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Heat production and energy balance in nanoscale engines driven by time-dependent fields

Liliana Arrachea,!? Michael Moskalets,?> and Luis Martin-Moreno!-2
lDepartamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
2Instituto de Biocomputacion y Fisica de Sistemas Complejos, Universidad de Zaragoza, Corona de Aragén 42,
50009 Zaragoza, Spain
3Department of Metal and Semiconductor Physics, “Kharkov Polytechnical Institute,” National Technical University,
61002 Kharkov, Ukraine
(Received 25 May 2007; published 18 June 2007)

We present a formalism to study the heat transport and the power developed by the local driving fields on a
quantum system coupled to macroscopic reservoirs. We show that, quite generally, two important mechanisms
can take place: (i) directed heat transport between reservoirs induced by the ac potentials, and (ii) at slow
driving, two oscillating out of phase forces perform work against each other, while the energy dissipated into

the reservoirs is negligible.
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I. INTRODUCTION

The understanding of the heat transport at the microscopic
realm has attracted the attention of theoreticians for several
years now. Several studies investigate this issue in the frame-
work of one-dimensional lattice models of interacting classi-
cal oscillators.'> Nowadays, the technological trend toward
the fabrication of nanosize electronic devices is boosting the
theoretical interest in quantum transport in a variety of setups
and materials. Recently, there have been efforts to address
the related problems of energy transport and heat dissipation
in these small-size systems.0!3

Electronic quantum transport through mesoscopic systems
has been traditionally analyzed as a response to dc voltages.
There are, however, alternative possibilities to induce net
transport by using time-dependent fields as the generating
source. Interesting examples of this kind have been recently
realized experimentally.'*~'® An important characteristic of
these systems is that directed motion is realized by pure ac
forces thanks to the convenient breaking of relevant
symmetries.' 2!

Energy transport in stationary conditions is achieved as a
response to temperature and/or chemical potential gradients.
The application of time-dependent fields can induce net par-
ticle transport between reservoirs at the same chemical po-
tentials, while it brings about by itself heating of the sample.
Then, it is possible that ac forces can also generate directed
heat transport between those reservoirs even if they are at the
same temperatures or even against a temperature gradient. If
so, what determines the direction of that heat flow? In gen-
eral, what is the detailed energy balance for such a system?
Is it possible to transport part of this energy to develop
work? The theoretical study of the underlying physical pro-
cesses demands a full quantum-mechanical treatment of the
problem to evaluate the heat currents through the different
parts of the device, as well as the calculation of the powers
developed by the external fields.

The aim of this work is to present a theoretical approach
based on nonequilibrium Green’s function that will allow us
to address details of the energy balance in the framework of
an exactly solvable model of an electronic quantum pump.>?
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In Sec. II, we present the model used and introduce an
elementary unit (a bond) which stores energy. Based on a
developed general formalism in Sec. III, we discuss generic
features of energy flows in driven quantum systems. We con-
clude in Sec. IV.

II. MODEL

The device can be described in terms of a Hamiltonian
with three pieces representing the electronic driven system,
the contact with the reservoirs, and the reservoirs:

H(t) — H.Y)’S(t) + Hc()nl+ Hres. (1)

For simplicity, we consider a two terminal setup with left (L)
and right (R) reservoirs, and an N-site one-dimensional lat-
tice model for the driven system. We assume that the latter
has an energy profile s? and nearest neighbor hopping ele-
ments w;. At M lattice positions, ac potentials of the form
Vi(t)=V;cos(Qyt+¢;) are locally applied. This system
Hamiltonian can, thus, be expressed as

N-1
() = 2 HO), @
=1

where

Ll B ¥ ¥ §
H +l)(f) =g/(f)cjc/+ 81+1(I)C}+1CI+1 - W[(C;Cl+l + C}+1C1),

3)

with sl(t)=§,[s?+2§‘il51,,jVj(t)], where {;=1/2 for 1 <I<N
and {; =1 for the sites that intervene in the connection to the
reservoirs /,=1,N. The contacts are represented by hopping
terms between the reservoirs and the latter positions:

Heom =) wa(c,tacla+ H.c.). 4)

ak,
The reservoirs are described by free-electron models:
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FIG. 1. (Color online) Sketch of the device. The sites of the
chain described by H*(t) are represented by small circles. The
local harmonically time-dependent fields V,(¢) develop a power P
The right box encloses a unit of chain described by H'(7), where
energy conservation is considered, while the left one corresponds to
a unit described by H“". The arrows indicate the dc energy cur-
rents jf flowing into a bond (/,/+1) of the system, ji entering the

contacts and Jg entering the reservoirs.

Ho=S e dl )

a

which are assumed to remain at equilibrium with well de-
fined chemical potentials w, and temperatures T,, even after
being connected to the driven structure.

A. Energetics of bonds

In order to define currents of energy, we can follow the
quantum-mechanical counterpart of the procedure carried out
in Refs. 2 and 5 for a classical model. We formulate the
equation for the conservation of the energy Ej;(r)
=(H""*V (1)) stored in a bond (/,/+1). The variation in time
of this mean value is calculated by recourse to Ehrenfest’s
theorem which casts

dE; ;,4(1)

S = TE (0~ TF ) + %[Pl(t) +Pa(@0],  (6)

dEa,lQ(t) _E E lP 7
20T+ 2P (1), )

where the first equation corresponds to bonds of the system
without sites in contact with reservoirs (i.e., 1 <I<N-1)
(the one enclosed by the right box of Fig. 1), while the sec-
ond one corresponds to the left bond that establishes the
contact between system and reservoir (see left box of Fig. 1).
The first two terms of Eq. (6) represent a discretized version
of the divergence of the energy current flowing through the
bond, while the last two terms represent the power developed
by the external forces and are equal to (¢H“**1)(r)/dr). In Eq.
(7), the first current represents the flow of energy toward the
system, the second one is the flow of energy entering the
reservoir, and the third one is the power developed by the
external forces.

Denoting pj,j/(t)=(c;,(t)cj(t)), the explicit expressions for
the different energy currents read
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JH(6) =2 Im{e (O py 1 (Wi = prier ()w)]
+ WPy e (O, (8)

VAOERY Im{E Wapla,ka(t)ska}’ )

k

a

and a similar expression for JlE (¢), while the power devel-
oped by the external forces is

dv; (t)

P(1)= 2511 i

Py, z(f) (10)
In order to analyze the energy balance, we focus on the dc
components of the energy currents and powers done by the
external forces. The conservation of the energy (6) and (7)
implies

dEl,[+l (t)/dt = O

dEa,,a(t)/dt =0, (11)

which defines continuity equations for the dc energy currents

JE, JE and powers P, where A= (1/79) [PdtA(r), with =
=2/ QO being the period of the oscillating time-dependent
fields.

B. Energy currents and powers

To evaluate the different energy currents and powers, we
employ the treatment based on Keldysh nonequilibrium
Green’s functions of Ref. 22, which has been useful to study
charge transport in the kind of systems we are considering.
The mean values of observables entering the corresponding
expressions can be expressed in terms of lesser Green’s func-
tions as follows: pj,j/(t)=—inj,(t,t). The latter is evaluated
from a Dyson equation, which for j,j’ lying on the central
system reads

Gt =

S o [T d
2 E e—lkﬂolf ﬁrj(w)

a=L.R p}' =

XGyy (k+K )G, (K, w), (12)

with Fj(w):ifa(w)f‘a(w), where the Fermi function f,(w)
depends on u, and T,, and Fa(w)=27Tzka|eka’a|25(w_8ka)'
The Green’s function gu/(k, w) is the kth Fourier coefficient
of the Fourier transform of the retarded Green’s function,
which can be exactly evaluated with convenient methods.?
The above expression (12) can be used in Egs. (8) and (10)
to evaluate j,E and P,. By using properties of the Green’s
function,?® the dc con'{ponent of the energy current flowing
into the reservoir reads

EE

B=L.R k=—
X|Gy 1, (k@) P[fg(@) = fol 0+ kQ)]. (13)

We are interested in the case of reservoirs at the same
chemical potentials w,=u, V a. Following the same line as

—(w +kQ)T (@ + kQ)T g(w)
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in stationary transport at linear response,!' we define the dc
heat current as

70 _7E_ 7€

JS=0,-uly, (14)
the latter term being the convective flow which depends on

the dc—charge current .75.24 As this current is conserved, jg
. . . “E
obeys the same continuity equation satisfied by J.

III. DISCUSSION

We now use the above theoretical framework to analyze
two generic mechanisms that can take place in quantum
pumps.

A. Directed heat transport

The first one concerns the possibility of achieving di-
rected heat transport between reservoirs. To this end, notice
that the dc heat current along the lead « can be split into the
addition of a generated and a pumped contribution:

T2 =720 4 o), (15)

where the pumped component reads explicitly as

_ d
Jg(P) — f fr(w — Iu,) 2I‘§(w)lm[glu,la(0, (1))]

+ 2 2 Tolo+ k)Tw)G, ko)l |.

B=L.R k=—
(16)
This component can be proven to satisfy
> e =o, (17)
a=L,R

meaning that heat can be extracted from a given reservoir
and injected into the other one. From the continuity equation
for the dc heat current, it follows that

M
2P = X T2, (18)
=1 ) a=LR

indicating that the jg(g) contribution accounts for the heat

generated by the external forces, which is dissipated into the
Teservoirs.

1. Example

An example of the behavior of these two different contri-
butions to the heat flows at the reservoirs is shown in Fig. 2
for a two-barrier setup in contact with reservoirs at the same
temperature 7, =Tx="T. We consider &) =FE (I;=2,N-1) and
sg=0 (I#1;), with two oscillating poténtials with the same
amplitude V and a phase lag ¢;=¢ ¢,=0 applied at the bar-
riers. Under such conditions, a dc charge current JC is in-

duced, which behaves like J¢o V2 sin(¢) at small V.'° The
pumped component of the heat current, shown in the left
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FIG. 2. (Color online) Pumped heat current (left) and total

power P=P,+P, developed by the forces (right) as functions of
temperature and the pumping frequency. Parameters are N=22, E
=1, V=0.2, ¢=m/2, and u=-1.5.

panel of Fig. 2, flows outward in a reservoir and inward in
the other one. It exhibits a complex structure of maxima,
minima, and sign inversions as a function of (). The details
of these features are model dependent. They are a conse-
quence of the electronic propagation through a structure with
discrete energy levels and quantum interference that takes
place when the pumping frequency () is resonant with the
energy difference between these levels.” The generated heat

currents at the different leads jg(]f) also display a complex
landscape in the T, (), plane. Their sum is, however, always

positive and equals the total developed power P=P,+P,,
which is a monotonous increasing function of ), and de-
creases with 7, as shown in the right panel of Fig. 2.

At T=0, dissipation dominates and masks the heat pump-

ing effect. For our example, the total heat currents J%,J9 as
functions of T are plotted in Fig. 3. There it is seen that the
sign of both currents is positive at 7=0, which indicates that
the flow goes from the central system toward the reservoirs.
Such a behavior is the one expected from considerations
based on general thermodynamics since, at 7=0, there is no
heat at the reservoirs amenable to be transported. However,
the results of Fig. 3 show that at finite 7" a regime exists for
low pumping frequencies ();, where heat pumping takes
place. In fact, the signs of the heat currents are different,
indicating that they leave one of the reservoirs and enter the
other one. For higher (), dissipation is again dominant and
heat flows always from the central system into the two res-
ervoirs.

In the inset of Fig. 3, we show that heat pumping still
takes place even in the presence of a temperature gradient
AT=Tx-T,: At low AT, <1 X 10~*w, the heat current flows

from the reservoir with a lower temperature (jg <0) into the

reservoir with higher temperature (jg>0). Instead, for
AT>1X10"*w, the direction of heat flow is opposite to the
temperature gradient.
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FIG. 3. (Color online) Total heat current as functions of T=Tx
=T, for different pumping frequencies. Thin and thick lines corre-

spond to .7? and fg, respectively. Parameters are as in Fig. 2. The
values of () are indicated in the plots. Inset: Heat currents j,? (open

symbols) and J¢ (closed symbols) for Qy=0.03 and 7,=0.1
(circles) and 0.15 (triangles) as a function of a temperature gradient
AT= TR— TL‘

B. Energy exchange between external forces

The second remarkable mechanism we would like to ana-
lyze is the possibility of extracting work from the phase co-
herent electron system. This issue can be addressed on the
basis of a perturbative solution of the Dyson equation, which

allows for the evaluation of P, at the lowest order in Vj.21*22
J
It casts

M
~ 2\ cos(g;— @) + NP sin(p;— @], (19)
i=1

where the coefficients are
1
N =0 f

N QO—L f —Re{y,,w)y,,(w)} (20)

Im{y,, o)y (w)},

with  y(w)=2 oy, RF<(w)[G Ll ()] G L, (w) and y‘l(a))
—[Gz ,(w+QO +G, ,(w QO)] where G”,(w) is the equilib-
rium retarded Green’s function of the system in contact with
the reservoirs but without the time-dependent fields. In the
low frequency limit, )\[(.})OCQ(Z) while )\ff) (). Thus, this so-
lution indicates that quantum coherence in the wave function
propagation along the structure, which rules the behavior of
the charge current, also plays a role in the way in which
energy is provided and exchanged. In particular for more
than one oscillating field, the terms OC)\ dominate at low
enough (). Since these terms can be posmve for some fields
and negative for other ones, this enables a scenario where the

total energy P= E 1P is dissipated to the reservoirs at a
ratio OCQO, while a larger amount of energy «(), is ex-
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FIG. 4. (Color online) Main panel: Heat currents igj,% (dashed
thin and thick lines, respectively) and J¢ (circles) along the left and
right leads and the central system, respectively, for u=-1.5. Powers
developed by the external fields P, P, (thin and thick solid lines,

respectively). Inset: P;,P, as function of u for Q=0.01. Param-
eters are as in Fig. 2.

changed between the different pumping centers.

1. Example

Such an effect is, in fact, observed for some parameters in
the example of the two-barrier setup. Results are shown in
Fig. 4 for T=0 with ¢=/2. The dc powers are shown along

with the dc heat currents jQ,jg flowing to the reservoirs and
the one flowing within the system between the two barriers

jg. The exchange of energy between the two fields is further

highlighted in the inset, where the two dc powers P, and P,
as functions of w are shown. It is also interesting to note that
the direction of the heat flow between the two pumping cen-
ters goes from the field with the largest power toward the
other one. In the reservoirs, the heat currents are always posi-
tive, indicating that they flow inward. These features are in
line with the idea that the fields locally heat the sample in-
homogeneously, then the heat current flows from the hottest
to the coldest regions.

IV. CONCLUSION

We have investigated details of the energy transport in
open quantum systems driven by time-dependent fields, after
developing a method based on local conservation of energy.
We identified two generic interesting mechanisms: First, the
achievement of directed transport of heat between reservoirs
at finite temperature even against a temperature gradient.
Second, we showed that energy taken from one external
force can be extracted to perform work against another ex-
ternal force. While the first mechanism opens the possibility
of employing quantum pumps as cooling machines at low
temperatures, the second one allows for the coupling of two
or more of such devices to operate cooperatively, as well as
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the use of energy gained at some point of the device to, e.g.,
induce ac motion in a coupled molecular transistor at a low
dissipation rate. We illustrated the two effects in an exactly
solvable schematic model of an electronic quantum pump.
We found that, for typical values of the scale energy w,>
heat pumping takes place at 7~1-10 K and temperature
gradients up to AT/T~1X107® with low driving frequen-
cies (Qy~ (3-30) X 1072 meV). At very low T~0 and €,
up to ~20% of the power done by one of the forces can be
transferred to work against the other one. Our results for
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reservoirs at 7=0 also suggest that the direction of the heat
flows seems to be ruled by an effective temperature
gradient®® induced by the application of external driving.
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