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Crystal truncation rods calculated in the kinematical approximation are shown to quantitatively agree with
the sum of the diffracted waves obtained in the two-beam dynamical calculations for different reflections along
the rod. The choice and the number of these reflections are specified. The agreement extends down to at least
�10−7 of the peak intensity. For lower intensities, the accuracy of dynamical calculations is limited by
truncation of the electron density at a mathematically planar surface, arising from the Fourier series expansion
of the crystal polarizability.
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The planar surface of a semi-infinite crystal gives rise to a
diffraction pattern consisting of lines normal to the surface
and passing through the bulk diffraction peaks. The intensity
distribution along these lines, called crystal truncation rods
�CTRs�, contains information on the surface structure.1,2

CTR calculations, commonly performed in the kinematical
�single scattering� approximation, are the basis of x-ray sur-
face crystallography.3–6 The high-intensity CTR regions
close to the Bragg reflections that require dynamical �mul-
tiple scattering� calculations are not sensitive to surface
structure and are usually excluded from consideration in the
surface structure determination studies.

On the other hand, many studies of crystalline films and
multilayers are based on dynamical diffraction theory and are
mostly restricted to the close vicinity of the Bragg peaks.7–9

The substrate peak position is commonly used as a reference
to study the film relaxation. The intensity of the substrate
peak can also be used as a reference to obtain the film struc-
ture factor on an absolute scale to determine, e.g., ordering in
sublattices.10 The thinner the film, the larger the part of the
CTR that needs to be analyzed. Studies of very thin �a few
atomic layers� films require the analysis of the whole CTR.
The problem of an accurate calculation of the CTR intensity
in the whole wave vector range has been the subject of a
number of investigations,11–19 but a conclusive recipe has not
been given yet. It is well established that the two-beam dy-
namical diffraction theory is very accurate in the vicinity of
the respective Bragg reflection but fails in the middle be-
tween two reflections. The resolution of the latter problem
was attempted by appropriate multibeam calculations.12,16,17

Recently, Pavlov et al.19 proposed to calculate the diffracted
intensity in a wide angular range by summing up the ampli-
tudes of the diffracted waves for different reflections, each
amplitude being the solution of the corresponding two-beam
diffraction problem.

In the present paper, it is shown that the sum of the solu-
tions of the two-beam diffraction problems for the reflections
along a CTR coincides with the kinematical formula. The
number and the choice of reflections that have to be included
in the summation are specified. Dynamical and kinematical
calculations disagree in the close vicinity of the Bragg reflec-
tions, where the dynamical solution is correct while the ki-
nematical one diverges, and in the regions where the dif-
fracted intensity is less than �10−7 of the peak intensity. In
this latter region, the dynamical calculations are less accu-

rate. The error in the dynamical calculations originates from
the Fourier expansion of the electron density over the recip-
rocal lattice vectors, so that it cannot be remedied by a more
accurate multibeam dynamical theory.

The analysis is based on the equality

iFhkL

exp�2�iL� − 1
=

1

2�
�

l=−�

�
Fhkl

L − l
. �1�

It is derived below and the limits of its validity are estab-
lished. Here, hkl are the integer Miller indices of the reflec-
tions �h and k correspond to the directions in the surface
plane and l is along the surface normal�, L is the continuous
coordinate along a crystal truncation rod �L=qa /2�, where q
is the z component of the momentum transfer and a is the
lattice spacing in the z direction�, and FhkL
=� j f j exp�2�i�hxj +kyj +Lzj� /a� is the structure factor of the
unit cell �the sum is taken over all atoms in the unit cell, f j is
the atomic scattering factor of the jth atom, and xj ,yj ,zj are
its coordinates�. It will be shown below that Eq. �1� is valid
if and only if the electron density obtained by the back Fou-
rier transform of Fhkl is entirely contained inside the unit
cell. This latter requirement results in the cutting of the
atomic electron densities at the surface.

The left-hand side of Eq. �1� is proportional to the scat-
tering amplitude of a semi-infinite crystal in the kinematical
approximation.1–5 The kinematical theory for semi-infinite
crystals9 provides the remaining prefactors. The amplitude of
the scattered wave is

Ekin�hkL� =
�re

a2�out

iFhkL

exp�2�iL� − 1
. �2�

Here, � is the wavelength, re is the classical radius of the
electron, and �out=sin �out, where �out is the angle between
the diffracted wave and the crystal surface. A similar factor
for the incidence wave, �in=sin �in, where �in is the angle
between the incident beam and the surface, will be used later.
The amplitude of the incident wave is taken equal to 1.

Each term of the sum on the right side of Eq. �1�, after
having been multiplied by the same factor �re / �a2�out�, is the
asymptotic expression of the two-beam dynamical diffraction
theory for angular deviations from the Bragg peak that are
much larger than the dynamical peak width. Within dynami-
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cal theory, the amplitude of the diffracted wave at large de-
viations from the Bragg peak for a given reflection H is
given by EH=�H / �2�out��in+�out+�H��, where �H is the
Fourier component of the polarizability and �H=Hz /� �here,
�=2� /� is the wave vector in vacuum�. The position along
the CTR L= �a /����in+�out� is expressed through the inci-
dence and exit angles, while the position of the Bragg peak
on the CTR is l=−�a /���H. Substitution of these expressions
gives EH=�reFH / �2�a2�out�L− l��, which is equal to the cor-
responding term in Eq. �1� multiplied by the factor given
above. Then, the sum of the amplitudes of diffracted waves
calculated in the two-beam dynamical theory

Edyn�hkL� = �
l

Ehkl
dyn �3�

for all reflections hkl along a CTR hk coincides with the
kinematical solution. For nongrazing incidence and exit, the
resulting amplitude depends on the z component of momen-
tum transfer q=2�L /a, rather than on the incident and exit
angles �in and �out separately. Pavlov et al.19 have arrived at
an equivalent formula by solving the Takagi-Taupin equa-
tions.

In the close vicinity of each reflection hkl, for angular
deviations comparable to the Darwin width, the amplitudes
of the other reflections are much smaller �on the order of the
polarizability ��10−5� than that of the actual reflection, and
Eq. �3� can be applied, keeping in mind that all other terms
can be neglected compared to Ehkl

dyn. At larger angular devia-
tions, Eq. �3� is the first order �in �� approximate solution of
the multibeam dynamical diffraction problem that includes
all Bragg reflections along a given CTR. Such an approxi-
mation is valid since at most one Bragg reflection occurs at
once at the diffraction condition when moving along the
CTR. Hence, Eq. �3� describes the intensity distribution
along a CTR around Bragg peaks and far from them, down
to intensities �� of the peak intensity, which covers almost
the whole CTR. Equation �3� fails at the order of �2. Before
ascertaining the problems arising at such low intensities, let
us consider the CTR calculations based on Eq. �3�.

In the present paper, the dynamical diffraction equations
are implemented in the formulation of Stepanov et al.20

Since Eq. �3� involves the summation of the scattering am-
plitudes, a proper treatment of the phases of the Fourier com-
ponents �hkl of the polarizability is essential. The structure
factor calculations require the origin of the unit cell to be
chosen once for all reflections. This is not so in the programs
by Stepanov21 that choose the origin separately for each re-
flection to minimize the phase of �hkl. Such a choice is cor-
rect as long as a single reflection is involved in the calcula-
tions. When working with the amplitudes of several
reflections �Eq. �3��, this is not appropriate. Also, for layered
structures, the interference pattern depends on the relative
displacements of the crystal lattices of different layers, which
requires a common origin for the calculation of all �hkl’s.10

The requirement of a common origin is ordinary in surface
x-ray structure analysis, but is not appreciated in the dynami-
cal diffraction calculations.

Equally important, but probably less evident, is the choice
of the atomic positions in the unit cell with respect to the

surface. The surface is commonly taken at z=0, and one of
the atoms is placed at the origin. If so, the surface cuts half
of this atom �and other atoms at the same level�, which leads
to wrong CTR intensities. For example, with the surface at
z=0, the Ga and As atoms in the bulk GaAs unit cell cannot
be placed at the depths 0, 1 /4, 1 /2, and 3/4. Rather, they
have to be put at the depths 1/8, 3 /8, 5 /8, and 7/8. Only
this choice leads to an agreement between dynamical and
kinematical calculations. Note that this choice of the atomic
positions is irrelevant to the kinematical formula �2�, since
the kinematical calculation, based on the summation over
atoms and unit cells, contains only one structure factor FhkL
�with the continuous parameter L�, the phase of which is lost
when calculating the intensities. In contrast, the relative
phases of the structure factors Fhkl �with integer l’s� depend
on the choice of atomic positions.

The choice of the reflections that have to be included in
the sum �3� follows from Eq. �1�. Since L starts from zero,
positive and negative l’s are equally important. Correspond-
ing reflections are formally classified as reflection �Bragg�
and transmission �Laue� cases. The dynamical diffraction
equations are formulated in Ref. 20 for the reflection case
�the scattered wave that satisfies Bragg’s law is directed back
into vacuum�. However, the equations do not require any
change to include the transmission case that is of interest to
us, namely, at large deviations from Bragg’s law, when the
scattered wave is directed into vacuum. In other words, the
reflections that formally correspond to the Laue case �the
diffracted wave propagates into the crystal when the Bragg
condition is satisfied� become the Bragg case reflections
when the deviation from the Bragg condition is so large that
the diffracted wave propagates into vacuum.

The number of equations to be included in the sum �1� or
�3� depends on the decay of the structure factors Fhkl with
increasing l. The atomic scattering factors f�s� are decreasing
functions of s=sin 	 /�, where 	 is the Bragg angle of the
respective reflection. Figure 3�b� below illustrates the atomic
scattering factors for Ga and As atoms. One can take s0
�1 Å−1 as a characteristic scale for this decay. For reflec-
tions with l
h ,k the lattice spacing is d=a / l. Here, a is the
lattice period in the surface normal direction �this specifica-
tion may be essential for high-index surfaces or noncubic
crystals�. From Bragg’s law s=1/2d, reflections up to lmax
�2as0 have to be included. Calculations in the paper are
performed for cubic crystals with a in the range 5.5–6 Å,
and a reasonable estimate is lmax�12. The calculations be-
low show that such a number of reflections provides suffi-
cient accuracy.

Figure 1�a� compares kinematical and dynamical calcula-
tions of the CTR 11L from a hypothetical bulk-terminated
GaAs�001� crystal. The reflectivities R= ��out /�in��E�hkL��2
are plotted. A nongrazing incidence angle �in=5° is chosen
to ensure kinematical diffraction conditions. In the left panel,
presenting the whole CTR, the two calculated curves are
almost indistinguishable. At the 111 bulk reflection �the right
panel�, the kinematical curve is slightly shifted with respect
to the dynamical one because of refraction at the surface, and
diverges at the Bragg position. A small but important dis-
crepancy between the curves is revealed in the middle panel
that enlarges the region of the intensity minimum, close to
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the bulk-forbidden reflection 112. Dynamical calculations are
performed with different numbers of terms in the sum �3�.
One can see from the plot that ten terms �i.e., the sum of
two-beam dynamical calculations for the reflections 11l, with
odd l in the range −9� l�9� are sufficient for the conver-
gence of the series. However, the sum �3� does not converge
to the kinematical solution even if the number of the in-
volved reflections is increased further. The origin of the dis-
agreement is in the Fourier expansion of the electron density
over the reciprocal lattice vectors hkl. This expansion is cer-
tainly correct for an infinite bulk crystal that consists of a
periodic repetition of the unit cells. However, if a unit cell is
cut out of the crystal, its electron density does not coincide
with the sum of electron densities of the atoms that belong to
this unit cell. Figure 2 illustrates this statement. Here, the
atoms of the GaAs bulk structure are represented by balls
with radii equal to their covalent radii. The broken line se-
lects one unit cell. Its position is chosen to minimize the
overlap of the electron densities belonging to the atoms of
different unit cells. Still, parts of the electron density of at-
oms of the chosen unit cell are out of that unit cell, and parts
of atoms from neighboring unit cells fall into the chosen unit
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FIG. 1. Crystal truncation rods 11L from a bulk-terminated GaAs�001� crystal at �a� nongrazing incidence angle �in=5° and �b� grazing
incidence angles �in=0.3° and �in=0.2°, above and below the critical angle �c=0.24°. �c� CTR 11L from a 56.53 Å thick Fe3Si film on
GaAs�001� at an incidence angle �in=0.5°. The two right panels magnify the curves of the left panel at the intensity minimum �bulk-
forbidden reflection 112� and close to the maximum �bulk reflection 111�. Dynamical, kinematical, and distorted-wave Born approximations
are compared.
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FIG. 2. View of a truncated GaAs bulk structure in the �100�
direction. Atoms are represented by balls with their radii equal to
the covalent radius of the respective element. A unit cell marked by
broken lines is chosen to minimize the overlap of the electron den-
sities from atoms of different unit cells. The dotted straight line
represents a cut by a mathematically planar �001� surface. The solid
line is a physical �001� surface terminated by atoms.
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cell. These do not affect the bulk structure factor calcula-
tions, since the unit cells are periodically repeated. However,
the dynamical Bragg diffraction from a semi-infinite crystal
implies a truncation of the sum over the unit cells, which is
equivalent to a rigid truncation of the electron density by a
plane �dotted line in Fig. 2�. Such a cut of the electron den-
sity of an infinite crystal by a plane removes parts of the top
atoms and artificially adds the parts of the atoms belonging
to the next layer. In contrast, the physical surface is rough on
that scale since it contains the entire densities of the atoms of
the top layer, as shown by the thick line in Fig. 2.

The difference in these electron densities does not play a
role in the vicinity of Bragg peaks, where many atoms con-
tribute to diffraction, but becomes essential between Bragg
peaks, where the surface atoms provide the main contribu-
tion to the diffracted wave. To provide an additional proof
that this effect is the only source of discrepancy between the
dynamical and kinematical calculations, I have repeated the
same calculations for artificial atoms two times smaller in
size placed in the same lattice �Fig. 3�. Such a crystal is not,
in fact, physical, since the long-range attractive forces be-
tween atoms are not compensated by the short-range repul-
sion when the distances between atoms exceed the sum of
their covalent radii by a factor of 2. The atomic scattering
factors for the artificial atoms Xa and Xb are chosen to be
Gaussian with widths approximately two times larger than
the f�s� functions for Ga and As atoms �Fig. 3�b��. The con-
vergence of sum �1� or �3� is fairly slow �Fig. 3�c��. The sum
of dynamical amplitudes converge to the distorted-wave
Born approximation, described below, when 20 terms are
included. Each term is a solution of the two-beam dynamical
diffraction problem for a reflection 11l, with odd l from −17
to +21.

This result discourages other improvements of the dy-
namical theory, in particular, a complete solution of the
multibeam diffraction problem, that could improve the accu-
racy compared to Eq. �3�. As long as a Fourier expansion
over reciprocal lattice vectors is employed, the cut of the
electron density shown in Fig. 2 persists and does not pro-
vide an accuracy that is better than given by Eq. �3�, i.e., an

accuracy of the order of �10−7 with respect to the peak
intensity. Fortunately, lower intensities quite rarely arise in
experimental CTR studies and are additionally masked by
surface reconstruction and roughness.

Equation �3� can be directly applied to grazing incidence
diffraction with the same reasoning as above: in the vicinity
of a Bragg peak, corrections due to other reflections are neg-
ligible, and in the remaining part of a CTR, the sum �3� is the
first order �over �� perturbation solution of the multibeam
diffraction problem. The kinematical approximation is ex-
tended, for the grazing incidence diffraction case, as the
distorted-wave Born approximation �DWBA�.9,22–24 The
DWBA formulation in terms of the reciprocity theorem in
electrodynamics is most straightforward.23,24 In the zeroth
order, the scattering problem is solved for a uniform medium
having the same polarizability �0 as the crystal under inves-
tigation. The scattering problem is solved twice, with the
waves incident on the surface under the incidence angles �in
and �out, respectively. The solution of each problem in the
medium consists of two plane waves with the amplitudes Di
�i=1,2�, corresponding to the transmitted and specularly re-
flected waves in vacuum. A possible way to find these solu-
tions is to reduce the 4
4 matrices of the dynamical diffrac-
tion problem20 to 2
2 matrices by excluding diffracted
waves. Then, layered structures with different �0’s can easily
be treated, and the kinematical solution is replaced with

EDWBA��in,�out� = �
i,j=1,2

Di
inDj

outEkin�hkLij� . �4�

The superscripts “in” and “out” distinguish the respective
zeroth order solutions. The parameters Lij = �a /���ui

in+uj
out�

are obtained from the parameters ui=kzi /� describing the
wave vectors in the medium �here, ki are the wave vectors of
the waves inside the medium�. Complex parameters Lij sub-
stitute for the real parameter L in Eq. �2�.

Figure 1�b� compares dynamical and DWBA calculations
of the same CTR 11L for the incidence angles below and
above the critical angle �c=0.24°. A good overall agreement
is evident from the left panel. The discrepancy at the inten-
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FIG. 3. �a� An artificial crystal XaXb with the same structure and lattice parameter as GaAs but with atomic sizes that are two times
smaller. The unit cell �broken lines� and a planar surface �dotted line� can be cut between atoms. �b� Atomic scattering factors attributed to
atoms Xa and Xb. The functions f�sin 	 /�� are chosen to be Gaussian with widths approximately two times larger than those of Ga and As.
�c� The CTR 11L from the XaXb semi-infinite crystal in the vicinity of L�2 calculated within distorted-wave Born approximation �DWBA�
and dynamically, by Eq. �3�, with different numbers of involved reflections. As the number of reflections is increased, the dynamical curves
converge to the DWBA results. The incidence angle is �in=0.5°.
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sity minimum �middle panel� has the same nature as above.
The right panels of Figs. 1�a� and 1�b� show that the DWBA
and the dynamical calculation agree everywhere except
within the Darwin width of the Bragg peak. If the incidence
angle is smaller than the critical angle, the results of the two
calculations coincide in that region as well.

The extension to layered structures is straightforward. The
diffracted beam amplitudes obtained in the two-beam dy-
namical calculations20 are summed up according to Eq. �3�.
The kinematical amplitude �2� is supplemented by an addi-
tional term arising from the finite sum over the layer’s unit
cells, FhkL� �exp�2�iNL�−1� / �exp�2�iL�−1�, where FhkL� is
the structure factor of the layer unit cell, and Na is the layer
thickness. Figure 1�c� compares dynamical and DWBA cal-
culations for a Fe3Si film on GaAs�001�. Fe3Si possesses a
cubic unit cell with the same lattice spacing as GaAs, so that
there is no mismatch between the two lattices.10 The inci-
dence angle is taken �in=0.5°, so that the DWBA corrections
to the kinematical formulas are essential. The film is N
=10 unit cells thick �Na=56.53 Å�. A perfect agreement be-
tween the two curves is evident. Even at the intensity mini-
mum �middle panel�, the discrepancy between the two cal-
culations is absent. At the bulk reflection 111 �right panel�,
the DWBA solution diverges and cannot be used within the
Darwin width, while the dynamical solution is correct. The
dynamical calculations in Figs. 1�b� and 1�c� were performed
by the summation of solutions of 32 two-beam diffraction
problems �11l reflections with odd l in the range −31� l
�31 were calculated�.

The CTR 11L analyzed in Fig. 1 shows a larger discrep-
ancy between dynamical and kinematical calculations than
other rods from GaAs�001� surface. Figures 4�a� and 4�b�
present two other rods. The difference between the two cal-

culations diminishes for the 13̄L rod and almost disappears
for the 22L rod. Further calculations show that the discrep-
ancy decreases for AIIIBV crystals consisting of elements of
two different periods in the Periodic Table �e.g., GaSb, see
Fig. 4�c�� and increases for lighter elements from the same
period �e.g., AlP, see Fig. 4�d��. The discrepancy remains
quite small on the scale of the whole CTR and hardly can
have practical implications. Elemental semiconductors show

more sharp minima at the bulk-forbidden reflection 112 �see
Figs. 4�e� and 4�f��. Similar to the case of compound semi-
conductors, silicon as a lighter element shows a larger, as
compared to germanium, discrepancy between dynamical
and DWBA calculations �see Fig. 4�f��.

Equation �1� remains to be derived. Consider an arbitrary
complex one-dimensional function ��z� that is equal to zero
outside a finite interval �0,a�. The Fourier integral of the
function ��z�, therefore, involves integration over a finite in-
terval:

F�q� =
1

a
	

0

a

��z�exp�iqz�dz . �5�

On the other hand, the function ��z� can be periodically re-
peated along the z axis,

���z� = �
l=−�

�

��z + la� , �6�

and the periodic function ���z� can be expanded into the
Fourier series:

���z� = �
l=−�

�

F�ql�exp�− iqlz� , �7�

where ql=2�l /a. Let ��z� be a function equal to 1 on the
interval �0,a� and equal to zero outside this interval. Then,
identically,

��z� = ���z���z� . �8�

The Fourier integral of the left-hand side of this equation is
equal to F�q�. The Fourier integral of the right-hand side is
calculated by performing the integration for each term of the
sum:
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FIG. 4. Crystal truncation rods
from ��a� and �b�� GaAs, ��c� and
�d�� other AIIIBV compounds, ��e�
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are compared. The incidence
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F�q� = �
l=−�

�

F�ql�	
0

a

exp�i�q − ql�z�dz

= �exp�iqa� − 1� �
l=−�

�
F�ql�

i�q − ql�a
. �9�

It is taken into account that exp�iqla�=1 since ql=2�l /a
with an integer l, so that qla is a multiple of 2�. The function
��z� can now be identified with the Fourier component �hk�z�
in the expansion of the electron density of a one unit cell
thick crystalline slab over the wave vectors of its two-
dimensional reciprocal lattice. Its Fourier transform F�q� is
equal to FhkL with L=qa /2�, and F�ql� are equal to Fhkl.
Equation �9� reduces to Eq. �1�. The crucial point in the
derivation is contained in Eq. �8�, which explicitly requires
that the function ��z� is restricted to the interval �0,a�.

Hence, the structure factors in Eq. �1� correspond to the
electron density constrained to a unit cell cut out of the crys-
tal rather than to the electron density of the atoms whose
centers are inside this unit cell. Parts of the electron density
distributions of the atoms belonging to the chosen unit cell
are cut away, while parts of the atoms from the surrounding
unit cells occur in the chosen unit cell �Fig. 2�. The problem
can be avoided in rare cases of layered crystals, e.g., graph-
ite, but is enhanced for higher-index surfaces. This effect
limits the applicability of the Fourier series expansion of the
electron density for the solution of the diffraction problems.
The solution of a multibeam diffraction problem instead of
Eq. �3�, as well as corrections to the dynamical equations
that are omitted in Ref. 20, provides improvements of the

order of �2, smaller than the effect of rigid truncation. That is
why these corrections are not included in the calculations
here. However, only the regions of extremely low intensity
are affected. Intensities in these regions are sensitive to sur-
face reconstruction and roughness. Hence, further improve-
ments of the dynamical theory seem of limited practical im-
pact nowadays.

In conclusion, it is shown that the kinematical calculation
�or, at small incidence angles, the distorted-wave Born ap-
proximation� quantitatively agrees with the sum of the dif-
fracted beam amplitudes obtained in the two-beam dynami-
cal calculation. The number of Bragg reflections that have to
be included in the dynamical calculations is estimated from
the angular dependence of the atomic scattering factors and
amounts to some tens of reflections. Both transmission
�Laue� and reflection �Bragg� cases have to be included. The
reference unit cell should be chosen to minimize �since it
cannot be completely excluded� the cutting of the electron
densities of the top atoms by the surface. The agreement
between kinematical and dynamical calculations can be lost
in two regions. In the Darwin width regions near Bragg re-
flections, the dynamical theory provides correct intensities,
while the kinematical theory diverges. In the regions of very
low intensity �below �10−7 of the peak intensity�, dynamical
theory may fail because of the electron density truncation by
a mathematically flat plane instead of the physical surface,
while the kinematical theory remains applicable.

This work has been inspired by discussions at the Eighth
Conference on High Resolution X-Ray Diffraction and Im-
aging �XTOP 2006�.
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