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A general approach for considering primary ferroic �ferroelectric, ferromagnetic, ferroelastic� nanoparticle
phase transitions was proposed in phenomenological theory framework. The surface stress, order parameter
gradient, and striction, as well as depolarization, demagnetization, and de-elastification effects, were included
into the free energy. The strong intrinsic surface stress under the curved nanoparticle surface was shown to play
the important role in the shift of transition temperature �if any� up to the appearance of a new ordered phase
absent in the bulk ferroic. Euler-Lagrange equations obtained after the Landau-Ginzburg-Devonshire free
energy minimization were solved by direct variational method. This leads to the conventional form of the free
energy with renormalized coefficients depending on nanoparticle sizes, surface stress, and electrostriction
tensor values, and so opens the way for polar property calculations by algebraic transformations. Surface
piezoeffect causes built-in electric field that induces an electretlike polar state and smears the phase transition
point. The approximate analytical expression for the size-induced ferroelectric transition temperature depen-
dence on cylindrical or spherical nanoparticle sizes, polarization gradient coefficient, correlation radius, intrin-
sic surface stress, and electrostriction coefficient was derived. Under the favorable conditions �radius of
5–50 nm and compressive surface stress�, spatial confinement induces a ferroelectric phase in incipient ferro-
electric nanowires and nanospheres. The prediction of size-induced ferroelectricity in KTaO3 nanorods with
radius less than 5–20 nm at room temperature could be useful for the next generation of devices based on
three-dimensional nanostructures.
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I. INTRODUCTION

Until now, phase transitions in solids have attracted much
scientific and technical interest because of the property
anomalies in the vicinity of the phase transition temperature.
Recently, the ability to govern the appearance of phase tran-
sitions at any arbitrary temperature has been demonstrated in
nanosized materials due to the so-called size-driven phase
transition. Such transitions were observed in many solids,
including ferroelectric, ferromagnetic, and ferroelastic ones.
Ferroelectric, ferromagnetic, and ferroelastic materials are
known to belong to the primary ferroics,1 because the appli-
cation of an electric, a magnetic, or an elastic field higher
than a coercive one leads to the switching of the correspond-
ing order parameter. The common feature of nanomaterials
with sizes less than 100 nm, such as films and nanoparticles
of different shapes, is an essential influence of the surface on
their properties. Allowing for all surface properties �includ-
ing symmetry, electronic, photonic, etc.� different from those
in the bulk nanomaterials opens the way for obtaining a va-
riety of new unique properties,2 a lot of which are useful for
applications, e.g., the ability to store and release energy in
well-regulated manners, making them very useful for sensors
and actuators.

Among the different ferroic nanomaterials, the magnetic
ones are the most thoroughly investigated, in particular, thin
magnetic films and their multilayers.1,3 The outlook of ferro-
electric thin film applications in memory devices leads to the
intensive investigations of their polar and dielectric property
anomalies during the past decade.4 Recently, the investiga-
tions of the cylindrical and spherical ferroic nanoparticles
became a hot topic, because of the new behavior of their
properties, absent in the bulk. For instance, room tempera-
ture ferromagnetism has been observed in spherical nanopar-
ticles �size of 7–30 nm� of nonmagnetic oxides such as

CeO2, Al2O3, ZnO, etc.2 Extremely strong superparamag-
netic behavior down to 4 K has been found in gold and pal-
ladium nanoparticles, which are nonmagnetic in the bulk.5

Particles of both metals had a narrow size distribution with a
mean diameter of 2.5 nm. To the best of our knowledge the
quantitative explanation and theoretical description of size-
driven magnetism in nanoparticles are absent.

Keeping in mind the similarity of the ferroic properties,
one could expect the appearance of ferroelectricity in highly
polarizable paraelectric nanoparticles induced by spatial con-
finement. Unfortunately, nothing of this kind has been re-
vealed up to now. The only encouraging result has been re-
cently reported by Yadlovker and Berger.6 They reported
about the polarization enhancement and ferroelectric phase
conservation in Rochelle salt �RS� nanorods of diameter of
30 nm up to material decomposition temperature of 55 °C,
which is about 30 °C higher than the transition temperature
of the bulk crystals. The phenomenological description of
ferroelectricity enhancement in confined nanorods has been
recently proposed.7,8

To check the possibility of the appearance of ferroelectric-
ity in the nanoparticles of the materials, which are nonferro-
electric in the bulk, as well as to reveal the common features
responsible for the appearance of the new phases in primary
ferroic nanoparticles, in this paper, we study phase transi-
tions in them. The calculations have been performed in the
phenomenological theory framework for the case of single-
domain ferroics, which is known to be valid for small
enough sizes �less than 100 nm�.1,9–13 We took into account
the contribution of the surface stress into the free energy and
the gradient of order parameter �magnetization, polarization,
or strain�, as well as depolarization, demagnetization, or de-
elastification effects, since all these factors are known to in-
fluence strongly the phase transitions in nanomaterials. How-
ever, in most of the theoretical papers devoted to the
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consideration of the size effects in spatially confined sys-
tems, the simultaneous influence of the aforementioned fac-
tors and especially surface stress on the phase transitions was
neglected �see, e.g., Refs. 2 and 14–18�.

Here, we have shown that phase transitions absent in the
bulk appear in cylindrical or spherical ferroic nanoparticles
under the favorable conditions. The detailed consideration
was performed for incipient ferroelectric KTaO3, which is
paraelectric up to 0 K in the bulk. The theory predicts opti-
mal sizes for appearance of ferroelectricity in incipient ferro-
electric nanoparticles.

II. BASIC CONCEPTS FOR FERROIC NANOPARTICLES

When elaborating thermodynamic theory for the descrip-
tion of surface and size effects on polar properties and phase
diagrams of ferroelectric nanoparticles of different shapes,
we will use the Landau-Ginsburg-Devonshire phenomeno-
logical approach �see, e.g., Refs. 19–22� with respect to the
surface energy, correlation �gradient� energy, depolarization
field, and mechanical stress.

A characteristic feature of the phenomenological descrip-
tion of the nanoscale structures is the surface energy contri-
bution that becomes comparable with the bulk one and can
exceed it when size decreases.

For the case of primary ferroics, the Landau-Ginzburg-
Devonshire expansion of the bulk �GV� and surface �GS�
parts of the Gibbs free energy on the multicomponent order
parameter � powers �vectors of polarization, magnetization,
or strain tensor for ferroelectric, ferromagnetic, or ferroelas-
tic media, respectively� and stress tensor components powers
�̂ has the forms

GV = �
V

d3r�aij�T�
2

�i� j +
aijkl

4
�i� j�k�l

+
aijklmn

6
�i� j�k�l�m�n + ¯ +

gijkl

2
� ��i

�xj

��k

�xl
�

− �i�E0i +
Ei

d

2
� − Qijkl�ij�k�l −

1

2
sijkl�ij�kl� , �1a�

GS = �
S

d2r�aij
S

2
�i� j +

aij
S

4
�i

2� j
2 +

aijk
S

6
�i

2� j
2�k

2 − qijkl
S �ij�k�l

+ dijk
S � jk�i + ���

S s��jk� jk +
�ijkl

S

2
�ij�kl + ¯ � . �1b�

Coefficients aij�T� explicitly depend on temperature T in the
framework of the Landau-Ginzburg-Devonshire approach.
Coefficients aij

S of the surface energy expansion may also
depend on temperature.

High order expansion coefficients aijkl, aijklmn, aijkl
S , and

aijklmn
S are supposed to be temperature independent; constants

gijkl determine the magnitude of the gradient energy. Tensors
gijkl and aijklmn are positively defined. The situation with ten-
sor aijkl depends on the phase transition order, namely, tensor
aijkl is positively defined for the second order phase transi-
tion, while for the first order ones, it is negatively defined. E0

is the external field conjugated with order parameter �.
Ed is the depolarization, demagnetization, or de-

elastification field that appears due to the nonzero divergence
of order parameter � in a confined system �div����0	. It is
easy to show that � and Ed are related to each other via the

linear operator N̂d��	 as Ed
 N̂d��	.19 In the general case of

spatial inhomogeneity of the � operator, N̂d��	 has only an
integral representation �see, e.g., Ref. 23�. Field Ed tends to
suppress the ordered phase inside the system.

Coupling terms Qijkl�ij�k�l and qijkl
S �ij�k�l determine the

influence of mechanical stress on the order parameter for the
materials with high symmetry paraphase �paraelectric, para-
magnetic, or paraelastic�. Here, Qijkl and qijkl

S are, respec-
tively, the bulk and surface striction coefficients; sijkl are,
components of the elastic compliance tensor.24 The symme-
try of surface striction tensor qijkl

S is the same as that of bulk
striction Qjklm one, but their signs and relative values can be
different. For instance, anomalously large surface magneto-
striction was observed in NiFe/Ag/Si, NiFe/Cu/Si, and
Ni/SiO2 thin films of thickness below about 5 nm.25

In Eq. �1b�, surface piezoeffect tensor dijk
S is introduced. It

arises even in cubic paraelectrics due to the symmetry break-
ing near the surface �vanishing of inversion center, see, e.g.,
Refs. 26 and 27�, while in magnetics, it exists when there is
no inversion of time among the symmetry operations of the
material. Tensor � jklm

Si is related to the surface excess elastic
moduli.

Intrinsic surface stress ���
S exists under the curved surface

of a solid body and determines the excess pressure on the
surface.28,29 Surface stress tensor ���

S is defined as the de-
rivative of the surface energy on the deformation tensor. Let
us underline that in many experimental papers �e.g., Refs.
30–32�, size effects of ferroelectric nanoparticles phase dia-
grams are related to the intrinsic surface stress �or surface
tension by analogy with liquids�. Intrinsic mechanical stress
under a curved surface is determined by the tensor of intrin-
sic surface stress ���

S :

�nk�kj�S = −
���

S

R�

nj , �2�

where R� are the main curvatures of a surface free of facets
and edges in continuum media approximation and nk are
components of the external normal.28,29 In the case of me-

chanical stress homogeneous distribution, �̂=−����
S /R��L̂,

where L̂ is the second rank tensor with constant coefficients.

The form of tensor L̂ is determined by the nanoparticle shape
�e.g., spherical, ellipsoidal, or cylindrical� and mechanical
boundary conditions.

The sign of surface stress tensor components ���
S depends

on the chemical properties of the nanoparticle ambient ma-
terial and the presence of oxide or interface layer.29 Taking
into account that there exists surface layers or interfaces with
chemical, structural, and polar properties different from
those of the bulk, hereinafter, we consider both positive and
negative values of ���

S .
For the considered case of nanoparticles with diameter

less than 100 nm, stress �̂ can be considered as homoge-
neous. Its contributions into the renormalization of the qua-
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dratic term coefficients in Eqs. �1� via striction effect is as
follows:

aRij
S = �aij

S �T� + 2qlkij
S Llk

���
S

R�
� , �3�

aRij = �aij�T� + 2QlkijLlk

���
S

R�
� .

For the conventional ferroics, aij�T� have the view aij�T�
=�ij�T�T−TC

i �, where TC
i is the Curie temperature of the bulk

material for the order parameter component �i. By neglect-
ing Ed and gradient contribution, one obtains from Eq. �3�
the Curie temperature renormalization:

TCR
x = TC

x −
2	x

�T

���
S

R�

, TCR
y = TC

y −
2	y

�T

���
S

R�

, �4�

TCR
z = TC

z −
2	z

�T

���
S

R�

,

where the constants 	i=QlkiiLlk �i=x ,y ,z� are introduced. It
is seen that renormalized Curie temperatures TCR

i are differ-
ent. The shifts of TCR

i that originated from surface stress �̂
lead not only to the change of the nanoparticle phase dia-
gram in comparison with a bulk ferroic system but, under the
favorable conditions �e.g., at 	i���

S 
0 and TCR
i �0�, to the

appearance of the new phases absent in the bulk. In the par-
ticular case when a bulk cubic system transforms into the
polar tetragonal phase with six possible orientations of order
parameter �such as ferroelectric PbTiO3 or multiferroic
BiFeO3� at T
TC, the confined system subjected to the sur-
face stress of arbitrary symmetry could transform into the
polar phase with only two possible orientations of the order
parameter �e.g., ±�3� corresponding to the component with
the highest transition temperature �TCR

z �.
However, in order to obtain rigorous renormalization of

the Curie temperature, one should take into consideration the
renormalization of aij�T� originating from the inner field Ed

and order parameter gradient, so Eqs. �3� and �4� are valid
only for the case when the surface stress contribution is
much larger than the terms that originated from Ed� and
giiii���i�2. It is not excluded, since the surface stress �, ex-
isting in nanoparticles with radius of curvature R
=5–50 nm, is about 108–1010 Pa at the reasonable values of
surface stress tensor ����

S �=5–50 N/m.29,31 Therefore, the
stress induced by surface curvature is very strong and so it
may cause noticeable shift of the bulk phase transition tem-
perature �if any�.

Field Ed always leads to the decrease of the Curie tem-
perature. However, it vanishes in some important cases, e.g.,
long nanorods with order parameter aligned along the cylin-
der axis7,8 or magnetic particles with superconducting cover-
ing.

For the sake of rigorous consideration of all contributions
into the Curie temperature, let us perform calculations for
ferroic materials with definite characteristics. Namely, we
will consider size-induced transitions between paraphase and
ordered phases for the one component order parameter in
cylindrical and spherical perovskite nanoparticles of conven-
tional and incipient ferroelectrics.

To be sure that our efforts will not be in vain, let us
perform simple estimations. It is obvious from Eq. �4� that
the transition temperature shift depends on the QlkiiLlk values
and signs, and it increases with decrease of the particle ra-
dius. Typical bulk electrostriction coefficients Qlkij are of or-
der of magnitude of 0.1–0.05 m4/C2, which leads to the
estimation of surface stress via striction contribution into
aij�T� renormalization as �2QlkijLlk����

S /R��
107–109 SI
units; so �TCR

i −TC
i ��50–500 K at Llk�1 and �T

�106 m/F K for ����
S �=5–50 N/m. Thus, under the favor-

able conditions, surface stress essentially increases the tran-
sition temperature and may induce ordered phase in incipient
ferroelectrics.

III. FREE ENERGY FUNCTIONAL AND ELASTIC
PROBLEM FOR NANOSIZED PEROVSKITES

For the perovskite symmetry, the Gibbs bulk free energy
expansion �Eq. �1a�	 on polarization P3 and stress �nm pow-
ers has the form

GV = �
V

d3r�a1�T�
2

P3
2 +

a11

4
P3

4 +
a111

6
P3

6 +
g

2
��P3�2

− P3�E0 +
E3

d

2
� − Qij33�ijP3

2 −
1

2
sijkl�ij�kl� . �5a�

Here, E3
d and E0 are the depolarization and external electric

field z components.
The surface free energy �Eq. �1b�	 polarization-dependent

expansion has the form

GS = 

i
�

Si

d2r�a1
Si

2
P3

2 +
a11

Si

4
P3

4 + ���
Si s��jk� jk +

� jklm
Si

2
� jk�lm

+ d3jk
Si � jkP3 − qjk33

Si � jkP3
2� . �5b�

Here, superscript Si numbered the surfaces; nk is the normal
to the surface; Greek characters label two-dimensional indi-
ces in the surface plane, whereas Roman indices are three-
dimensional ones.

For the sake of simplicity, hereinafter, we consider the
case of a mechanically isotropic solid, where the symmetry
of surface stress tensors are isotropic, namely, ���

Si =���� for
mechanically free nanoparticles �� jk is the Kronecker sym-
bol�.

The free energy �Eqs. �5�	 is minimal when polarization
P3 and relevant stress tensor components � jk are defined at
the nanostructure boundaries.24 Under such conditions, one
should solve the equation of state �G /�� jk=−ujk, where ujk
is the strain tensor.

For the cases of the clamped system with defined dis-
placement components �or with mixed boundary conditions�,
one should find the equilibrium state as the minimum of the
Helmholtz free energy FV+FS �FV=GV+�Vd3r ·ujk� jk and
FS=GS+�Sd2r ·u���knk� originating from the Legendre
transformation of G.33

Equilibrium equations of state could be obtained after
variation of the Helmholtz energy on displacement uj, Gibbs
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energy on stress �ij, polarization P3, and its derivatives:

��ij

�xi
= 0, Qij33P3

2 + sijkl�kl = uij , �6a�

�a1 − Qij33�ij�P3 + a11P3
3 + a111P3

5 − g
�2P3

�xk2
= E0 + E3

d. �6b�

Equations �6� should be supplemented by the boundary con-
ditions for strain �or stress� and polarization. To the best of
our knowledge the general solution of the coupled problem
given by Eqs. �6� is absent. In what follows, we will use a
decoupling approximation for mechanical and electrostatic
equations allowing for the boundary conditions on the nano-
structure surfaces.

A. Freestanding cylindrical particle

The boundary conditions �Eq. �2�	 on the surface of a
cylindrical rod of radius R in the cylindrical coordinates
�r ,� ,z� have the following forms:

��

�
=R = −
�

R
, ��
��
=R = 0, ��
z�
=R = 0,

��zz�z=±h/2 = 0, ��z
�z=±h/2 = 0, ��z��z=±h/2 = 0. �7�

The equation ��ij /�xi=0 in the bulk of the cylindrical body
along with the boundary conditions �Eq. �7�	 can be fulfilled
with a uniform solution. The stress and strain tensor compo-
nents have the following forms:

�

 = ��� = �11 = �22 = −
�

R
,

�
� = �
z = �zz = �z� = �12 = �13 = �23 = �33 = 0. �8�

B. Freestanding spherical particle

The boundary conditions �Eq. �2�	 on the surface of a
spherical particle of radius R have the following forms in the
spherical coordinates �r ,� ,��:

��rr�r=R = −
2�

R
, ��r��r=R = 0, ��r��r=R = 0. �9�

The equation ��ij /�xi=0 in the bulk of the spherical body
along with the boundary conditions �Eq. �9�	 can be fulfilled
with a uniform solution. The stress and strain tensor compo-
nents have the following forms:

�rr = ��� = ��� = �11 = �22 = �33 = −
2�

R
,

�r� = �r� = �12 = �13 = �23 = 0. �10�

IV. EULER-LAGRANGE EQUATION FOR A
CYLINDRICAL NANOPARTICLE IN AMBIENT

CONDITIONS

Let us consider a ferroelectric cylindrical nanoparticle
with radius R, height h, and axisymmetric polarization

P3�
 ,z� oriented along the z axes. The external electric field
is E= �0,0 ,E0� �see Fig. 1�.

For a perovskite ferroelectric nanorod with polarization
P3�
�, the substitution of solution �8� into the free energy
�Eqs. �5�	 gives the expression for the polarization-dependent
part:

GV = h�
0

R

rdr��a1

2
+ 2Q12

�

R
�P3

2 +
a11

4
P3

4 +
a111

6
P3

6

+
g

2
� �

�

P3�2

− P3�E0 +
Ed

2
�� , �11a�

GS = hR��a1
S

2
+ 2q12

S �

R
�P3

2�R� +
a11

S

4
P3

4�R� − 2d31
S �

R
P3�R�� .

�11b�

Hereinafter, we neglect depolarization field Ed for the case
h�R of the considered long nanorods �nanowires�. Variation
of the free energy �Eqs. �11�	 leads to the Euler-Lagrange
equation for the polarization P3�
�:

�a1 + 4Q12
�

R
�P3�
� + a11P3

3�
� + a111P3
5�
�

− g
1




�

�




�

�

P3�
� = E0,

��P3 + �S�dP3

d

+

a11
S

g
P3

3���

=R

= − Pd, �12�

where the boundary conditions have been rewritten via
renormalized characteristic length �S and surface polariza-
tion Pd, namely:

�S
−1�R� =

a1
S

g
+

4q12
S

g

�

R
, �13a�

Pd�R� = −
2�

R
d31

S �S

g
. �13b�

It is worthwhile to underline that characteristic length �S
could be negative or positive, since the signs of a1

S and q12
S

are not predetermined. When the surface piezoelectric effect
could be absent �i.e., Pd=0�, then characteristic length �S had
the meaning of extrapolation length. Introducing the param-

x

y

z

R

-h/2

+h/2

P3

�~�/R

E0

FIG. 1. �Color online� Geometry of a cylindrical particle.
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eters R�=−4q12
S � /a1

S and �g=g /a1
S, one obtains that �S

−1�R�
=�g

−1�1−R� /R�. The size dependence of the normalized char-
acteristic length �S / ��g� is shown in Fig. 2. It is clear that
�S / ��g� is negative at ��0 and R
R�, as should be ex-
pected from Eq. �13a�.

It should be noted that some authors �see, e.g., Refs.
15–17� also considered the size-dependent characteristic �ex-
trapolation� length that was derived from microscopic mod-
els and thus could be related to surface stress considered here
in the phenomenological framework.

Application of the direct variational method for the ap-
proximate solution of the Euler-Lagrange equation �Eq.
�12�	, as was described earlier,7,34 leads to the conventional
form of the free energy with renormalized coefficients. In
particular, surface polarization Pd in the boundary conditions
�Eq. �12�	 leads to the appearance of the built-in field Ecyl

that induces an electretlike polar state at R
Rcr �instead of a
conventional paraelectric phase� and smears the dielectric
permittivity maximum in the phase transition point. The
electretlike state possesses piezoelectric and pyroelectric
properties, but hysteresis loops are absent.35 For a cylindrical
nanoparticle, the built-in field has the form

Ecyl�R� � −
4�

R2 d31
S . �14�

One can see from Eq. �14� that the built-in field is propor-
tional to the surface stress tensor � and piezoelectric coeffi-
cients d31

S ; it increases with decrease of radius.
The transcendental equation for the determination of the

Curie temperature Tcyl�R� at a given radius R, as well as for
the critical radius Rcyl�T� at a given temperature T, which
corresponds to the second order phase transition from the
ferroelectric to the paraelectric phase �at Ecyl=0� or electret-
like state �at Ecyl�0� acquires the form

J0�R�−
aR�T,R�

g
�

− �S�R��−
aR�T,R�

g
J1�R�−

aR�T,R�
g

� = 0, �15�

where J0 and J1 are Bessel functions of the zero and first
orders correspondingly, aR�T ,R�=a1�T�+4Q12

�
R .

A. Ferroelectricity enhancement in conventional ferroelectric
nanorods

For conventional ferroelectrics, Padé approximations of
the solution of Eq. �15� for Tcyl�R� could be rewritten as

Tcyl�R� � �TC −
4Q12

�T

�

R
−

g

�T

2

R�S�R� + 2R2/k01
2 , �S�R� � 0

TC −
4Q12

�T

�

R
−

g

�T
� 2

R�S�R�
−

1

�S
2�R�� , �S�R� 
 0,� �16�

where k01=2.408¯ is the smallest positive root of the equation J0�k�=0. Note that at �S→0, Eq. �16� reduces to the one
obtained in Refs. 7 and 8.

Under the condition q12
S =0, we derived the following approximate expression for the critical radius Rcyl�T� at a given

temperature T

Rcyl�T� � �−
k01

2

4
�g −

2Q12�

a1�T�
±�� k01

2

4
�g −

2Q12�

a1�T� �2

−
g

a1�T�
k01

2

4
, �g � 0

2�g�g + 2Q12��g
2�

g − a1�T��g
2 , �g 
 0.� �17�

It is obvious that physically relevant values of the critical
radius should be positive. That is why � signs before the
radical correspond to the different conditions. Namely, at
Q12�
0 and a1�T�
0 or Q12��0 and a1�T��0 only the

“�” sign makes sense, while at Q12�
0 and a1�T��0, both
“�” signs have sense and both critical radii define the region
where ferroelectricity exists. In the case �g+2Q12��S�
0
and �S�0, the region of Tcyl�R��TC may extend down to

0 1 2 3 4
-4

-2

0

2

4

R/��R���

��
g
�/ �

S

0 1 2 3 4
-4

-2

0

2

4

R/��R���

� S
/ ��

g
�

(a) (b)

FIG. 2. �Color online� �a� Characteristic length �S / ��g� and �b�
��g� /�S vs nanowire radius R / �R�� for �g�0 and R��0 �solid
curves�, �g
0 and R��0 �dashed curves�, �g�0 and R�
0 �dash-
dotted curves�, and �g
0 and R�
0 �double-dash-dotted curves�.

PHASE TRANSITIONS INDUCED BY CONFINEMENT OF… PHYSICAL REVIEW B 76, 014102 �2007�

014102-5



R=0. The simplest expression corresponds to the case
�S=0 �i.e., q12

S =0 and a1�T�=0	, when Rcyl�T�

�−
2Q12�

a1�T� ±�� 2Q12�

a1�T� 	
2
− g

a1�T�
k01

2

4 .

Hereinafter, we consider the most favorable case �Q12


0 for ferroelectricity conservation in perovskite nanowires.
It is seen from Eqs. �16� and �17� that the tension radii R�

=−4Q12� /�TTC and R�=−4q12
S � /a1

S, length �g=g /a1
S, and

bulk correlation radius at zero temperature RS=�g /�TTC

�Ref. 20� determine the phase diagram. Note that no restric-
tions are known for phenomenological parameters R� and �g,
since the quantity a1

S can take arbitrary values. Ferroelectric
phase transition temperature Tcyl /TC vs radius R /RS for dif-
ferent R� /RS ratios and parameters R� /RS and �g /RS deter-
mining �S

−1�R�=�g
−1�1−R� /R� dependence is depicted in Fig.

3.
The most interesting result is the transition temperature

enhancement Tcyl�TC at small radius R�RS �see curves 4
and 5 in Fig. 3�. The case corresponds to the so-called sur-
face polar state,23 appearing at negative �S values. However,
under the condition a1

S�0, �S is positive at R�R�, and �S

→g /a1
S at R→�, in accordance with Eq. �13a�; the electros-

triction term �Q12� /R vanishes at R→�, making it clear
that no ferroelectricity enhancement appears in the bulk.

As one could expect, there is a wide range of R /RS values
where Tcyl /TC
1 for the chosen parameters including the
point Tcyl=0 �see Fig. 3�. The point corresponds to the mini-
mal critical radius Rcyl�0� of the size-driven ferroelectric
phase transition.

Under the favorable conditions, size effects �confined ge-
ometry� enhance ferroelectricity in conventional ferroelec-
trics. In particular, for nanowires of radius R /RS
2–5 at
relatively large R� /RS and R� /RS values, the ratio Tcyl /TC

�1 and it increases with decrease of R /RS. Note that the
values of R� and R� are defined by the surface stress coeffi-
cient �, bulk Q12, and surface q12

S electrostriction coeffi-
cients, respectively. Therefore, exactly these quantities are
responsible for the ferroelectricity enhancement in nano-
wires. The increase of Tcyl with increase of �g /RS��g may
reflect the importance of the polarization gradient contribu-
tion.

It is clear that size effects are most pronounced in the
region R
10RS that typically corresponds to the nanowire
radius less than 50 nm since RS�5–50 Å; at that, the region
width and the ratio Tcyl /TC increase with the values of R�

and/or R�; the latter parameters reflect the contribution of the
surface stress.

As it has been already mentioned in the Introduction, the
most striking observation of ferroelectricity enhancement
and conservation in long nanorods �radius of 15 nm, length
of 500 nm� has been reported by Yadlovker and Berger.6 Be-
sides ferroelectricity conservation up to Rochelle salt decom-
position temperature that was explained earlier,7,8 the authors
measured the temperature dependence of remnant polariza-
tion PSV�T�, hysteresis loops, and switching time 	S. These
polar properties can be calculated by a conventional way on
the basis of the free energy with renormalized coefficients:

G � ��T�T − Tcyl�R�	
P3V

2

2
+ a11

P3V
4

4
+ a111

P3V
6

6

− P3V�E0 + Ecyl�R�	� . �18�

Under the condition of negligibly small surface piezoeffect,
it is easy to obtain from �Eq. �18�	 that the spontaneous po-
larization is PSV���T�Tcyl�R�−T	 /a11 and thermodynamic
coercive field is EC

T = �2PSV /3�3��T�T−Tcyl�R�	. The thermo-
dynamic coercive field corresponds to the case of nanorod
homogeneous �monodomain� switching. In the case of inho-
mogeneous switching process, the activation field Ecr

a neces-
sary for domain nucleus onset determines the observed coer-
cive field EC and switching time.20 For the latter case,
renormalized coefficient �T�T−Tcyl�R�	 should be included
into the domain wall energy, spontaneous polarization, di-
electric permittivity, etc., instead of the bulk coefficient
a1�T�, in order to describe adequately the domain nucleation
stage and further domain wall motion �see Appendix A in
Ref. 36 and Refs. 37 and 38 for details about nucleation and
domain wall motion stages�.

The applicability of our model to the description of phase
transition between cubic paraelectric and tetragonal ferro-
electric phases in ferroelastic-ferroelectric RS is valid only in
the temperature range where RS ferroelectric properties can
be described by the phenomenological framework. More-
over, we neglected the piezoelectric effect with respect to the
shear stress in the paraelectric phase of RS since the effective
surface tension creates no tangential stresses.
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FIG. 3. �Color online� Ferroelectric phase transition temperature
Tcyl /TC vs R /RS for �a� R� /RS=0, R� /RS=0.5, and �g /RS

=0,0.5,2 ,4 ,10 �curves 1, 2, 3, 4, 5�; �b� R� /RS=0, R� /RS=4, and
�g /RS=0,0.3,0.5,1 ,4 �curves 1, 2, 3, 4, 5�; �c� R� /RS=0.5,
R� /RS=0.5, and �g /RS=0,0.5,1 ,2 ,4 �curves 1, 2, 3, 4, 5�; �d�
R� /RS=0.5, R� /RS=4, and �g /RS=0,0.1,0.2,0.5,1 �curves 1, 2, 3,
4, 5�.
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Despite the aforementioned limitations, let us perform
quantitative comparison with experimental data for RS. The
comparison of experimentally obtained polarization tempera-
ture dependence PSV�T� and hysteresis loop PSV�E0� �sym-
bols� in Ref. 6 with theoretical calculations �solid curves� are
presented in Fig. 4.

The dependence PSV�T� was calculated from the equation
�T�T−Tcyl�R�	P3V+a11P3V

3 �Ecyl�R� for RS material param-
eters �see Fig. 4�a�	.

The activation field value Ecr
a �13 kV/cm calculated in

Appendix A of Ref. 36 is very close to the experimentally
obtained coercive field EC�13.6 kV/cm.6 This means that
thermal fluctuations �kBT cause rapid nanodomain nucle-
ation in the nanorod under applied field Ecr

a �13 kV/cm, in
contrast to the switching of the bulk sample with much
smaller coercive fields about 0.2 kV/cm.20 Using the value
PSV�0.28 �C/cm2 calculated at T=21 °C as a remnant po-
larization �see Fig. 4�a�	 and the value Ecr

a �13 kV/cm as a
coercive field, we modeled hysteresis loop PSV�E0� from a
conventional kinetic equation20 �see Fig. 4�b�	.

Using RS material parameters g�9�10−11 m3/F,39 �T
�7.74�107 m/F K, TC=297 K, a11=3.36�1015 SI units
�estimated from bulk polarization of RS crystal at room tem-
perature, PS=��TTr /a11�0.25 �C/cm2�, the sum Q12+Q13
=−0.63 m4/C2 �instead of 2Q12 for perovskites�, radius R
=15 nm, and the value Tcyl=80 °C in Eq. �16�, we obtained
the estimation for surface stress coefficient ��25 N/m.
Note that it is the upper estimation �i.e., ��25 N/m� since
the third term in Eq. �16� appeared either positive at negative
values �S or negligibly small at �S�0, allowing for the small
polarization gradient coefficient value g. Unfortunately, we

could not find any experimental data concerning surface pi-
ezoeffect dij

S in RS, so we regard built-in field Ecyl�d31
S as a

fitting parameter and obtained that �Ecyl��2 kV/cm and thus
d31

S �7.2�10−16 m2/V. It is seen that theory fitted experi-
mental data rather well at reasonable values of surface stress.

Yadlovker and Berger6 observed the domains aligned
along the nanorod axis. Thus, the important question is: how
the expected theoretical results may change due to the pres-
ence of multiple nanodomains in the nanoparticles. In Ref. 7
we have shown that the domain splitting decreases the depo-
larization field inside the nanorod of finite length. Nan-
odomain formation would be energetically preferable until
the depolarization energy decrease caused by the appearance
of domains would be greater than the increase of domain
wall correlation energy. Typically, depolarization field de-
creases the phase transition temperature; thus, nanodomain
formation may increase it.

The domain nucleation and growth govern the nanorod
switching in external electric field. In Appendix A of Ref. 36
we considered RS nanorod switching at applied homoge-
neous electric field �i.e., between two plain electrodes�
within the framework of the Landauer model40 for nan-
odomain nucleation. The preliminary results obtained here
�we neglected pinning effects at nucleation stage� predicted
that domain nucleation is rapid in comparison with the fol-
lowing domain wall growth. Since RS nanorods were prolate
�h�R�, the domain wall growth is mainly vertical, and so
the wall one-dimensional velocity ���E0h, described by
the kinetic energy conservation law, is in agreement with the
power law for the switching time 	S
h /���1/E0 obtained
from experimental data fitting in Ref. 6.

It is worthwhile to mention that some other experimental
results indirectly speak in favor of the ferroelectricity en-
hancement and conservation in PbZr0.52Ti0.48O3 nanorods
with diameter less than 10–20 nm �Refs. 41 and 42� in
single-crystalline PbZr0.2Ti0.8O3 nanowires of elliptic cross
section with main diameters of 70 and 180 nm.32

The developed phenomenological approach describes the
observed peculiarities of ferroelectric nanorods.

B. Size-induced ferroelectricity in incipient ferroelectric
nanowires

The Barrett formula a1�T�=�T�Tq /2 coth�Tq /2T�−T0	 is
valid for both incipient and conventional ferroelectrics43 at a
wide temperature interval including low �quantum� tempera-
tures. At temperatures T�Tq /2, the Barrett formula trans-
forms into the classical form a1�T�Tq���T�T−T0�.

The transition temperature �induced by surface and size
effects� is given by

Tcyl�R� � �
Tq

2
�arccoth� 2

Tq
�T0 −

4Q12

�T

�

R
−

g

�T

2

R�S�R� + 2R2/k01
2 ���−1

, �S�R� � 0

Tq

2
�arccoth� 2

Tq
�T0 −

4Q12

�T

�

R
−

g

�T
� 2

R�S�R�
−

1

�S
2�R�����−1

, �S�R� 
 0.� �19�
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FIG. 4. �Color online� The dependence of remnant polarization
PSV�T� on �a� temperature and �b� hysteresis loop of RS nanorods
with radius R=15 nm. Symbols are experimental data from Ref. 6:
�a� remnant polarization at applied field amplitude E0

max

=30 kV/cm; �b� hysteresis loop at applied field frequency of 1 kHz
and T=21 °C. Solid curves are theoretical calculations with param-
eters �a� Tcyl=80 °C, and �Ecyl��2 kV/cm and �b� PSV

�0.28 �C/cm2 and EC�13 kV/cm.
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Using the asymptotic relation �arccoth�x�	−1→x for x�1,
one can obtain that at temperatures T�Tq /2, Eq. �19� tends
to Eq. �16� after the substitution TC→T0, where T0�0 is
possible.

It is worth to underline that the second term in square
brackets in Eq. �19� represents the contribution of biaxial
stress originating from the intrinsic surface stress.

Note that approximate expressions �Eq. �17�	 for the criti-
cal radius Rcyl�T� are valid after substitution of the Barrett
formula for a1�T�.

Let us introduce tension radius R�=−4Q12� /�T�T0�, bulk
correlation radius RS=�g /�T�T0�, and ratio Tq /2T0. The de-
pendence of the temperatures Tcyl / �T0� vs radius R /RS is de-
picted in Fig. 5.

It is clear that under the favorable conditions, size effects
induce ferroelectric phase in incipient ferroelectrics. In par-
ticular, in nanorods with small enough ratio R /RS
0.5 and
relatively large R� /RS ratio, the ratio Tcyl / �T0��1; also, the
transition temperature essentially increases with decrease of
R /RS. The cross point of the curves in plot �b� corresponds to
the point R=R�, where all lengths �S diverge in accordance
with Eq. �13a� and so the transition temperature becomes
equal.

Usually, T0 is small enough and about 10–50 K. How-
ever, under the condition Tcyl / �T0��10 �see horizontal lines
in Fig. 5�, size-induced ferroelectricity may exist at room
temperatures. Allowing for small values of T0 for incipient
ferroelectric and large values of correlation radius RS �from
several to tens of lattice constant�, the typical range 0

R /RS
1 �where Tcyl / �T0��0� may be rather wide: from
dozens to hundreds of lattice constants.

It is worth to underline that under the condition Q12
0,
bi- and uniaxial stresses stimulate ordered phase appearance
in incipient ferroelectrics. Really, Uwe and Sakudo44 have
found that the uniaxial stress higher than 5.25�108 Pa in-
duces ferroelectric phase transition in bulk KTaO3 at the
temperature of 2 K. The same radial stress �=� /R appeared
in KTaO3 nanowires of radius R=4–40 nm at the surface
stress values �=4–40 N/m,29,31 reasonable for perovskites.
This means that surface stress existing under the curved sur-
face of KTaO3 nanorod could induce ferroelectricity.

Let us consider the appearance of the size-induced ferro-
electric phase in KTaO3 nanowires quantitatively. We used

Eq. �19� for the transition temperature; electrostriction con-
stant Q12 was evaluated from the experiments.44 Ferroelectric
phase transition temperature Tcyl vs nanowire radius R for
KTaO3 is shown in Fig. 6.

Part �a� corresponds to the case when characteristic length
�S→ +� �i.e., q12

S =0 and �g→ +�� and so polarization gra-
dient can be neglected, and radius dependence of Tcyl is
caused by the surface stress only. Parts �b� and �c� corre-
spond to the case when both surface stress and polarization
gradient contribute into the transition temperature, but sur-
face electrostriction is absent, i.e., q12

S =0 and so �S=�g
=const. It is clear that negative �S increases the transition
temperature in comparison with the positive ones �compare
parts �b� and �c�	. Part �d� shows the influence of negative
surface electrostriction on Tcyl. The cross point of the curves
in plot �d� corresponds to the point R=R�, where all charac-
teristic lengths diverge in accordance with Eq. �13a�.

The prediction of size-induced ferroelectricity in KTaO3
nanorods of radius less than 5–20 nm �see vertical lines in
Fig. 6� at room temperatures �see horizontal lines in Fig. 6�
could be very important for applications. Since Q12
0, the
effect is possible for positive intrinsic surface stress coeffi-
cient � that compresses the particle. An additional desirable
condition is the negative length �S, possible even at �g�0
for nanoparticle radius R
R� when �q12

S 
0.
Thus, we came to the conclusion about size-induced fer-

roelectricity in incipient ferroelectric KTaO3 at room tem-
perature for small enough nanowires. It is obvious that the
same size-induced transition could be found in another in-
cipient ferroelectric, SrTiO3.

V. EULER-LAGRANGE EQUATION FOR A SPHERICAL
NANOPARTICLE IN AMBIENT CONDITIONS

Let us consider a ferroelectric perovskite spherical nano-
particle of radius R and polarization P3�r� oriented along the
z axes. The external electric field is E= �0,0 ,E0� �see Fig. 7�.

For a sphere with polarization P3�r�, substitution of solu-
tion �8� into the free energy �Eqs. �5�	 leads to the following
expression for the polarization-dependent part:

GV = �
0

R

r2dr��a1

2
+ �Q11 + 2Q12�

2�

R
�P3

2 +
a11

4
P3

4 +
a111

6
P3

6

+
g

2
� �

�r
P3�2

− P3�E0 +
E3

d

2
�� , �20a�

GS = R2��a1
S

2
+ �2q12

S + q11
S �

2�

R
�P3

2�R� +
a1

S

2
P3

4�R�

− �2d31
S + d33

S �
2�

R
P3�R�� . �20b�

Here, the depolarization field is E3
d=nd �P̄3− P3�, where P̄3

stands for the spatial average on the sample volume, nd
=4� /1+2�e is a depolarization factor, and �e is the nanopar-
ticle ambient dielectric permittivity.45 Variation of the free
energy �Eqs. �20�	 leads to the Euler-Lagrange equation for
polarization P3�r�:
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FIG. 5. �Color online� Ferroelectric phase transition temperature
Tcyl / �T0� vs R /RS for incipient ferroelectric at �S

−1�R�=�g
−1�1

−R� /R�, Tq /2T0=2, and �a� R� /RS=4, R� /RS=0, and �g /RS

=0.4,0.5,1 ,2 ,4 �curves 1, 2, 3, 4, 5� and �b� R� /RS=2 and
�g /RS=0.25,0.5,1 ,2 ,4 �curves 1, 2, 3, 4, 5�.
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�a1 + �Q11 + 2Q12�
4�

R
�P3�r� + a11P3

3�r� + a111P3
5�r�

−
g

r2

�

�r
r2 �

�r
P3�r� = E0 + E3

d,

��P3 + �S�dP3

dr
+

a11
S

g
P3

3���
r=R

= − Pd. �21�

Here, the boundary conditions have been rewritten via renor-
malized length �S and surface polarization Pd, namely:

�S
−1�R� =

a1
S

g
+

�2q12
S + q11

S �
g

4�

R
, �22a�

Pd�R� = − �2d31
S + d33

S �
2�

R

�S

g
. �22b�

In the general case, length �S could be negative or positive
because both signs of a1

S could be encountered. Introducing
the parameters R�=−4�2q12

S +q11
S �� /a1

S and �g=g /a1
S, one ob-

tains that �S
−1�R�=�g

−1�1−R� /R�. The normalized size depen-
dence of characteristic length �S / ��g� is shown in Fig. 8.

Application of the direct variational method for the Euler-
Lagrange equation �Eq. �21�	 solution leads to the conven-
tional form of the free energy with renormalized coefficients:

G � ��T�T − Tsph�R�	
P3V

2

2
+ a11

P3V
4

4
+ a111

P3V
6

6

− P3V�E0 + Esph�R�	� . �23�

Here, the surface polarization Pd in the boundary conditions
leads to the appearance of the built-in electric field Esph that
induces an electretlike polar state at R
Rcr and smears the
phase transition point:

Esph�R� � −
6�

R2 �2d31
S + d33

S � . �24�

One can see from Eq. �24� that the built-in field is propor-
tional to the surface stress tensor � and piezoelectric coeffi-
cients d3j

S . Internal electric field Esph�R��1/R2 increases
with decrease of particle radius and can lead to the particle
self-polarization when it reaches the thermodynamics coer-
cive field, like it was predicted for the thin films due to the
misfit strain.35 Thus, the assumption about the particle
single-domain state used in our consideration looks self-
consistent for sizes below 100 nm, in full agreement with
experimental results.10,11

The transcendental equation for the Curie temperature
Tsph�R� at a given radius R, as well as for the critical radius
Rsph�T� at a given temperature T, which corresponds to the
second order phase transition from ferroelectric to paraelec-
tric phase �at Esph=0� or electretlike state �at Esph�0� ac-
quires the form
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FIG. 6. �Color online� Ferroelectric phase transition temperature
Tcyl vs nanowire radius R for KTaO3 material parameters Tq

=55 K, T0=13 K, Curie-Weiss constant CCW=5.6�104 K, and
Q12=−0.023 m4/C2; gradient coefficient g=10−10 V m3/C in SI
and �S
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face stress values �: 2, 4, 10, 20, 40 N/m �curves 1, 2, 3, 4, 5�; �b�
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aR +

3gnd

R2�nd + aR�
�R�nd + aR

g
cosh�R�nd + aR

g
� − sinh�R�nd + aR

g
��

�S�nd + aR

g
cosh�R�nd + aR

g
� + �1 −

�S

R
�sinh�R�nd + aR

g
� = 0, �25�

where aR�T ,R�=a1�T�+ �Q11+2Q12��4� /R�. Note that the
inequality �Q11+2Q12��0 holds for perovskites.

A. Phase transition in conventional ferroelectric nanospheres

Under the typical conditions �e
10 and a1�T�=�T�T
−TC�, the transition temperature of a conventional ferroelec-
tric has the form

Tsph�R� = TC − �Q11 + 2Q12�
4�

�TR
−

3g

R2�T
���S,R� ,

�26a�

���S,R� =
R�nd/g cosh�R�nd/g� − sinh�R�nd/g�

�S
�nd/g cosh�R�nd/g� + �1 − �S/R�sinh�R�nd/g�

.

�26b�

At a given temperature T, the sphere critical radius Rcr�T�
should be found from the condition Tsph�Rcr�=T.

For more detailed analyses of Eqs. �26�, one should take
into account that the length �S

−1�R�=�g
−1�1−R� /R� depends

on sphere radius R and parameters R�=−�8q12
S +4q11

S �� /a1
S

and �g=g /a1
S. Let us introduce the radius R�= �4Q11

+8Q12�� /�TTC, related to intrinsic surface stress, character-
istic radius Rd=�g /nd, and correlation radius RS=�g /�TTC
that coincides with order parameter correlation radius at zero
temperature.20

Ferroelectric phase transition temperature Tsph /TC vs ra-
dius R /RS calculated from Eqs. �26� for different R� /RS ra-
tios and parameters R� /RS and �g /RS determining �S

−1�R�
=�g

−1�1−R� /R� radius dependence is depicted in Fig. 9.
At positive R� �that corresponds to the positive surface

stress coefficient ��0, since �Q11+2Q12��0	 the transition
temperature increase Tsph�TC is possible at some region of
negative lengths �g �a1

S
0� and/or positive R� �compare
with enhancement for a cylinder�. The situation �
0 might
be possible at some special ambient conditions.

It is clear from Fig. 9 that the critical radius Rcr�0� be-
longs to the region 3RS
Rcr�0�
30RS at positive �g /RS,
whereas for nanowires, the critical radius is much smaller at
the same material parameters: 0.3RS
Rcr�0�
3RS �if any�
�compare Figs. 3�a� and 9�a�	. The difference is related to the
absence of depolarization field in nanowires and its presence
in nanospheres.

Using the values �=0.5–50 N/m,29,31 g
=10−11–10−10 V m3/C,46,47 2Q12+Q11=0.03 m4/C2, �TTC
�4�107–2�108 in SI units, TC�400–700 K, and nd
�4–0.04, one can obtain for the perovskites such as BaTiO3

and PbTiO3 that R��1.5–150 nm for BaTiO3 and R�

�0.3–30 nm for PbTiO3, RS�0.4–1.6 nm, and Rd
�0.1–1 nm. Similarly to the case of nanowires, no restric-
tions are known for phenomenological parameters R� and �g,
since the quantity a1

S can take arbitrary values. Since typi-
cally exp�−R /Rd��1 for nanospheres of radius R
�0.5–5 nm, we derived from Eqs. �26� that

Tsph�R� � TC�1 −
RQ

R
−

Rq
2

R2� , �27a�

Rcr�T� �
RQ ± �RQ

2 + 4�1 − T/TC�Rq
2

2�1 − T/TC�
, �27b�

where RQ= �R�+3RS
2 /�g� is determined by the intrinsic sur-

face stress and bulk electrostriction and Rq
2=−3RS

2R� /�g is
determined by the intrinsic surface stress, surface electros-
triction, and correlation radius RS �see Appendix A of Ref.
36�.

Comparison of typical experimental data for the depen-
dence of the Curie temperature Tsph�d� on the size d of
BaTiO3 and PbTiO3 nanoparticles with theoretical calcula-
tions on the basis of expression �26a�, as well as a fit with the
empirical Ishikava formula Tcr�R��TC�1−R0 / �R−R1�	48 is
shown in Fig. 10.

It is seen from Fig. 10, that derived expression �27a� for
Tsph�R� fits the experimental points, as well as purely empiri-
cal Ishikava formulas at the same amount of fitting param-
eters.

It is worth to note that the critical sizes in ceramics and
powder samples can vary significantly. It can be related to
the ceramic preparation features, as well as with different
mechanical and electrical boundary conditions for the grains
of ceramics and particles of powder. In the framework of the
proposed phenomenological theory, the values of surface in-
trinsic stress �, surface energy expansion coefficient a1

S, sur-
face electrostriction qij

S , and depolarization factor nd��1
+2�e�−1 should differ for the ceramics and powder samples,
prepared by different methods. Also, in order to consider the
dielectric properties of the nanoparticle assembly, one has to
take a concrete expression for their size distribution
function.45

B. Size-induced ferroelectricity in incipient ferroelectric
nanospheres

Using the Barrett formula for a1�T�, the transition tem-
perature induced by surface and size effects is given by
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Tsph�R� =
Tq

2
arccoth−1� 2

Tq
�T0 − �Q11 + 2Q12�

4�

�TR

−
3g

R2�T
���S,R��� . �28�

Here, ���S ,R� is given by Eq. �26b�. Using the asymptotic
relation �arccoth�x�	−1→x for x�1, one can obtain that at
temperatures T�Tq /2, Eq. �28� tends to Eqs. �26� after the
substitution TC→T0.

Below, we consider the size-induced ferroelectric phase in
KTaO3 nanospheres. We used Eq. �28� for the transition tem-
perature; the electrostriction constant �Q11+2Q12� as taken
from Ref. 44. Ferroelectric phase transition temperature Tsph
vs sphere radius R for KTaO3 is shown in Fig. 11. Part �a�
corresponds to the case when characteristic length ��S�
→ +� ��g→ +� and q11

S +2q12
S =0�, so the polarization gra-

dient can be neglected and the radius dependence of Tsph is
caused by the surface stress via the bulk electrostriction ef-
fect. Parts �b� and �c� correspond to the case when both bulk
electrostriction and polarization gradient contribute into the
transition temperature, but surface electrostriction is absent,
i.e., qij

S =0 and so �S=�g=const. It is clear that negative �g
increases the transition temperature in comparison with the
positive ones �compare �b� and �c�	. Part �d� shows the influ-
ence of surface electrostriction �qij

S �0� on transition tem-
perature Tsph. The cross point of the curves in plot �d� corre-
sponds to the point R=−R�, where all characteristic length
diverges in accordance with the equation �S

−1�R�=�g
−1�1

−R� /R�.

It is clear from Fig. 11 that the effect of the appearance of
ferroelectricity in spherical nanoparticles of incipient ferro-
electrics is possible for negative intrinsic surface stress coef-
ficient � that stretches the particle, since �Q11+2Q12��0
�see plots �a�, �c�, and �d�	. At positive �, the ferroelectric
phase appears at negative length �S�R� �see plot �b�	, the
latter being possible for the cases depicted in Fig. 8. Note
that �S�R�
0 for arbitrary radii at negative length �g and
radius R�, which is achieved under the conditions a1

S
0 and
��2q12

S +q11
S �
0.

The prediction of size-induced ferroelectricity in KTaO3
nanospheres of radius less than 1–5 nm �see vertical lines in
Fig. 11� at room temperatures �see horizontal lines in Fig. 11�
and aforementioned special conditions could be interesting.
However, it is difficult to observe in comparison with nano-
wires, where analogous effect is expected at room tempera-
tures and radius of 5–20 nm. The difference is related to the
absence of depolarization field in nanowires in contrast to
nanospheres with depolarization factor nd chosen equal to
4� /3.

Note that Abel has found that the hydrostatic pressure p
higher than 2�109 Pa does not induce any ferroelectric
phase in bulk KTaO3. Moreover, reciprocal susceptibility in-
creases, proving paraelectric phase stability.49 This result is
clear, since the electrostriction coefficient combination �Q11

+2Q12� is positive and polarization gradient influence can be
neglected in the bulk sample, so the positive value �Q11

+2Q12�p only suppresses the appearance of the ordered state.
This experimental fact confirms our conclusion about the
absence of ferroelectricity at compressive surface stress,
when �Q11+2Q12�� /R�0.

Allowing for the facts that proposed the theoretical ap-
proach describing available experimental data6,10,11 rather
well �see Figs. 4 and 10�, we would like to underline that
simultaneous consideration of intrinsic surface stress, depo-
larization effects, and polarization gradient is the key for the
adequate description of size-induced phase transitions in
ferroelectric nanoparticles.
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FIG. 9. �Color online� Transition temperature Tsph /TC vs R /RS

calculated from Eqs. �26� for conventional ferroelectric at Rd /RS

=0.1, R� /RS=2, and ��a� and �b�	 R� /RS=−2 ��c� and �d�	 and
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The polarization gradient influence manifests itself via the
transition temperature dependence on RS, where RS is the
bulk material correlation radius at zero temperature. It is
worth to note that in the majority of the figures �see Figs. 3,
5, and 9�, we represented the transition temperature via the
ratio R /RS. For most of the cases, essential increase of tran-
sition temperature corresponds to the radii less than several
RS even at large R� value, related to intrinsic surface stress.

VI. DISCUSSION

The properties of magnetic and elastic nanoparticles could
be considered in the same way as it has been shown in detail
for ferroelectric nanoparticles. Under the favorable condi-
tions, the approximate formulas �Eq. �4�	 can be applied for
the calculation of the transition temperature and phase dia-
grams of all primary ferroics, as it was declared in Sec. II.

Really, in the case of infinite cylindrical magnetic nano-
particle with order parameter aligned along its axis, the de-

polarization factor is zero and thus inner field E3
d is absent.

The gradient contribution into the renormalization of aij�T�
can be estimated as g / ��SR�
10–0.1 cgsm units for mon-
odomain ferromagnetic nanoparticles with radius of curva-
ture R=5–50 nm and gradient coefficient square root �g
�50 nm and characteristic length �S=50–500 nm.22,39 The
estimation of the surface stress contribution to the renormal-
ization of aij�T� gives 2QlkijLlk�� /R�
102–10 cgsm units at
R=5–50 nm, Llk�1, and �
5�104 dyn/cm for bulk mag-
netostriction coefficients Qlkij �10−9 cm3/erg typical for
rare-earth alloys.50 Thus, the striction renormalization may
be comparable to or essentially larger than the aforemen-
tioned gradient contribution for radii 5 nm
R
50 nm,
making Eqs. �3� and �4� valid for magnetic nanorods. The
estimations had shown that in small nanoparticles, magneti-
zation could appear when it is absent in the bulk, explaining
qualitatively experimental results.5

The estimations made in the end of Sec. II have shown the
possibility of appearance of ferroelectricity in the incipient
ferroelectric nanoparticles that has been confirmed by rigor-
ous calculations in Secs. IV and V. The preferable conditions
for the observation of this phenomenon could be as follows:

�i� The best nanoparticle shape is a long nanorod with
radius less than several tens of nanometers that provides van-
ishing depolarization field and strong surface stress effect.
For incipient ferroelectric nanorods of perovskite symmetry
�KTaO3 or SrTiO3�, effect is possible even at room tempera-
ture if �Q12
0, i.e., when ��0 since Q12
0. An addi-
tional desirable condition is the negative length �S, appearing
even at positive extrapolation length �g�0 when nanopar-
ticle radius R
R�, the latter being possible if �q12

S 
0.
�ii� For spherical nanoparticles, the effect of the appear-

ance of ferroelectricity is possible at radii less than several
nanometers and it is difficult to observe at room temperatures
in contrast to nanorods. The difference is related to the ab-
sence of depolarization field in nanowires in contrast to
nanospheres. Hypothetically, size-driven ferroelectric phase
transition in nanospheres is possible if ��Q11+2Q12�
0,
i.e., when �
0, since �Q11+2Q12��0 for perovskites. An-
other possibility is the change of the length �S sign at some
value of the nanoparticle radius that is achieved when
��2q12

S +q11
S �
0.

The experimental justification of the theoretical forecast is
extremely desirable.
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