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We consider the effect of electron-electron interaction on the electron transport through a finite length
single-mode quantum wire with reflectionless contacts. The two-particle scattering events cannot alter the
electric current and therefore we study the effect of three-particle collisions. Within the Boltzmann equation
framework, we calculate corrections to the thermopower and conductance to the leading order in the interaction
and in the length of wire L. We check explicitly that the three-particle collision rate is identically zero in the
case of several integrable interaction potentials. In the general �nonintegrable� case, we find a positive contri-
bution to the thermopower to leading order in L. The processes giving rise to the correction involve electron
states deep in the Fermi sea. Therefore, the correction follows an activation law with the characteristic energy
of the order of the Fermi energy for the electrons in the wire.
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I. INTRODUCTION

Short clean one-dimensional �1D� mesoscopic wires, of-
ten referred to as quantum point contacts, show conductance
quantization1,2 as a function of the channel width. The quan-
tization is well described by the theory of adiabatic propaga-
tion of free electrons.3 For noninteracting particles, conduc-
tance quantization should occur in longer channels too, as
long as there is no backscattering off inhomogeneities within
the channel.

A lot is known about the role of electron-electron interac-
tion of 1D channels. Electron-electron repulsion in a wire
enhances dramatically the reflection coefficient, making it
energy dependent.4 However, interaction between electrons
does not alter the quantization �in units of 2e2 /h� of an ideal
channel conductance in the limit of zero temperature.5,6 What
is still an open question is whether there are other manifes-
tations of interactions due to inelastic processes, which influ-
ence the transport properties.

In the absence of interactions, left- and right-moving par-
ticles in a wire are at equilibrium with the reservoirs they
originate from. If a bias is applied between the reservoirs,
then these equilibria differ from each other, giving rise to a
particular form of the nonequilibrium distribution inside the
channel. On the other hand, in a long ideal channel and in the
presence of interactions, one may expect equilibration to oc-
cur between the left and right movers into a single distribu-
tion characterized by an equilibrium with respect to a refer-
ence frame moving with some drift velocity. Interestingly, in
a model with momentum-independent electron velocity for
left and right movers �as it is the case in the Tomonaga-
Luttinger model�, there is no difference between the two dis-
tributions. Effects originating from the particle-hole asym-
metry, however, may discriminate between the two.
Thermopower and Coulomb drag7–9 are examples of such
effects.

At present, little is known about equilibration in a 1D
electron system. In higher dimensions, the electron-electron
interaction provides the most effective relaxation mechanism
at low temperatures and therefore we include this relaxation

mechanism as the first approach. However, in 1D pair colli-
sions cannot change the distribution function for quadratic
dispersion, since the momentum and energy conservation10

laws result in either zero-momentum exchange or an inter-
change of the two momenta.11 In either case, the distribution
function remains the same. Thus, the leading equilibration
mechanism is due to three-particle collisions, which we
study in this paper.12

We investigate here the effects of three-particle collisions
in reasonably short wires �see Fig. 1�, where electron-
electron scattering can be considered perturbatively. As mea-
surable quantities, we evaluate the temperature dependence
of the thermopower and conductance. Note that for more
than one mode, pair collisions become important for certain
fillings.13

The paper is organized as follows. First we review the
noninteracting limit of thermopower and give a qualitative
explanation of the effects due to three-particle collisions.
Then, we describe how to include the electron interactions
using the Boltzmann equation. Next, we calculate the main
ingredient for our perturbation theory, namely, the three-
particle matrix element and scattering rate using a T-matrix
expansion. We note several interesting properties of this scat-
tering rate. Finally, we derive the conductance and ther-
mopower corrections and discuss the deviation from the so-
called Mott formula. Furthermore, some technical details are

FIG. 1. A schematic picture of two metallic gates depleting the
underlying two-dimensional electron gas and thereby forming a
short 1D quantum wire of length L. This fabrication method has the
advantage of producing reflectionless contacts to the leads �Ref. 3�,
so that the boundary conditions of the distribution function are
given by the Fermi function of the reservoirs. We define the ther-
mopower as S=V / ��T�I=0, i.e., the voltage V required to counteract
a current due to the temperature difference �T.
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put in two appendices, and in Appendix A we show that the
number of left and right movers have to change in a scatter-
ing event for the current to change.

A. Thermopower in the noninteracting limit

For a wire without interactions, the distribution function
f �0� is determined solely by the electron reservoirs,

fk
�0� = � f0��k − �L,TL� � fL

0��k� for k � 0,

f0��k − �R,TR� � fR
0��k� for k � 0,

� �1�

where �k is the dispersion relation for momentum k and spin
� �suppressed in the notation�, and f0��−� ,T�= �1+exp���
−�� /kBT��−1 is the Fermi function with �L/R and TL/R denot-
ing the chemical potential and temperature of the left/right
contact, respectively �see Fig. 1�. The electric current for low
temperature T�TF and in linear response to the applied bias
V and temperature difference �T�T then follows as �e
�0� �Ref. 14�

I�0� =
�− e�

L
	

�k�0
vk�fL

0��k� − fR
0��k�� , �2�


−
2e2

h
V�1 − e−TF/T� +

2e

h
kB�T

TF

T
e−TF/T. �3�

From this, the well-known leading-order results for con-
ductance,

G�0� =
2e2

h
�1 − e−TF/T� , �4�

and for thermopower,

S�0� =
kB

e

TF

T
e−TF/T, �5�

for a fully open channel are obtained. Here TF��F /kB is the
Fermi temperature.

B. Main results and a simple picture of the effect of the
three-particle scattering

One of the main results of this paper is that the three-
particle collisions give a positive contribution to the ther-
mopower, i.e., the current due to a temperature difference is
increased by the three-particle scattering. This can be ex-
plained in simple terms. Firstly, to change the current the
number of left- and right-moving electrons need to change,
since it is the number of electrons going through a mesos-
copic structure that determines the current and not their ve-
locity �see Appendix A�. Secondly, we find the dominant
scattering process at low temperature to only involve a single
electron changing direction. This occurs near the bottom of
the band, as pictured on Fig. 2�a�. For the initial electronic
distribution, the left-moving electrons have a higher tem-
perature than the right-moving ones, which favors scattering
into the warmer distribution, as seen on Fig. 2�b�. This thus
creates more left-moving electrons and thereby increases the

particle current toward the colder reservoir, i.e., increasing
the thermopower.

Another important point is that the thermopower and con-
ductance corrections are exponential in temperature, i.e., pro-
portional to exp�−TF /T�. This is a direct consequence of the
dominant three-particle scattering process requiring an
empty state near the bottom of the band. We find the form of
the thermopower correction at low temperatures due to the
three-particle scattering to be given by

Sint 	 L�V�4� T

TF
�6

exp�− TF/T� � 0, �6�

where V is the electron-electron interaction strength and TF
the Fermi temperature. This is found perturbatively in the
short-wire limit. The long-wire limit remains an open ques-
tion, and we expect that the length dependence of ther-
mopower saturates once L exceeds some relaxation length
�which increases for decreasing temperature�.

In contrast, the conductance correction is negative. To un-
derstand this, note that the chemical potential of the initial
distribution is higher for the right-moving electrons than the
left-moving ones. This favors scattering into the left-moving
branch �still with the process shown in Fig. 2�a�� for nonzero
temperature and thereby decreasing the current. The form of
the conductance correction is similar to the thermopower
correction,

Gint 	 − L�V�4� T

TF
�7

exp�− TF/T� � 0. �7�

FIG. 2. �a� The dominant three-particle scattering process at low
temperature in a single energy band. �b� The three-particle scatter-
ing process perturbing the initial distributions shown with warm
left-moving electrons �k�0� and cold right-moving electrons �k
�0�. Due to the temperature difference of the initial distributions,
the scattering process creating left movers dominates compared to
the opposite scattering and therefore it gives a positive correction to
the thermopower.
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II. CURRENT CALCULATION IN THE BOLTZMANN
EQUATION FORMALISM

A. Effect of interactions on the current

To model the current through a short 1D quantum wire
including perturbatively the three particle interactions, we
use the Boltzmann equation

vk�xfk�x� = Ikx�f� , �8�

where fk�x� is the distribution function at a space point x
between zero and L �see Fig. 1�, vk= 1


�k�k is the velocity,
and Ikx�f� is the three-body electronic collision integral, i.e.,
no impurity or interface roughness effects are included here.
We include the voltage and temperature difference in the
boundary conditions of the reflectionless contacts,3 i.e.,

fk�x = 0� = fL
0��k� for k � 0, �9a�

fk�x = L� = fR
0��k� for k � 0, �9b�

and therefore omit the term k̇�kfk�x� in the Boltzmann equa-
tion allowed in the linear-response regime.15 A similar
method has been used to investigate electron-phonon inter-
actions in short quantum wires,16 quantum Hall effect in
quantum wires,17 and ballistic Coulomb drag.18

The three-particle collision integral is assumed to be local
in space and is given by

Ik1x�f� = − 	
�2�3

�1��2��3�

	
k2k3

k1�k2�k3�

W123;1�2�3��f1f2f3�1 − f1���1 − f2��

��1 − f3�� − f1�f2�f3��1 − f1��1 − f2��1 − f3�� , �10�

where the quantum numbers are primed �unprimed� after �be-
fore� the scattering event, f i� fki

�x�, and the scattering rate
W123;1�2�3� is found in the next section. Without interactions
�W123;1�2�3�=0�, the solution of the Boltzmann equation is
simply given by f �0� in Eq. �1�. When interactions are in-
cluded, it becomes a very difficult task to solve the Boltz-
mann equation to all orders in the interaction. However, for a
short wire the interactions only have a short time to change
the distribution function away from the initial distribution
f �0� and therefore we expand the distribution function in or-
ders of W123;1�2�3� as

f = f �0� + f �1� + ¯ . �11�

To find f �1� to the first order in W, we insert the expansion of
f in the Boltzmann equation and realize that only f �0� is nec-
essary in the collision integral. Since Ikx�f �0��=Ik�f �0�� is in-
dependent of x, we find that

fk
�1��x� =

x

vk
Ik�f �0�� for k � 0, �12a�

fk
�1��x� =

x − L

vk
Ik�f �0�� for k � 0, �12b�

using the boundary conditions �Eq. �9��. Therefore, the cur-
rent to the first order in W is

I = I�0� + e 	
�k�0

Ik�f �0�� � I�0� + Iint, �13�

where I�0� is the noninteracting �Landauer� part of the current
from Eq. �2� and Iint is the part due to interactions.

B. The linear-response limit

The form of the interacting part of the current is now
known and the next step is therefore to evaluate it to linear
response to V and �T to obtain the thermopower and con-
ductance corrections. To this end, we define �k

�0� via

fk
�0� � f0��k� + f0��k��1 − f0��k���k

�0�, �14�

where f0��k� is the Fermi function with temperature T and
Fermi level �F. It turns out that �k

�0� is proportional to either
V or �T. This is seen by using the identity

− kBT��f0��k� = f0��k��1 − f0��k�� , �15�

so we can identify �k
�0� by expanding the noninteracting dis-

tribution function fk
�0� �see Eq. �1� and Fig. 1�,

fL
0��k� 
 f0��k� + �− ��f0��k��eV , �16a�

fR
0��k� 
 f0��k� + �− ��f0��k���� − �F�

�T

T
, �16b�

i.e.,

�k
�0� = 


eV

kBT
for k � 0

�k − �F

kBT

�T

T
for k � 0.� �17�

Therefore, to get Iint in linear response to V and �T, we
linearized the collision integral Ik�f �0�� �Eq. �10�� with re-
spect to �k

�0� and insert it into Iint �Eq. �13�� to obtain

Iint = �− e� 	
�1�2�3

�1��2��3�

	
k1�0,k2k3

k1�k2�k3�

�123;1�2�3�

���1
�0� + �2

�0� + �3
�0� − �1�

�0� − �2�
�0� − �3�

�0�� , �18�

where we defined

�123;1�2�3� = W123;1�2�3�f1
0f2

0f3
0�1 − f1�

0 ��1 − f2�
0 ��1 − f3�

0 � ,

�19�

using the shorthand notation �i
�0���ki

�0� and f i
0� f0��ki

�. To
linearize the collision integral and thereby the correction to
the current due to interactions Iint, we have used the relation

f1
0f2

0f3
0�1 − f1�

0 ��1 − f2�
0 ��1 − f3�

0 �

= f1�
0 f2�

0 f3�
0 �1 − f1

0��1 − f2
0��1 − f3

0� , �20�

valid at �1+�2+�3=�1�+�2�+�3�.
Since �i

�0� is different for positive and negative ki, we
need to divide the summation in Iint �Eq. �18�� into positive
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and negative k sums, which gives 25=32 terms. For this
purpose, we introduce the notation

	
k1�0,k2�0,k3�0

k1��0,k2��0,k3��0

�·� � 	
−+−

++−

�·�, 	
�1�2�3

�1��2��3�

�·� � 	
spin

�·� ,

�21�

and similarly for other combinations of the summation inter-
vals. The 32 terms can be simplified to only three terms
using energy conservation and symmetry properties of

�123;1�2�3� in Eq. �19� under interchange of indices. There are
pairwise exchanges of indices �123;1�2�3�=�213;1�2�3�
=�123;1�3�2�, etc., and interchanges between primed and
unprimed indices, �123;1�2�3�=�1�2�3�;123, using Eq. �20� and
the fact that W123;1�2�3� contains a matrix element squared.
This leads to six terms. Furthermore, �123;1�2�3� is invariant
under ki→−ki for all i=1,2 ,3 ,1� ,2� ,3� simultaneously due
to time-reversal symmetry, also seen explicitly from the form
of W123;1�2�3� �derived below�. An example of how the sim-
plifications occurs can be seen in Eq. �A6�. Thus, we obtain
the result

Iint = 2�− e�	
spin

	
−++

+++

�123;1�2�3�� �T

kBT2 ��1 − �F� −
eV

kBT
�

+ 4�− e�	
spin

	
−−+

+++

�123;1�2�3�� �T

kBT2 ���1 − �F� + ��2 − �F�� −
2eV

kBT
�

+ 3�− e�	
spin

	
++−

+−−

�123;1�2�3�� �T

kBT2 �− ��3 − �F� + ��2� − �F� + ��3� − �F�� −
eV

kBT
� , �22�

where the definition of �i
�0� in Eq. �17� was inserted. An

important point is that the number of positive and/or negative
wave-vector intervals is not the same before and after the
scattering. Therefore, we note that only scattering events that
change the number of left- and right-moving electrons con-
tribute to the interaction correction to the current. The origin
of this is the cancellation of the velocity in the definition of
the current and in the distribution functions �Eq. �12��.

This cancellation thus leads to an expression for the inter-
action correction to the current in Eq. �22� where all the
in-going and out-going momenta enter on equal footing. In
Appendix A, we show that this is valid to all orders in per-
turbation theory. Due to this property and momentum con-
servation, there are no processes that alter the current pos-
sible near the Fermi level. Consequently, states far away
from the Fermi level have to be involved in the scattering,
which, as we will see, leads to a suppression of Iint by a
factor exp�−TF /T�. The distribution function, on the other
hand, can be changed by scattering processes near the Fermi
level.

To identify the important processes, we find in the next
section the scattering rate W123;1�2�3�.

III. THREE-PARTICLE SCATTERING RATE

The three-particle scattering rate W123;1�2�3� is calculated
using the generalized Fermi golden rule inserting the T ma-
trix, T�V+VG0T, iterated to second order in the interaction
V to get the three-particle interaction amplitude, i.e.,

W123;1�2�3� =
2




��1�2�3��VG0V�123�c�2��Ei − Ef� , �23�

where Ei=�1+�2+�3 is the initial energy, Ef =�1�+�2�+�3�
the final energy, G0 is the resolvent operator �or free Green’s
function�, j is shorthand for kj, and the subscript “c” means
connected in the sense that the scattering process cannot be
effectively a two-particle process, where one of the incoming
particles does not participate in the scattering. Explicitly G0
and V are given by

G0 =
1

Ei − H0 + i�
, �� → 0+� , �24�

V =
1

2L
	

k1k2q
	

�1�2

Vqck1+q�1

† ck2−q�2

† ck2�2
ck1�1

. �25�

Here, H0 is the unperturbed Hamiltonian �i.e., kinetic energy
with some dispersion�, Vq the Fourier-transformed interac-
tion potential, and ck� �ck�

† � is the annihilation �creation� op-
erator. To calculate the matrix element �1�2�3� �VG0V�123�c,
we write the initial and final states as

�123� = ck1�1

† ck2�2

† ck3�3

† �0� , �26�

�1�2�3�� = ck1��1�

† ck2��2�

† ck3��3�

† �0� , �27�

where �0� is the empty state. Using the anticommutator alge-
bra �ci ,cj

†�=�i,j, we obtain
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G0V�123� =
1

2L
	

q

Vq 	
�abc��P�123�

sgn�abc�
�ba�q�

�cka+q�a

† ckb−q�b

† ckc�c

† �0� , �28�

where we introduced

�ba�q� = �b + �a − �b−q − �a+q + i� =

2

m
q�kb − ka − q� + i�

�29�

�the last equality is only valid for a quadratic dispersion�, and
where the set of permutations is given by P�123�
= ��123�+ , �231�+ , �312�+ , �132�− , �321�− , �213�−�. Here, the
signs of the permutation, sgn�abc�, are shown as super-
scripts.

In order to exclude the effectively two-particle processes
when multiplying Eq. �28� by �1�2�3� �V from the left, kc

�c=1,2 ,3� needs to be different from kj� �j=1,2 ,3�. The
result is

�1�2�3��VG0V�123�c

=
1

�2L�2 	
�abc��P�123�

	
�a�b�c���P�1�2�3��

sgn�abc�sgn�a�b�c��

�
Ṽa�−aṼc�−c�a+b+c,a�+b�+c�

�b + �c − �c� − �b+c−c� + i�
��a�,�a

��b�,�b
��c�,�c

, �30�

where Ṽq=Vq+V−q is the symmetrized interaction. The ma-
trix element consists of 36 terms and the scattering rate thus
has 362=1296 terms. To obtain this result, we did not use
energy conservation. For a quadratic dispersion, the denomi-
nator is only zero if we have an effective pair collision or if
the momentum transfer is zero, as seen from the expression
�ba�q�= 
2

m q�kb−ka−q�+ i�. A picture of the matrix element is
found in Fig. 3�b�, where the exchange processes �including
the sign� are visualized as different ways to connect two
interaction lines and an intermediate propagation �G0� seen
on Fig. 3�a�. The inclusion of the Fermi statistics makes a
substantial difference for the properties of the scattering rate
as compared to the case described in Ref. 19, which is ob-
tained by setting all sgn�¯�= +1.

We can rewrite the matrix element �Eq. �30�� in a more
transparent way in terms of quantum-mechanical exchange
symmetry. First, we introduce the following combination of
three-particle scattering amplitudes:

V�11�,22�,33�� =
��1�,�1

��2�,�2
��3�,�3

4L2 � Ṽ1�−1Ṽ3�−3

�3 + �2 − �3� − �2+3−3�
+

Ṽ2�−2Ṽ1�−1

�1 + �3 − �1� − �3+1−1�
+

Ṽ3�−3Ṽ2�−2

�2 + �1 − �2� − �1+2−2�

+
Ṽ1�−1Ṽ2�−2

�2 + �3 − �2� − �3+2−2�
+

Ṽ3�−3Ṽ1�−1

�1 + �2 − �1� − �2+1−1�
+

Ṽ2�−2Ṽ3�−3

�3 + �1 − �3� − �1+3−3�
� , �31�

FIG. 3. A visualization of the connected three-particle scattering matrix element �Eq. �30��, where three particles interchange their
momenta and energy. This matrix element enters the scattering rate via the generalized Fermi golden rule �Eq. �23��. �a� The basic
three-particle interaction consisting of two interaction lines and a free propagation �see Eq. �30��. �b� Picture of the exchange processes times
the basic interaction needed to form the matrix element �Eq. �30��.
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and after some rewriting, we then obtain

�1�2�3��VG0V�123�c = �k1+k2+k3,k1�+k2�+k3�
�V�11�,22�,33��

+ V�12�,23�,31�� + V�13�,21�,32��

− V�11�,23�,32�� − V�13�,22�,31��

− V�12�,21�,33��� . �32�

We interpret this result in a way similar to a two-particle
matrix element,

�1�2��V�12� =
�k1+k2,k1�+k2�

L
�Vk1�−k1

��1,�1�
��2,�2�

− Vk2�−k1
��1,�2�

��2,�1�
� , �33�

which contains a direct �first term� and an exchange term
�where 1�↔2��.

In the three-particle case, V�11� ,22� ,33�� is the direct
term and one can make five exchange processes �instead of
one� by exchanging the three final states 1�, 2�, and 3�. This
gives Eq. �32�. The sign in front of each V�¯� is determined
by the number of exchanges made, e.g., in V�11� ,23� ,32�� a
single exchange, 2�↔3�, gives a minus �−1�1 whereas for
V�12� ,23� ,31�� two exchanges �1�↔3� followed by
3�↔2�� give a positive sign �−1�2. Furthermore, the argu-
ments in V�11� ,22� ,33�� are ordered in three pairs such that
the differences between the elements in each pair are the
only arguments of the interaction potential �see Eq. �31��.
This is useful when constructing approximations having a
specific scattering process in mind.

How the matrix element was rewritten into the form of
Eq. �32� can also be described in terms of the drawings of

Fig. 3. The direct term V�11� ,22� ,33�� is the sum of the six
terms having mirror-symmetric exchanges before and after
the scattering. The other terms in Eq. �32� then can be ob-
tained by suitable changes of out-going lines.

A. Zero three-particle scattering rate for integrable models

The expressions we obtain for the three-particle scattering
rates �Eq. �23�� are quite cumbersome. Nevertheless, the ob-
tained results allow for some consistency checks. Remark-
ably, for some two-body potentials, scattering of the particles
of an N-body system is exactly equivalent to a sequence of
two-body collisions. Such “special” potentials were studied
in the context of integrable quantum many-body problems.11

We recall now that for a quadratic band, a pair collision does
not change the momenta of the incoming particles or simply
permutes the two momenta. Therefore, three-particle scatter-
ing for the integrable potentials may result only in permuta-
tions within the group of three momenta of the colliding
particles; all other three-particle scattering amplitudes must
be zero for such potentials. In the context of this work, it
means that even three-particle �or higher-order� collisions
would not bring electron equilibration for such types of
electron-electron interaction.

In this section, we check that the three-particle scattering
amplitudes are indeed zero for two special potentials.

1. Pointlike interaction

In the case of contact interaction, Ṽq=const� Ṽ0, and for
any kind of electron dispersion relation �i.e., not necessarily
quadratic�, we find by using the energy conservation law that

	
spin

��1�2�3��VG0V�123�c�2 =
2Ṽ0

4

�2L�4�k1+k2+k3,k1�+k2�+k3�
��A121� − A122� − A131� + A132��

2 + �A121� − A123� − A131� + A133��
2

+ �A122� − A123� − A132� + A133��
2 + �A121� − A122� − A231� + A232��

2 + �A131� − A132� − A231� + A232��
2

+ �A121� − A123� − A231� + A233��
2 + �A131� − A133� − A231� + A233��

2 + �A122� − A123� − A232� + A233��
2

+ �A132� − A133� − A232� + A233��
2� , �34�

where Aabc= ��a+�b−�c−�a+b−c+ i��−1. This is a major sim-
plification from 362=1296 to 9�42=144 terms by perform-
ing the spin summation. If, furthermore, the dispersion is
quadratic, �k	k2, then we find the �at first sight� surprising
cancellation

	
spin

��1�2�3��VG0V�123�c�2���1 + �2 + �3 − �1� − �2� − �3�� = 0.

�35�

This can be seen directly from Eq. �34� or by noting that

V�1a�,2b�,3c�����1 + �2 + �3 − �a� − �b� − �c�� = 0,

�36�

for a quadratic dispersion and constant interaction for
�a�b�c��� P�1�2�3��, i.e., each term of Eq. �32� is zero.
V�11� ,22� ,33�� cancels in such a way that the three first
terms of Eq. �31� cancel each other �the even permutations of
�123� combined with the same primed permutation� and the
three last terms cancel each other �the odd permutations of
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�123� combined with the same primed permutation�.
In fact, the cancellation described above is in agreement

with the general factorization results for the S matrix of one-
dimensional N-body problem with �-function interaction in
real space.20 In this context, it is crucial that the particles
have a quadratic dispersion relation; if we use, e.g., �k	k4,
then the cancellation does not occur. Notice also that the
cancellation we demonstrate is not a trivial zero. Indeed, the
underlying two-particle amplitudes �Eq. �33�� are finite for a
q-independent potential if one includes spins. �For spinless
fermions and contact interaction, the matrix element would
be zero because the direct and the exchange terms cancel in
accordance with the Pauli principle.�

2. Ṽq=V0„1−q2 /q0
2
… interaction

We also observed that the energy conserving part of the
matrix element �1�2�3� �VG0V�123�c in the case of spinless
fermions, quadratic dispersion, and the Fourier transformed
interaction potential of the form

Ṽq = V0�1 −
q2

q0
2� �37�

becomes equal to zero. This is also possible to expect be-
cause of the relation of the potential �Eq. �37�� to the inte-
grable 1D bosonic Lieb-Liniger model.21 Indeed, the bosonic
model with contact interaction potential 	gB��x1−x2� may
be exactly mapped22 onto the spinless fermionic model with
interaction VF�x1−x2�	−�1/gB����x1−x2�. The integrability
of the bosonic model guarantees the integrability of the cor-
responding fermionic one. Adding a contact interaction to VF
does no harm, as we are considering spinless fermions. Fi-
nally, Fourier transformation takes us to Eq. �37�.

We observed that including the spin degree of freedom
spoils the remarkable cancellation for a three-particle ampli-
tude.

In the following sections, we assume a general case inter-
action potential for which the three-particle scattering ampli-
tudes lead to a nontrivial redistribution of the momenta be-
tween the particles.

IV. THERMOPOWER AND CONDUCTANCE
CORRECTIONS DUE TO THREE-PARTICLE

INTERACTION

In this section, we go through the main ideas and approxi-
mations in evaluating the current correction due to interac-
tions Iint �Eq. �22�� to lowest order in the temperature, T
�TF. We give a more detailed calculation in Appendix B.

As noted previously, all three terms in Iint �Eq. �22�� are
exponentially suppressed, since momentum conservation

k1 + k2 + k3 = k1� + k2� + k3�

forbids scattering processes near the Fermi level for the
given combinations of positive and negative k intervals. To
be more specific, it is the phase-space restrictions of the
Fermi functions that give the exponential suppression, i.e.,

f1
0f2

0f3
0�1 − f1�

0 ��1 − f2�
0 ��1 − f3�

0 � 	 e−TF/T. �38�

We begin by identifying the most important three-particle
scattering process. The three terms in Iint �Eq. �22�� are the
following: �i� two right movers backscattering a left mover
while remaining right movers, �ii� one right mover keeping
its direction while backscattering two left movers, and �iii� a
left and a right mover keeping their directions while back-
scattering the third particle. From now on, we will concen-

trate on the case of Coulomb interaction Ṽq, which is the
largest for small q; therefore we want to identify processes
where the initial and final states are close in momentum
space.23 Further, the process�es� should not require more than
one electron in states suppressed exponentially by the Fermi
functions. One can see that due to the constraints stemming
from momentum and energy conservation, in fact, only pro-
cess �iii� allows both initial and final states to be close to
each other in momentum space and at the same time having
only a single exponentially suppressed factor. The corre-
sponding scattering process is of the type shown in Fig. 2�a�.
Therefore, to the first order in exp�−TF /T�, we include only
the third one in Eq. �22�. This leads to

Iint 
 3�− e�	
spin

	
++−

+−−

�123;1�2�3�

�� �T

kBT2 �− �3 + �2� + �3� − �F� −
eV

kBT
� . �39�

Here, �123;1�2�3� expresses the available phase space in form
of the Fermi functions and the three-particle scattering rate
�see Eq. �19��.

One essential approximation is that for the scattering pro-
cess depicted in Fig. 2�a�, we may replace the full Fermi
distribution functions by the exponential tales or the low-
temperature limit expressions, i.e.,

f1
0 
 ��kF − k1���k1�, 1 − f1�

0 
 ��k1� − kF� , �40a�

f2
0 
 ��kF − k2���k2�, 1 − f2�

0 
 e��2�−�F�/kBT, �40b�

f3
0 
 e−��3−�F�/kBT, 1 − f3�

0 
 e��3�−�F�/kBT. �40c�

Note that k1, k1�, and k2 are all positive. We see that the
product of the Fermi functions is indeed exponentially sup-
pressed, i.e., 	exp�−TF /T�.

The second essential approximation is that for the scatter-
ing process seen in Fig. 2�a�, the initial and final states differ
by a small momentum. Therefore, the matrix element in the
transition rate W123;1�2�3� is dominated by the direct term
V�11� ,22� ,33�� in Eq. �32�, since the five exchange terms

are suppressed by the Coulomb interaction �Ṽ�q��kF
�

� �Ṽ�q��kF
�, i.e.,

�1�2�3��VG0V�123�c 
 �k1+k2+k3,k1�+k2�+k3�
V�11�,22�,33�� .

�41�
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The direct term �Eq. �41�� would be zero for Ṽq=const. In

the case of quadratic dispersion relation and general Ṽq, it
vanishes in the limit �ki�−ki�→0 and �kj�−kj�→0 for i , j
� �1,2 ,3� due to the Pauli principle. For a quadratic disper-

sion and for a general symmetrized interaction Ṽq=Vq+V−q,
the direct term V�11� ,22� ,33�� simplifies to the following
expression:

V�11�,22�,33��

=
��1�,�1

��2�,�2
��3�,�3

4L2
2/m
�q1 + q3�

�
�− �q1 + q3�Ṽq1

Ṽq3
+ Ṽq1+q3

�q3Ṽq1
+ q1Ṽq3

��

�k1 − k3 + q1�q1q3�k1 − k3 − q3�
, �42�

where we used energy conservation and introduced q1=k1�
−k1 and q3=k3�−k3.

Next, we give a qualitative explanation for the power law
in T for the interacting current correction �Eq. �39�� using the
quadratic dispersion. First, we consider the phase-space con-
straint. To do the sum over all k in Eq. �39�, we use the
momentum and energy conservation and introduce new vari-
ables q1=k1�−k1 and q3=k3�−k3, i.e., change the summation
variables,

k1,k2,k3,k1�,k2�,k3� → k1,k3,q1,q3. �43�

The energy conservation for a quadratic dispersion gives a
factor of 1 / �q1+q3� �see, e.g., Eq. �B6��. For the process at
hand, k1 and k3 are close to the Fermi level and each of their
sums contributes with a factor of q1 and q3, respectively. The
Fermi functions give the exponential suppression and a con-
tribution to the phase space in form of an exponential tail,
i.e.,

f1
0f2

0f3
0�1 − f1�

0 ��1 − f2�
0 ��1 − f3�

0 � 	 e−TF/Te��2�−�3+�3��/kBT

�44�

�see Eqs. �40a�–�40c��. To get the low-temperature result for
Iint �Eq. �39��, we use the method of steepest decent to cal-
culate the integral. To this end, we note that the exponent
�2�−�3+�3� is a function of q1 and q3 and in the limit
T /TF→0 the most important part is around the origin q1

=q3=0. Here, �2�−�3+�3� vanishes as − 1
2
vF�q1+q2� �see

Appendix B for details�. Therefore, collecting the phase-
space factors, the current correction due to three-particle in-
teractions �Eq. �39�� becomes

Iint 	 �−TF/T� dq1� dq3
q1q3

�q1 + q3�
e−�TF/T��q1+q3�/kF

��V�11�,22�,33���2��T

T

TF

T
�−

q1 + q3

kF
− 1� −

eV

kBT
� ,

�45�

in the limit T�TF. Furthermore, it turns out that the con-
straints k2�0 and k2��0 in the sum �Eq. �39�� only leaves
phase space close to q1=q3 for T /TF→0, so we can set q3
=q1 in the integrand and do the integral over q3, which is

	q1
2 due to the phase-space limits. To lowest order in tem-

perature, this yields

Iint 	 �−TF/T�
0

�

dqq3e−�TF/T�2q/kF�V�11�,22�,33���2

���T

T

TF

T
+

eV

kBT
� . �46�

From this, we conclude that phase space alone �i.e., assum-
ing �V�11� ,22� ,33���2 to be a constant� gives a temperature
dependence of the form

Iint 	 �−TF/TT4��T

T

TF

T
+

eV

kBT
� �phase space only� .

�47�

However, as we have seen the three-particle interaction rate
has a delicate momentum dependence that needs to be taken
into account. Therefore, to calculate the direct interaction
term V�11� ,22� ,33��, we expand the symmetrized potential

Ṽq for small q as

Ṽq = V0�1 − � q

q0
�2

+ O�q4�� , �48�

where the parameter q0�kF describes the screening due to
the metallic gates near the quantum wire and V0 is �twice�
the q=0 Fourier transform of the Coulomb potential cut off
by the screening. Setting q3=q1�q into the three-particle
scattering rate �Eq. �42��, we obtain

V�11�,22�,33�� 	 V0
2� kF

q0
�2

q2 �49�

to lowest order in q. Inserting this into Eq. �46�, the final
result for the current correction, including both phase-space
factors and the momentum dependent scattering rate, be-
comes

Iint 	 e−TF/TT8V0
4� kF

q0
�4��T

T

TF

T
+

eV

kBT
� . �50�

�Here we noticed that the nonconstant three-particle scatter-
ing rate gave rise to four extra powers in temperature.� The
detailed calculation given in Appendix B yields a prefactor,
and the end result is

Iint =
8505

2048
4e−TF/T e




�V0kF�4

�F
3 �LkF�� kF

q0
�4� T

TF
�7��T

T
+

eV

�F
�

+ O�� T

TF
�8� . �51�

Combining this result with the zero order in the interaction
terms see �Eqs. �4� and �5��, we find for the thermopower and
conductance in the low-temperature limit,

S =
kB

e

TF

T
e−TF/T�1 +

L

�eee
� , �52�
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G =
2e2

h
−

2e2

h
e−TF/T�1 +

L

�eee
� . �53�

Here, we introduced the effective length �eee by the relation24

�eee
−1 =

8505

2048
3

�V0kF�4

�F
4 � kF

q0
�4� T

TF
�7

kF, �54�

which may be viewed as a mean free path with respect to
backscattering for a hole near the bottom of the band.

To recapitulate, the temperature dependence T	T7 in Eq.
�54� can be understood in the following way: the three-
particle scattering of a single particle leaves five free mo-
menta, and since two are taken by energy and momentum
conservation this gives T3. In addition, the interaction, Vq, is
proportional to q2, and when squared it gives rise to four
more powers, which results in the T7 dependence.

In the limit of a pointlike interaction, q0→�, the correc-
tions are zero in agreement with the result of Sec. III A.

It is known from the Luttinger liquid theory that in the
limit of linear spectrum, which corresponds to TF→�, the
conductance remains finite even if the wire is infinitely long
�L→��. Therefore, it is tempting to speculate that the two
terms in the square brackets of Eq. �53� are the first terms of
an expansion in �=L /�eee of some function FG��� which
saturates at a constant value in the limit �→�. One may also
have a similar speculation generalizing Eq. �52� for the ther-
mopower, �¯�→FS�L /�eee�.

As a final remark, we note that the so-called Mott
formula25 relating the thermopower to the low-temperature
conductance,

S =

2

3

kB

e
kBT

1

G

dG

d�F
, �55�

is clearly violated by Eqs. �53� and �52�. This violation could
be expected because the conventional derivation of the Mott
formula �for the noninteracting case� assumes that the main
contribution to the conductance and thermopower comes
from the states around the Fermi level in an energy interval
of the order of temperature.26 However, in the considered
case the main contribution to S comes from the “deep” states,
even in the zeroth order with respect to the interaction po-
tential. Correspondingly, there is no surprise that Eqs. �52�
and �53� being substituted, respectively, in the left- and right-
hand sides of Eq. �55� produce a parametrically large mis-
match �TF /T.

V. SUMMARY AND DISCUSSION

We have calculated the leading interaction correction to
the transport properties of a clean mesoscopic wire adiabati-
cally connected to the leads, using perturbation theory in the
length of the wire.

For a single-mode wire, the leading interaction correc-
tions turns out to be given by three-particle scattering pro-
cesses. This is because two-particle processes cannot change
the current due to momentum and energy conservation. To
calculate the effect of the three-body processes, we have uti-
lized the Boltzmann equation formalism, with three-particle

scattering events defining the collision integral. We have
identified the leading-order scattering processes and found
that they involve at least one state near the bottom of the
band, i.e., far from the Fermi level. The involvement of such
“deep” states results in an exponentially small, 	e−TF/T,
interaction-induced correction to thermopower and conduc-
tance at low temperatures.

The account for interaction in this paper is performed for
relatively short wires, where perturbation theory in the inter-
action or equivalently in the wire length is valid. For longer
wires, one needs to find the distribution function by treating
the collision integral in the Boltzmann equation nonperturba-
tively. It is not clear whether the relaxation of the distribution
function would instead yield nonexponential corrections to
the transport coefficients for longer wires. However, since
the scattering processes that contribute to the current must
involve a particle that changes direction �which is proven in
Appendix A�, one might speculate that the exponential sup-
pression is valid for all lengths, as long as electron-electron
scattering is the only active relaxation mechanism.

The question of what the relaxed distribution function
looks like for a mesoscopic wire is an interesting and un-
solved problem. Here, we have only given a partial answer
for the leading contributions for a short wire, i.e., to lowest
order in the interaction. Further studies should involve a self-
consistent determination of the distribution function.

Since thermopower is sensitive to the electron distribution
function, it might be a good experimental tool for answering
the fundamental questions regarding the effect of electron-
electron collisions. Indeed, refined measurements of ther-
mopower of short 1D quantum wires have been performed,
yielding reasonably good agreement with the free-electron
theory.27–29 It remains an open question whether the accuracy
of thermopower measurements is high enough to see the in-
teraction effects in longer wires.
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APPENDIX A: SCATTERING PROCESSES
CONTRIBUTING TO THE CURRENT

In this appendix, we show that the particle current
changes due to electronic scattering if and only if the scat-
tering changes the number of left- and right-moving elec-
trons. In the main text �see Eq. �22��, this was shown to first
order in the transition rate, but here we show it to all orders
in the interaction.

We show it explicitly in the Boltzmann equation frame-
work; however, we suspect it to be a general feature of me-
soscopic systems. Intuitively, the statement means that it is
the number of particles that passes through the mesoscopic
system that matters and not their velocity. In contrast to this
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is, e.g., a long 1D wire or a bulk metal, where a velocity
change of the particles is enough to change the current.

To show the above statement explicitly, we formally re-
write the Boltzmann equation �Eq. �8�� including the bound-
ary conditions �Eq. �9�� as

fk�x� = fL
0��k� + �

0

x

dx�
Ikx��f�

vk
for k � 0, �A1�

fk�x� = fR
0��k� + �

L

x

dx�
Ikx��f�

vk
for k � 0. �A2�

Note that this is not a closed solution of the Boltzmann equa-
tion, since the distribution function is still contained inside
the collision integral. However, this rewriting enables us to
find the current without finding the distribution function first,
i.e., by inserting Eqs. �A1� and �A2� into the current defini-
tion

I =
�− e�

L
	
�k

vkfk�x� �A3�

and obtain �after a few manipulations�

�A4�

where the x-dependent part can be seen to be zero by chang-
ing variables. We note the cancellation of the velocity in the
distribution function �Eqs. �A1� and �A2�� and the current
definition �Eq. �A3��, which is the origin of the statement we
are showing �as in the first order calculation�. A similar can-
cellation occurs in the Landauer formula, thus relating the
transmission to the conductance. By using the explicit form
of the collision integral Eq. ��10��, the current from the in-
teractions is

I�int� =
�− e�

L
�

0

L

dx 	
�1�2�3

�1��2��3�

	
k1�0,k2,k3

k1�k2�k3�

W123;1�2�3��f1f2f3�1 − f1��

��1 − f2���1 − f3�� − f1�f2�f3��1 − f1��1 − f2��1 − f3�� .

�A5�

We can divide the summation over k quantum number into
positive and negative intervals as in the main text �see Sec.
II B�. The essential point is now that all terms that have the
same number of positive �and negative� intervals for the
primed and unprimed wave numbers k are zero. In other
words, if the number of left- and right-moving electrons does
not change, then the contribution is zero by symmetry of the
transition rate. We show this cancellation in practice by an
example �using the notation of Eq. �21��,

�A6�

interchanging 1� and 2� at the first equality using
W123;1�2�3�=W123;2�1�3� and interchanging �123�↔ �1�2�3��
in the second term as indicated. Thereby, we have shown to
all orders that to change the current by electronic interac-
tions, the number of left and right movers have to change.

The statement is not limited to only three-particle

scattering and can be shown equivalently for pair interaction
including several bands, electron-phonon coupling, or any
other interaction with the same kind of symmetry under par-
ticle interchange. Furthermore, the statement is still true if
the collision is nonlocal in space, since that only introduce
some spatial integrals in the collision integral that can be
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handled similarly. Note, however, that the distribution func-
tion can be changed by processes that do not change the
number of left and right movers.

APPENDIX B: DETAILED CALCULATION OF THE
THERMOPOWER AND CONDUCTANCE CORRECTION

DUE TO THE THREE-PARTICLE SCATTERING

The purpose of this appendix is to calculate Iint in Eq.
�39�,

Iint 
 3�− e�	
spin

	
++−

+−−

�123;1�2�3�

�� �T

kBT2 �− �3 + �2� + �3� − �F� −
eV

kBT
� , �B1�

in the low-temperature limit, T�TF, step by step to find the
prefactor given in Eq. �51�. As already mentioned, we per-
form the calculation with the scattering process seen in Fig.
2�a� in mind. Therefore, we use the Fermi functions as given
in Eq. �40� and the matrix element entering in the scattering
rate from Eqs. �41� and �42�, i.e. using a quadratic disper-
sion.

We perform the summation over all the k in Eq. �B1� in
the following way. First of all, we note that due to the mo-
mentum and energy conservation in the interaction process
described, the scattering of k3 to k3� has to be from above to
below the Fermi level, i.e.,

k3 � − kF � k3� ⇒ ��− kF − k3���kF + k3�� . �B2�

This is due to the signs of k2 and k2� and can be understood
as a sign of the difference between the curvature of the dis-
persion near the bottom of the band and near the Fermi level.
Next, we introduce the momentum transfer around the Fermi
level qi�ki�−ki for i=1,3 and using the momentum conser-
vation to do the k2� summation, we obtain

	
++−

+−−

�¯� → 	
k1�0,k2�0,k3�0

	
q1,q3

�¯� , �B3�

remembering the constraint k1�=k1+q1�0, k2�=k2+q1+q3

�0, and k3�=k3+q3�0. The Fermi factors f1
0�1− f1�

0 � and
f3

0�1− f3�
0 � restrict the momentum transfer q1 and q3 to be

much smaller then kF and the k1 and k3 to be near the Fermi
level for the process in mind. Therefore, we can use the
Fermi functions f1

0�1− f1�
0 � to do the summation over k1. As-

suming slow variation of the scattering rate over a range of
q1�kF at the Fermi level, the k1 summation becomes

	
k1�0

��kF − k1���k1 + q1 − kF� =
L

2

q1��q1� . �B4�

Similarly, the k3 summation is done using the phase-space
constraint in Eq. �B2�,

	
k3�0

��− kF − k3���kF + k3�� =
L

2

q3��q3� . �B5�

We see that since k1 and k3 are restricted to the Fermi level,
we can insert k1
kF and k3
−kF in the rest of the inte-
grand. To do the k2�0 summation, we use the energy con-
servation contained in the scattering rate. It is rewritten as
�inserting k1=kF and k3=−kF�

���1� + �2� + �3� − �1 − �2 − �3� 

m


2

1

�q1 + q3�

���k2 − kF
q1 − q3

q1 + q3
−

1

2
�q1 + q3� −

1

2

q1
2 + q3

2

q1 + q3
� .

�B6�

We have now done the summation over k1, k2, and k3 and
are left with the summation over q1 and q3 of the scattering
rate, some Fermi functions, and the phase factors described
above. To this end, we introduce u�q1 ,q3� by inserting k1

=kF and k3=−kF in Eq. �42�,

V�11�,22�,33�� =
��1�,�1

��2�,�2
��3�,�3

4L2
2/m
u�q1,q3� �B7�

for a general symmetrized interaction Ṽq=Vq+V−q.

FIG. 4. �Color online� �a� The integration region A for the in-
tegral �Eq. �B13�� to calculate the current due to interactions. The
two boundaries for the integration area close to the origin stemming
from the signs of k2 and k2� are indicated. �b� The ��Q1 ,Q3�
=��kFQ1 ,kFQ3� /�F function, a dimensionless version of ��q1 ,q3�
�Eq. �B9��, important in the calculation using the method of steepest
decent.
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Furthermore, we collect the exponential tales of the Fermi
functions �Eqs. �40b� and �40c��,

�1 − f2�
0 �f3

0�1 − f3�
0 � = e��2�−�3+�3�−�F�/kBT, �B8�

defining

��q1,q3� � �2� − �3 + �3� = �F�q1 − q3

q3 + q1
�2

−
1

2

vF�q1 + q3�

+
1

2

vF

�q1 − q3��q1
2 + q3

2�
�q3 + q1�2

+

2

2m

q3
2�2q1

2 + 2q1q3 + q3
2�

�q1 + q3�2 , �B9�

inserting k2�=k2−q1−q3, k2 from the energy conservation
Eq. �B6� and k1=kF and k3=−kF. Therefore, we finally get
the interacting contribution to the current in Eq. �B1� as

Iint =
3�− e�Lm3

32
4
7 �
0

�

dq1�
0

�

dq3
q1q3

q1 + q3
�u�q1,q3��2

���kF − k2���k2���− k2 + q1 + q3�

���kF − q3�e���q1,q3�−�F�/kBT

�� �T

kBT2 ���q1,q3� − �F� −
eV

kBT
� . �B10�

Here, only the step functions that restricts the integral are
included. Next, we introduce the dimensionless integration
variables Qi=qi /kF for i=1,3 and the dimensionless func-
tions

U�Q1,Q3� = kF
2u�kFQ1,kFQ3� , �B11�

��Q1,Q3� =
��kFQ1,kFQ3�

�F
�B12�

in the integral

Iint =
3�− e�Lm3

32
4
7kF
e−TF/T�

A
dQ1dQ3

Q1Q3

Q1 + Q3
�U�Q1,Q3��2

�e��Q1,Q3�TF/T�TF�T

T2 ���Q1,Q3� − 1� −
eV

kBT
� ,

�B13�

where A is the integration area shown in Fig. 4�a�. Note that

this expression is valid for a general interaction Ṽq and that it

is not possible to extract a power law in temperature times
some integral by defining new integration variables.

To proceed, we consider the low-temperature limit T /TF
�1 by using the method of steepest decent. Due to the ex-
ponential function e��Q1,Q3�TF/T, the maximum of ��Q1 ,Q3�
will dominate the integral for T /TF→0, since ��Q1 ,Q3�
�0. The maxima are ��0,0�=0 and ��0,1�=0, and
��Q1 ,Q3� is shown in Fig. 4�b�. For a decreasing interac-
tion, the area of Q1�1 and Q3�1 dominates even though
the integrand is zero for Q1=Q3→0. Therefore, we expand
around the maximum �Q1 ,Q3�= �0,0� to get the lowest-order
result in T /TF. In view of the integration region �Fig. 4�a��,
we use Q3=Q1�Q in the integral �Eq. �B13�� and thereby
do the Q3 integral using the approximate limits seen in Fig.
4�a�, i.e.,

�
Q1−Q1

2

Q1+3Q1
2

1dQ3 = 4Q1
2. �B14�

To model the symmetrized potential Ṽq for small q, we in-
clude the deviation from a constant, as described in Eq. �48�.
This gives

� Q1Q3

Q1 + Q3
�U�Q1,Q3��2�

Q3=Q1�Q

→ V0
4� kF

q0
�49

2
Q5

�B15�

to lowest order in Q. In the exponential, we keep � to lowest
order in Q, i.e.,

e��Q1,Q3�TF/T → e−2QTF/T. �B16�

So using the lowest order in Q in the integrand �leading to
lowest order in T�, the interacting contribution to the current
is

Iint =
3�− e�Lm3

32
4
7kF
e−TF/T�

0

�

dQV0
4� kF

q0
�49

2
Q54Q2e−2QTF/T

��TF�T

T2 �0 − 1� −
eV

kBT
� �B17�



8505

2048
4e−TF/T e




�V0kF�4

�F
3 �LkF�� kF

q0
�4� T

TF
�7��T

T
+

eV

�F
�

�B18�

to lowest order in temperature. This is the result stated in the
text in Eq. �51�.
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