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We study the thermal transition between the paramagnetic and antiferromagnetic phases of interacting
magnetic dipoles on square lattices in two dimensions. By Monte Carlo simulations, we find strong long-range
order in the low temperature phase and a critical behavior that is, as in the fourfold anisotropic XY model,
nonuniversal, in that the single-site quadrupolar anisotropy h4 is a relevant variable. However, the critical
indices differ markedly from the ones for the anisotropic XY model. They vary from Ising type, within errors,
for h4=0, to a critical behavior in the h4→� limit that is nearly as abrupt as a first-order transition.
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I. INTRODUCTION

There is currently renewed interest in systems of classical
dipoles �SCD’s�. Some of the interest comes from the emerg-
ing field of nanoscience.1 Arrays of magnetic nanoparticles2

and of synthesized crystals of organometallic molecules,3 in
which dipole-dipole interactions play an important role, are
becoming available for experiment. In addition, SCD’s are
intrinsically interesting. The spatial variations of the mag-
netic field from each of the dipoles in the system give rise to
interesting anisotropy effects as well as frustration �i.e., the
outcome from interactions which cannot all be concurrently
satisfied�. Frustration makes SCD’s highly sensitive to spa-
tial arrangement. Different magnetically ordered states ensue
in different lattices,4 including “spin ice” in some exotic
lattices.5 In two dimensions �2D�, anisotropy plays an impor-
tant role in ordering SCD’s. Single site anisotropy is always
present in magnetic-crystalline systems, but dipole-dipole in-
teractions give rise to two further types of anisotropies in
SCD’s in 2D. The first one pushes spins to lie on the plane of
the lattice.6 One therefore expects dipolar XY �dXY� models,
that is, systems of planar spins with dipole-dipole interac-
tions, to be relevant to the critical behavior of SCD’s on a 2D
lattice. The second anisotropy arises from dipolar interac-
tions in a different manner. The ground state itself is invari-
ant under a continuous staggered rotation �SR� of all spins,7–9

such as the one that takes the spin configuration in Fig. 1�a�
into the one shown in Fig. 1�b�. On the other hand, the
Hamiltonian itself varies under any continuous rotation, but
is clearly invariant under fourfold homogeneous rotation of
all spins and of all site positions, such as the one that takes
Fig. 1�b� into Fig. 1�c�. Thus, continuous SR invariance is
not expected to survive thermal disorder, only fourfold SR
invariance is expected to do so. Indeed, Prakash and
Henley10 showed how thermal excitations in a model of XY
spins on a square lattice, with a nearest-neighbor version of
dipole-dipole interactions, lead to effective anisotropies, an
effect which they termed “ordering due to disorder.”10 It has
been subsequently explored in some detail by various
means.9,11

In order to illustrate the quadrupolar anisotropy effect that
ensues, as first derived in Ref. 10, from thermal effects in
SCD’s on square lattices, let us define

mx = N−1�
i

�i
xSi

x, �1�

and similarly for my, where

�x = �− 1�ky, �y = �− 1�kx, �2�

and kx and ky are the x and y component site numbers, re-
spectively. Plots of various probability densities for the order
parameter �mx ,my� to point in different directions are shown
in Fig. 1�d�. A similar plot for a nearest-neighbor XY or
Heisenberg model would give f��� independent of �. For
comparison, we have added a quadrupolar anisotropy,

HA = − h4�
i

��Si
x�4 + �Si

y�4� , �3�

to the Heisenberg model, and performed on it a Monte Carlo
�MC� simulation at kbT=0.3J with h4=0.06J. Results for
various system sizes are plotted in Fig. 1�e�. Note the simi-
larity, even in the size dependence of f���. There is no simi-
larity, however, in their T dependence: whereas f��� is ap-
proximately independent of T in the Heisenberg model, it
vanishes as T→0 in SCD’s.9

Anisotropy has a deeper effect on the ordering of SCD’s
in 2D than the range of dipolar interactions. An isotropic
caricature of dipole-dipole interactions seems not to lead to
strong long-range order in square lattices,13 only to weak
long-range order14 at low temperatures. �This is so in spite of
the fact that the theorem of Mermin and Wagner12 does not
rule out strong long-range order in SCD’s in 2D.� On the
other hand, true dipole-dipole interactions, do lead to strong
long-range order.15,16 Results from MC simulations also sug-
gest strong order in SCD’s in 2D at low temperatures.9,11

This suggests that the thermal anisotropy induced by dipole-
dipole interactions10 is relevant to the critical behavior of
SCD’s. This would be as in the standard XY model, in which
anisotropies also lead to strong long-range order.17

It is our aim to study by MC simulations the critical prop-
erties of SCD’s on square lattices, whether they fit into some
universality class, independently of the strength, h4, of qua-
drupolar interactions, or whether nonuniversal critical behav-
ior ensues, as it does in XY models with a fourfold
anisotropy.17
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The plan of the paper is as follows. The model �SCD’s on
square lattices�, boundary �periodic� conditions, and details
about our MC simulations are specified in Sec. II. There is
no exchange, only dipole-dipole interactions and a single-site
quadrupolar anisotropy. In Sec. III, we report results for three
values �0,4 , � � of h4. For h4=�, we simulate a dipolar four-
state clock model �D4CM�, that is, a system of two compo-
nent spins which can point in four evenly spaced directions,
as in the well-known four-state clock model,17 but interact
among themselves through magnetic dipolar fields. We find a
single transition between paramagnetic and fully ordered
phases for all three values of h4. As in the anisotropic XY
model,17 nonuniversal critical behavior as a function of the
quadrupolar anisotropy strength is found. On the other hand,
our numerical results �given in Table I� differ sharply from
the ones for the anisotropic XY model. Finally, we summa-
rize and discuss our results in Sec. IV.

II. MODEL AND CALCULATION

We first define the SCD. Let Si be a classical three-
component unit spin at lattice site i of a two-dimensional
square lattice, let

H = Hd + HA, �4�

where

Hd = �
�ij�

�
��

Tij
��Si

�Sj
�, �5�

Tij
�� = �d� a

rij
	3���� − 3

rij
�rij

�

rij
2 	 , �6�

rij is the displacement from site i to site j, a is the SC lattice
parameter. The nearest-neighbor dipolar energy �d is defined
through Eqs. �5� and �6�. We give all energies in terms of �d.

In the D4CM, everything is as for SCD’s except that spins
can only point along any of the four directions of the square
lattice, as if h4→� in SCD’s.

We use periodic boundary conditions �PBC’s�, which, for
the sake of simplicity, we explain for one dimension. Con-
sider first spin sites at xk=ka, for k=−� ¯−1,0 ,1¯�. Sk

�

=Sk+L
� for all k, and we let a spin at the kth site interact with

all L /2 �L /2−1� spins immediately to the right-hand �left-
hand� side of the kth site.

Our simulations follow the standard Metropolis MC
algorithm.18 In particular, after we choose an initial spin con-
figuration, we compute the dipolar field at each site. Time
evolution takes place as follows. A spin is chosen at random
and temporarily pointed in a new random direction. The
move is accepted if either 	E
0, where 	E is the energy
change, or with probability exp�−	E /kBT� if 	E�0. All di-
polar fields are then updated throughout the system if the
move is accepted, before another spin is chosen to repeat the
process.

All energies and temperatures are given in terms of �d and
�d /kB, respectively.

Unless we state otherwise, all numerical results may be
assumed to come from averages over some 107 MC sweeps,
having first disregarded near 105 MC sweeps. Within the
temperature range we cover, the results thus obtained seem
independent of the initial conditions, that is, of whether the
initial state is ordered, disordered or is the outcome of some
previous cooling process.

For easy reference, we next define the quantities we cal-
culate. We let

� = �
mx
2 + my

2� , �7�

where mx and my are defined in Eqs. �1� and �2�, and

S = N�mx
2 + my

2� . �8�

We obtain the specific heat C from the energy fluctuations
relation C=�E2 / �NkBT2�, where �E is the root-mean-square
average of the system energy over some MC run at tempera-
ture T.

TABLE I. Variation of the critical indices with quadrupolar
anisotropy.

h4 Tc � /
 � � /
 


0 0.580�5� 0.13�2� 0.23�2� �0.1 1.05�5�
4 0.857�2� 0.10�1� 0.20�4� 0.51�4� 0.74�5�
� 1.106�2� 0.03�2� 0.09�5� 0.82�5� 0.70�5�
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FIG. 1. �a� Collinear state. �b� Canted state, which follows from
the collinear state in �a� by performing a staggered rotation by angle
�. �c� State obtained by a � /2 rotation of both the lattice and of all
spins. �d� Free energy per spin over temperature, T, versus the order
parameter orientation angle � of the SCD’s at kBT=0.25�d for sys-
tems of L�L spins. �, �, and � stand for L=4,8, and 16. The
data were extracted from runs of some 5�107 MC sweeps, during
which the angle � of the order parameter �mx ,my� is monitored. We
obtain f��� from the number of recorded events n��� for angle �,
defined by arctan�my /mx�, in some small ��0.0015� interval, using
the expression n����exp�−Nf����. �e� Same as in �d� but for a
classical nearest-neighbor Heisenberg model on a square lattice at
kBT=0.3 �J�, with an anisotropy energy h4�i��Si

x�4+ �Si
y�4� and h4

=0.06 �J�.

JULIO F. FERNÁNDEZ AND JUAN J. ALONSO PHYSICAL REVIEW B 76, 014403 �2007�

014403-2



III. RESULTS

In this section we report MC data obtained for SCD’s with
h4=0, 4, and �, and obtain the critical index values which
we give in Table I.

The data obtained for the order parameter � are plotted vs
T in Figs. 2�a�, 2�b�, and 2�c�, for h4=0 ,4, and �, respec-
tively. Clearly, a disordered phase can be inferred for T
�0.58 from Fig. 2�a�. At lower temperatures, strong long-
range order is not immediately obvious. In the 0.5�T
�0.58 range, � appears to decrease slowly as L increases, at
least up to L=64. We return to this point in the discussion of
Fig. 4, which follows below. Further information is provided
in the plots of the specific heat vs T, in Figs. 3�a�, 3�b�, and
3�c�, for h4=0 ,4, and �, respectively. We note from Figs.
2�b� and 2�c� that � drops to zero more steeply as h4 in-
creases. Strengthening of the specific heat singularity as h4
increases is also clear. However, we draw no quantitative
results from these plots.

We first examine whether weak long-range order exists in
SCD’s for h4�0. For that purpose, we examine log-log plots
of � vs L. They are shown in Figs. 4�a�, 4�b�, and 4�c� for
h4=0 ,4, and �, respectively. In the 0.52�T�0.58 range of
Fig. 4�a�, there appears to be a crossover from ��L−�/
, with
��0 in the 8
L
64 range, to a � that is approximately
independent of L in the 64
L
128 range. This is why we
took the trouble to run large time consuming simulations for
L=128 systems. Without the data points for L=128, one
would have been tempted to infer the existence of an inter-
mediate phase, in the 0.52�T�0.58 range, of weak long-
range order. Information about the nature of a transition can
also be gathered from the fourth-order cumulantlike quantity

u=1− ��4� /3��2�2.19 In plots of u vs T for L=64 and L
=128 �not shown�, the two curves increase smoothly and
monotonically as T decreases. Quantity u is larger for L
=128 �L=64� at low �high� temperature. The two curves
cross at T
0.575, u
0.66. The data for u show no trace of
anything but of a standard second-order transition. For h4
=0, we thus infer the existence of a single thermal transition,
at Tc
0.58, between the paramagnetic and fully ordered an-
tiferromagnetic phases. This is in contrast to the reported
behavior of an intermediate phase20 in the ordinary XY model
with weak anisotropy. Because there is a thermally induced
anisotropy in SCD’s in 2D,10 the comparison is appropriate,
even though h4=0. Note, however, that the thermally in-
duced anisotropy in SCD’s in square lattices is not too weak.
For further remarks on this point, see Sec. IV. For h4=4 and
h4=� strong long-range order below Tc is consistent with the
plots in Figs. 4�b� and 4�c�. Log-log plots of S vs L, for h4
=4 and �, are shown in Figs. 5�b� and 5�c�, respectively, for
various temperatures. Again, we see no intermediate phase.
Furthermore, strong long-range order seems to follow, as it
does from Figs. 4�b� and 4�c�, for temperatures below the
values of Tc given in Table I.

For the critical behavior, we make use of finite size
scaling,21

� � L−�/
f1��/L� , �9�

where � is the spin-spin correlation length, � and 
 are the
usual critical indices,22 defined by ���Tc−T�� and ���Tc

−T�
 that hold for an infinite system, and f1�x� is some func-
tion of x. Similarly, S�Ld−�f2�� /L� and C�L�/
f3�� /L�,
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FIG. 2. �Color online� �a� � vs T for SCD’s with h4=0. �, �,
�, �, and � stand for L=8,16,32,64, and 128, respectively. Lines
are only guides for the eyes. �b� Same as in �a� but for h4=4. �c�
Same as in �a� but for h4=�.
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FIG. 3. �Color online� �a� Specific heat vs T for SCD’s with
h4=0. �, �, �, �, and � stand for L=8,16,32,64, and 128,
respectively. Lines are only guides for the eyes. �b� Same as in �a�
but only for L
64, for SCD’s with h4=4. �c� Same as in �b� but for
h4=�.
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where f2�x� and f3�x� are some functions of x.
We first determine the values of Tc, making use of the fact

that f1, f2 and f3 do not depend on L at T=Tc. We therefore
look for straight line behavior in Figs. 4�a�, 4�b�, and 4�c�,
Figs. 5�a�, 5�b�, and 5�c�, and Figs. 6�a�–6�c�. We thus arrive
at the values of Tc shown in Table I for h4=0, 4, and �. The
errors in Tc and the ensuing errors in the critical indices are
discussed at the end of this section.

The values of Tc in Table I are next used for the determi-
nation of the critical indices. Consider Fig. 4�a�. The straight
dashed line therein stands for ��L−�/
, with � /
=0.13.
From the error in Tc, we estimate an error of 0.02 for � /
.
Analogously, we obtain the values and errors of � /
 for h4
=4 and � from the plots in Figs. 4�b� and 4�c�. The values of
� are obtained similarly from the plots in Figs. 5�a�, 5�b�,
and 5�c�. For � /
, we first examine Fig. 6�a�. A straight line
seems to hold only at T=0.58 for 32�L. Extrapolation of
this straight line would give � /

0.1. However, this result
does not seem to be on firm ground. The straight line would
no longer look to be so if, for instance, we shift a single data
point, the one for L=128, downward by 2%. This is 2 times
the size of the error. On the other hand, we can safely draw
the conclusion, from the data points shown in Fig. 6�a�, that

� /
�0.1 for h4=0. We obtain � /
 for h4=4 and h4=� from
the plots in Figs. 6�b� and 6�c�. The values thus obtained for
� /
, �, and � /
 are listed in Table I.

In order to obtain the value of 
, defined by ���T
−Tc�−
, we note that scaling, more specifically, Eq. �9�, im-
plies that plots of �L�/
 vs L �T−Tc�
 for different values of L
fall into the same curve if the right values of Tc, � /
, and 

are used. Such plots are shown in Fig. 7�a� for h4=0, using
Tc=0.580, � /
=0.13, and 
=1.05. Worse fits are obtained
for 
=1.0 or 
=1.1. This is the basis for the value 

=1.05�5� shown in Table I. We proceed similarly for h4=4
and h4=�, making use of the plots shown in Figs. 7�b� and
7�c�, respectively. We thus obtain 
=0.70�5� and 

=0.67�5� for h4=4 and h4=�, respectively. We have per-
formed scaling plots �not shown� for other physical variables
as well. Specific heat scaling plots yield slightly different
values of 
: 0.77�5� and 0.72�5� for h4=4 and h4=�, respec-
tively. These numbers differ slightly from the ones obtained
from scaling � vs T, but fall within the given errors. We list
values of 
 in Table I which are averages over numbers so
obtained. We find no scaling for h4=0, that is, plots for dif-
ferent values of L do not collapse onto one single curve,
which is as expected for ��0.

Finally, the errors in the critical indices follow from errors
in Tc, and from errors in the values of �, S, and C. However,
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FIG. 4. Log-log plots of � vs system size L, for SCD’s with
h4=0, at ��� T=0.52, ��� T=0.54, ��� T=0.56, ��� T=0.57, ���
T=0.575, ��� T=0.58, ��� T=0.583, and ��� T=0.60. Lines are
only guides for the eyes, except for the dashed line, which stands
for ��L−�/
 with � /
=0.13�2�. �b� Same as in �a� but for SCD’s
with h4=4 and ��� T=0.84, ��� T=0.85, ��� T=0.855, ��� T
=0.857, ��� T=0.860, ��� T=0.865, ��� T=0.87. Lines are only
guides to the eye, except for the dashed line, which stands for �
�L−�/
 with � /
=0.10. �c� Same as in �a� but for h4=�, with ���
T=1.10, ��� T=1.103, ��� T=1.105, ��� T=1.107, ��� T
=1.110, and ��� T=1.115. Lines are only guides for the eyes, ex-
cept for the dashed line, which stands for ��L−�/
 with � /

=0.04�2�.
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FIG. 5. �a� Log-log plots of S /N vs system length L, for SCD’s
with h4=0, at ��� T=0.52, ��� T=0.54, ��� T=0.56, ��� T
=0.57, ��� T=0.575, ��� is for T=0.58, and ��� is for T=0.583,
and ��� T=0.60. The dashed line stands for S /N�L−�, with �
=0.23. Other lines are only guides for the eyes. �b� Same as in �a�
but for SCD’s with h4=4 at ��� T=0.84, ��� T=0.85, ��� T
=0.855, ��� T=0.857, ��� T=0.860, ��� T=0.865. The dashed
line stands for S /N�L−� with �=0.19�2�. Other lines are only
guides for the eyes. �c� Same as in �a� but for h4=�, with ��� T
=1.10, ��� T=1.103, ��� T=1.105, ��� T=1.107, ��� T=1.11,
and ��� T=1.115. The dashed line is for L−�, where �=0.10. Other
lines are only guides to the eye.
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errors in the latter quantities are no larger than the symbol’s
sizes in any one of the figures, and are therefore less impor-
tant than errors in Tc. Systems of L�256 would have to be
simulated in order to reduce the latter errors. We have not
done so because a MC run of 107 MC sweeps on a system
256�256 spins with dipole-dipole interactions would re-
quire nearly one year of time of a single processor running at
some 3 MHz.

IV. SUMMARY

We next summarize the main results we have obtained for
the thermal order-disorder phase transition of SCD’s on a
square lattice, for h4=0, 4, and �. Let us first recall that even
when h4=0, SCD’s in 2D have a residual quadrupolar aniso-
tropy at nonzero temperatures,9–11 coming from dipole-
dipole interactions. Near the critical point, this residual an-
isotropy is approximately as if h4�0.5, as can be gathered
from Fig. 6 in Ref. 6. Effects coming from this residual
anisotropy are illustrated in Fig. 1�d�.

Our numerical results are consistent with a single thermal
transition between the paramagnetic and antiferromagnetic
phases. For h4=0, this is not as immediately obvious as for
h4=4 and �. For h4=0, we find below Tc �see Fig. 4�a�� a
small-to-large scale crossover which is consistent �a� with

weak algebraic decay of the spin-spin correlation functions
for short distances �r�100� and �b� strong long-range order
for longer distances. A single transition between the para-
magnetic and the fully ordered phase is also what José et
al.17 found for the anisotropic XY model, but is in contrast to
the results of Rastelli et al.,20 who inferred, from MC simu-
lations, the existence of an intermediate phase between the
paramagnetic and the fully ordered phase for 0�h4
�0.5 �J�, where J is the exchange constant. However, since
the thermally induced anisotropy in SCD’s in square lattices
is as if h4�0.5,6 an intermediate phase in the −0.5�h4�0
may still be found in SCD’s on square lattices.

Radically different critical behavior from the isotropic XY
model is expected for SCD’s with h4=0, because of the re-
sidual quadrupolar anisotropy that is induced at nonzero tem-
peratures by dipole-dipole interactions. Indeed, we then find,
within errors, a 2D Ising-type critical behavior. This is as
conjectured by Prakash and Henley,10 but differs from the
MC results of Ref. 23 and from the renormalization group
prediction of Ref. 16.

We also find that the critical behavior of SCD’s on square
lattices is nonuniversal, that critical index values �see Table
I� vary with h4, as they do in the anisotropic XY model.17,24

The variation of the specific heat’s critical index, �, is the
most obvious one. However, the analogy with the ordinary
XY model is not very close. The difference is most easily
appreciated for h4=�. For SCD’s with h4=�, that is, for the
D4CM, both the order parameter and the energy change
rather abruptly at the critical point, more precisely, rather
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FIG. 6. �a� Log-log plots of the specific heat vs system length L,
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�L0.9. Lines are only guides for the eyes.
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FIG. 7. �Color online� �a� Log-log plot of �L�/
 vs L �T−Tc�
,
for SCD’s with h4=0, for � /
=0.13, 
=1.05, and Tc=0.580. �, �,
�, �, and � stand for L=8,16,32,64, and L=128, respectively.
�b� Same as in �a� but only for L
64, for SCD’s with h4=4, for
� /
=0.10, 
=0.70, and Tc=0.8575. �, �, �, and � stand for L
=8,16,32, and 64, respectively. �c� Same as in �b� but for h4=�,
with � /
=0.06, 
=0.67, and Tc=1.106.
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large �small� � ��� index values are found �see Table I�. This
differs markedly from the behavior of the ordinary four-state
clock model in 2D, which has long been known25 to de-
couple into two independent 2D Ising models.
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