the phase diagram and its characteristics

where a comparison with numerical results is done.17 Finally,
we summarize our results.

II. RG EQUATIONS

The main idea of the QRG method is the mode elimina-
tion or thinning of the degrees of freedom followed by an
iteration which reduces the number of variables step by step
until a more manageable situation is reached. We have
implemented Kadanoff’s block method for this purpose, be-
cause it is well suited to perform analytical calculations in
the lattice models and it is conceptually easy to extend to
higher dimensions.29–32 In Kadanoff’s method, the lattice is
divided into blocks where the Hamiltonian is exactly diago-
nalized. By selecting a number of low-lying eigenstates of
the blocks the full Hamiltonian is projected onto these eigen-
states which gives the effective �renormalized� Hamiltonian.
The effective Hamiltonian up to second-order corrections
is14,29,30

Hef f = H0
ef f + H1

ef f + H2
ef f ,

H0
ef f = P0HBP0, H1

ef f = P0HBBP0,

H2
ef f = P0	HBB�1 − P0�

1

E0 − HB �1 − P0�HBB
P0.

We have applied the mentioned scheme to the Hamil-
tonian defined in Eq. �2�. We have considered a three-site
block procedure defined in Fig. 1. The block Hamiltonian
�HB=�hI

B� of the three sites and its eigenstates and eigenval-
ues are given in Appendix A. The three-site block Hamil-
tonian has four doubly degenerate eigenvalues �see Appendix
A�. P0 is the projection operator of the ground-state subspace
which is defined by

P0 = � ⇑ �
0� + � ⇓ �
0�� . �3�

In Eq. �3�, �
0� and �
0�� are doubly degenerate ground states
which are explicitly represented in Appendix A. Moreover,
�⇑ � and �⇓ � are the renamed base kets which define the
Hilbert space of the renormalized �new� site after the QRG
step. We have kept two states ��
0� and �
0��� for each block
to define the effective �new� site. Thus, the effective site can
be considered as a spin 1/2. Due to the level crossing which
occurs for the eigenstates of the block Hamiltonian, the pro-
jection operator �P0� can be different depending on the cou-
pling constants. Therefore, we must specify the regions with

J J J JJJ JJ

'
J

'
J

effH

H

FIG. 1. �Color online� The decomposition of a chain into a
three-site block Hamiltonian �HB� and interblock Hamiltonian
�HBB�.
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the corresponding ground states. The eigenvalues of the
block Hamiltonian are labeled by e0, e1, e2, and e3 �see Ap-
pendix A�. In the following, we will classify the regions
where each of this states represent the ground state. A sum-
mary of this information is given in Fig. 4 in Appendix A.

A. Region (A): e0 as the ground-state energy

In this region the effective Hamiltonian in the first-order
correction leads to an XXZ chain without the NNN interac-
tion �J2�=0�; i.e., the effective Hamiltonian is not exactly
similar to the initial one. The NNN interaction is the result of
the second-order correction. When the second-order correc-
tion is added to the effective Hamiltonian, the renormalized
Hamiltonian, apart from an additive constant, is similar to
Eq. �2� with the renormalized couplings. Thus, the effective
Hamiltonian including the second-order correction for
��0 is

Hef f =
J�

4 	�
i

N/3

��i
x�i+1

x + �i
y�i+1

y � − ����i
z�i+1

z �

+ �
i

N/3

J2���i
x�i+2

x + �i
y�i+2

y � + �2���i
z�i+2

z �
 .

The renormalized coupling constants are functions of the
original ones which are given in Appendix B.

B. Region (B): e2 as the ground-state energy

The second-order effective Hamiltonian is similar to the
case of region �A� with different coupling constants given in
Appendix C. A note is in order here: although the second-
order correction is necessary to produce the NNN interaction
in the effective Hamiltonian, the initial values of J2=0 and

�2=0 do not produce NNN interactions. It is different from
the RG flow obtained in region �A�.

C. Region (C): e3 as the ground-state energy

In this region the effective Hamiltonian to the second-
order corrections leads to the Ising model

Hef f =
1

4	�
i

N/3

− ����i
z�i+1

z �
 , �4�

where

�� = J�� + 2�2� +
J2

4
	� 1

e3 − e0
�� 1

2 + q2��1 + 2J2q�2

+ � 1

e3 − e1
�� 1

2 + p2��1 + 2J2p�2 + � 1

e3 − e2
��1

2
�2


+ J2	� 1

2e3 − e1 − e0
�� 1

2 + q2�� 1

2 + p2��1 + 2J2�p

+ q��2 + � 1

2e3 − e2 − e0
�� 1

2 + q2��1

2
��1 + 2J2q�2

+ � 1

2e3 − e2 − e1
�� 1

2 + p2��1

2
��1 + 2J2p�2
 .

This simply introduces the ferromagnetic behavior. We will
discuss the phase diagram in terms of different regions de-
fined above in the following section.

III. PHASE DIAGRAM

A. Region (A)

In the ��0 case, the RG equation shows scaling of J to
zero which represents the renormalization of the energy
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FIG. 2. �Color online� The cross section of the three-dimensional phase diagram for ��0. �a� The crossed plane is �2=J2� and �b�
�2=0.
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scale. We have plotted the RG flow and different phases in
Fig. 2. The solid line is the boundary between dimer �II�
phase and spin-fluid �I� phase. If we start from the spin-fluid
�I� phase or dimer �II� phase, the sign of NN anisotropy ���
changes under the RG after few steps. However, in the dimer
�II� phase the amount of NNN coupling �J2� is greater than
0.44 just when the anisotropy changes sign, while in the
spin-fluid �I� phase it is less than 0.44. In other words, in the
dimer �II� phase the RG flow goes to the triple point
��2

*=J2
*�0.155, �*=1� �solid circle in Fig. 3� while it goes

to the �=J2=�2=0 fixed point starting from the spin-fluid
�I� phase. The spin-fluid �I� phase is represented by the NN
XXspin-1/2 Hamiltonian in the stable fixed point,

Hspin fluid�I�
* = �

i

��i
x�i+1

x + �i
y�i+1

y � , �5�

while the corresponding fixed-point Hamiltonian for the
dimer �II� phase is

Hdimer�II�
* = �

i

��i
x�i+1

x + �i
y�i+1

y + �i
z�i+1

z �

+ J2
*�
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��i
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y + �i
z�i+2

z � . �6�

In Figs. 2�a� and 2�b� the black arrows show the scaling of
couplings under the RG. In the region denoted by � , al-
though e0 is the ground-state energy, the behavior of the
couplings constant is not the same as the couplings in the
dimer �II� phase. In this region ��� the coupling constants go
to the spin-fluid �III� phase. It means that the region denoted
by � and spin-fluid �III� are a unique phase. The spin-fluid
�III� phase is represented by two isolated chains with NN XX
interactions. The two chains are composed by odd and even
sites of the original Hamiltonian where the NN interaction
between odd and even ones has been scaled to zero and only
the NNN interaction between odd or even sites remains fi-
nite. The fixed point of spin-fluid �III� can be represented by

the following Hamiltonian where the site index �i=2m or
2m+1, m is any integer� refers to the original chain:

Hspin fluid�III�
* = �

i

��i
x�i+2

x + �i
y�i+2

y � . �7�

The authors in Ref. 17 were not able to specify the phase of
this region numerically. We denote the boundary between the
spin-fluid �III� and both dimer �II� and spin-fluid �I� phases
by long-dashed lines. The dashed line behind the arrows is
not a phase boundary and just represents the two regions
with different ground states �see Appendix A�.

It is known that on the �2=J2� plane and �=−1 there is
a fixed point: namely, �=−1, J2=0.25.23,24 However, our ap-
proach is not able to show this fixed point because this is on
the plane which is separated by spin-fluid �I� and ferromag-
netic phases where the level crossing occurs. Instead, close
to the �=−1 line ���−1� we found the critical value of
J2

c =0.28 which distinguishes the spin-fluid �I� and spin-fluid
�III� phases.

B. Region (B)

In this region the NNN interactions are greater than NN
interactions. The implementation of bosonization technique
combined with a mean-field analysis in Ref. 28 predicted
that for the �2=J2� plane and �=0, the system might ex-
hibit a chiral-ordered phase with gapless excitations where
J2�J2

c =1.26. The predicted critical value �J2
c� is in good

agreement with the numerical density matrix renormalization
group result.18 Our approach shows that all coupling con-
stants are irrelevant except J2 and �2. For −1���0 the
ratio of �2 /J2 goes to zero, and for ��−1 this ratio goes to
infinity. It means that in the fixed point of this region the
original spin chain decouples to two XXZ chains without
next-nearest-neighbor interactions where the lattice spacing
is doubled. For −1���0, the model is in the spin-fluid �III�
phase ��2=0� which is specified in Fig. 2 and represented by
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FIG. 3. �Color online� The projection of the complete phase diagram on the �2=J2� plane in �a� and on the �2=0 plane in �b�.
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the fixed-point Hamiltonian, Eq. �7�. The spin-fluid �III�
phase is different from the spin-fluid �I� phase according to
their stable fixed points. The stable fixed point for the spin-
fluid �I� phase is J2=0, �2=0 and �=0 while for the spin-
fluid �III� phase all couplings are zero except J2. Note that
the level crossing of e0 and e2 does not define the border
between spin-fluid �III� and dimer �II� phases. This border is
defined by the scaling of couplings under RG equations. For
��−1 the model is in the antiferromagnetic phases. In this
case the model is decoupled to two antiferromagnetic Ising
chains. Thus the ground state is long-range antiferromagnetic
ordered �↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓¯ �.

C. Region (C)

As we pointed out in Sec. II C, even after adding second-
order corrections, the original Hamiltonian is mapped to the
ferromagnetic Ising model �Eq. �4��. The Ising model re-
mains unchanged under the RG because it is a fixed point
and its properties are well known. We call this region as the
ferromagnetic phase.

IV. SUMMARY AND DISCUSSIONS

We mapped the one-dimensional ferromagnetic NN and
antiferromagnetic NNN S= 1

2 XXZ model to the antiferro-
magnetic model in Eq. �2� with negative anisotropy. We have
implemented the second-order QRG procedure to obtain the
phase diagram of this model. The complete phase diagram
which also covers the positive anisotropy region is presented
in Fig. 3. This is a cross section of the phase diagram with
�2=J2� plane in Fig. 3�a� and with �2=0 plane in Fig. 3�b�.
For −0.5���1 �on the �2=J2� plane�, when J2 is smaller
than the critical value �J2

c�, the system is in the gapless spin-
fluid �I� phase. By contrast, for larger value of J2�J2

c the
system is in the dimer phase with a finite energy gap above
the doubly degenerate ground states �the transition is denoted
by solid line�. As J2 increases, the system exhibits a transi-
tion from the dimer phase to the spin-fluid �III� phase which
is called the gapless chiral phase in Ref. 18. The transition is
denoted by the long-dashed line in the phase diagram. The
transition takes place at J2

c =1 for �=0, in qualitative agree-
ment with J2

c =1.26 of Ref. 18. For −1���−0.5 �on the
�2=J2� plane� at J2

c a transition occurs from the spin-fluid�I�
to spin-fluid �III� �chiral order� phases. The QRG equations
for ��−1 shows a critical line �long-dashed line� which
separates the spin-fluid �I� and spin-fluid �III� phases
without an intermediate region. Thus, we claim that for
J2�J2

c =0.28 there is no gap and the model is not in the
dimer phase. The model is in the ferromagnetic phase where
��−1 and small J2. The phase transition to the long-range
antiferremagnetic phase takes place at J2�J2

c �dash-double-
dotted line�. In the case of ��1, a transition from the Néel
�VI� phase to the dimer phase occurs as J2 increases �solid
line�. The dimer phase is unstable by increasing J2 further
which leads to a transition to the antiferromagnetic �AF�III��
phase �long-dashed line�. However, the comparison of Fig.
3�a� with 3�b� shows that the anisotropy of the NNN term
��2� changes the phase diagram significantly. From the pa-

rameters estimated for several compounds near the isotropic
limit ��=1, �2=J2��, La6Ca8Cu21O41 �J2

c =0.36�, Li2CuO2

�J2
c =0.62�, and Ca2Y2Cu5O10 �J2

c =2.2�,4 our results predict
for ��−1 that all of them are in the chiral order phase
�spin-fluid �III�� without a gap, and for ��−1,
La6Ca8Cu21O41 is in the ferromagnetic phase and Li2CuO2
and Ca2Y2Cu5O10 are in long-range antiferromagnetic order.

ACKNOWLEDGMENTS

The authors would like to thank M. R. H. Khajehpour for
a careful reading of the manuscript and fruitful discussions.
This work was partially supported by the Center for Excel-
lence in Complex Systems and Condensed Matter at Sharif
University of Technology.

APPENDIX A: THE BLOCK-HAMILTONIAN OF THREE
SITES AND ITS EIGENVECTORS AND EIGENVALUES

We have considered the three-site block �Fig. 1� with the
following Hamiltonian:

hI
B =

J

4
���1,I

x �2,I
x + �2,I

x �3,I
x + �1,I

y �2,I
y + �2,I

y �3,I
y � − ���1,I

z �2,I
z

+ �2,I
z �3,I

z � + J2��1,I
x �3,I

x + �1,I
y �3,I

y � + �2��1,I
z �3,I

z �� ,

where � j,I
� refers to the � component of the Pauli matrix at

site j of the block labeled by I. The exact treatment of this
Hamiltonian leads to four distinct eigenvalues which are
doubly degenerate. The ground, first, second, and third
excited-state energies have the following expressions in
terms of the coupling constants:

�
0� =
1

�2 + q2
��↑↑↓� + q�↑↓↑� + �↓↑↑�� ,

�
0�� =
1

�2 + q2
��↑↓↓� + q�↓↑↓� + �↓↓↑��,

e0 =
J

4
�J2 + � − ��J2 − � − �2�2 + 8�,

�
1� =
1

�2 + p2
��↑↑↓� + p�↑↓↑� + �↓↑↑�� ,

�
1�� =
1

�2 + p2
��↑↓↓� + p�↓↑↓� + �↓↓↑��,

e1 =
J

4
�J2 + � + ��J2 − � − �2�2 + 8�,

�
2� =
1
�2

��↓↓↑� − �↑↓↓��, �
2�� =
1
�2

��↑↑↓� − �↓↑↑��,

e2 =
− J

4
�2J2 + �2�,
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�
3� = �↑↑↑�, �
3�� = �↓↓↓�,

e3 =
J

4
��2 − 2�� ,

where q and p are

q =
− 1

2
�J2 − � − �2 + ��J2 − � − �2�2 + 8� ,

p =
− 1

2
�J2 − � − �2 − ��J2 − � − �2�2 + 8� .

�↑ � and �↓ � are the eigenstates of �z.
In Fig. 4 we present the different regions where the speci-

fied state is the ground state of the block Hamiltonian. The
border between these regions is specified as a projection on
to a fixed plane. The projection on to the �2=J2���=��
plane is shown in Fig. 4�a� and the projection on to the
�2=0 plane is plotted in Fig. 4�b�.

APPENDIX B: THE RENORMALIZED COUPLING
CONSTANTS OF THE EFFECTIVE HAMILTONIAN IN

REGION (A)

The renormalization of coupling constants in region �A�
�see Fig. 4� are given by the following equations. Some pa-
rameters have been defined in Appendix A.

J� = J� 2

2 + q2�2

�q2 + 2J2q� +
J2

4
� �

e0 − e2
�� q

2 + q2�2

−
J2

4
� 1

e0 − e1
�� 1

�2 + q2��2 + p2��
2

�p + q��pq��p + q + 4J2��4�2 − �� + 2�2�pq�

−
J2

4
� 4

2e0 − e1 − e2
�� 1

2 + q2�2� q

2 + p2��p + q + 2J2�

�2�2 − �� + �2�pq�,

�� = �J� q

2 + q2�2

��q2 − 2�2�2 − q2��

+
J2

4
� 1

e0 − e1
�� �p + q�2 + 4J2�p + q�

�2 + q2��2 + p2� �2

+
J2

4
� 1

e0 − e2
�� q2

2�2 + q2��
2

+
J2

4
� 1

e0 − e3
��1 + 2J2q

2 + q2 �2

+
J2

4
� 2

2e0 − e1 − e2
�� 1

2 + p2��q�p + q + 2J2�
2 + q2 �2

−
J2

4
� 2

2e0 − e2 − e3
��q�1 + qJ2�

2 + q2 �2

−
J2

4
� 4

2e0 − e1 − e3
�

� J2�pq + q2 + 2� + p + q

�2 + q2��2 + p2�1/2 �2�� J�,

J2� = � J2

4
� 2

2 + q2�3	 �J2�3q + p� + q�p + q��2

�e0 − e1��2 + p2�

+
�J2�1 + q2� + q�2

e0 − e3
−

�q2 + J2q�2

2�e0 − e2� 
�� J�,
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FIG. 4. �Color online� The projection of the three-dimensional border areas on the �2=J2� plane �a� and for �2=0 plane in �b�.
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�2� = � J2

4
� 2

2 + q2�3���2q�p − pq2 + q� −
�

2
pq3�2

�e0 − e1��2 + p2�

−
�− �q2 + �2�2 − q2��2

2�e0 − e2�
��� J�.

APPENDIX C: THE RENORMALIZED COUPLING
CONSTANTS OF THE EFFECTIVE HAMILTONIAN IN

REGION (B)

The renormalization of coupling constants in region �B�
�see Fig. 4� are given by the following equations:

J� = � J

4
�2

�	� 1

e2 − e0
�� q

2 + q2�2

+ � 1

e2 − e1
�� p

2 + p2�2

+ � 4

2e2 − e1 − e0
�� q

2 + q2�� p

2 + p2�
,

�� = �� J

4
�2	� 1

e2 − e0
�� q2

2�2 + q2��
2

+ � 1

e2 − e1
�� p2

2�2 + p2��
2

+ � 1

e2 − e3
��1

4
�

+ � 4

2e2 − e1 − e0
�� q2

2�2 + q2��� p2

2�2 + p2��
− � 2

2e2 − e3 − e0
�� q2

2�2 + q2�� − � 4

2e2 − e3 − e1
�

� p2

2�2 + p2��
�� J�,

J2� = �� JJ2

4
�2	 2

�e2 − e0�
� q2

2�2 + q2�� +
2

�e2 − e1�� p2

2�2 + p2��
+

2

�e2 − e3�
�1

2
�
�� J�,

�2� = �� J�2

4
�2	 2

�e2 − e0�
� 2

2 + q2�
+

2

�e2 − e1�� 2

2 + p2�
�� J�.
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