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The possibility of an intermediately bound exciton in a quantum well, doped with transition metal impuri-
ties, is considered. Such bound excitons, in which both carriers are captured in an intermediate-radius orbital,
can appear in a quantum well due to strong hybridization of the two-dimensional band states and the impurity
d states that are strongly suppressed in the bulk case due to symmetry considerations. The difference between
the bound exciton in Td �zinc-blende� bulk semiconductors and in the quantum well is due to the lower
symmetry of the latter, namely, a tetragonal D2d symmetry. In bulk systems, the outer carrier is bound by the
Coulomb field of the first exciton carrier and may be considered to be within the framework of the hydrogen-
like model. On the other hand in the quantum well, the central-cell pseudopotential appears to be the leading
attracting potential for the outer carrier and can be described using Koster and Slater’s model. These differ-
ences in binding mechanisms may lead to striking differences in the structure of the exciton spectra and in
other magneto-optical properties.
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I. INTRODUCTION

Excitons are typical excitations of electronic subsystems
in semiconductors and molecular crystals. Two types of ex-
citons are usually distinguished, namely, Frenkel and
Wannier-Mott excitons. Frenkel excitons are strongly local-
ized with a localization radius of the order of the atomic
distance and are observed mainly in molecular crystals.
Wannier-Mott excitons, on the other hand, are found mainly
in semiconductors, their localization radius essentially ex-
ceeds the lattice spacing and their wave functions can be
described within the framework of the effective-mass theory.
Defects and impurities can bind free Wannier-Mott excitons.

The possibility of the localization of Wannier-Mott exci-
tons on charged impurities was first predicted by Lambert,1

and was later studied in detail.2–5 Excitons can also be local-
ized on isoelectronic centers. Isoelectronic centers are neutral
with respect to the lattice, but create a local potential well
and are, therefore, capable of capturing an electron or a hole,
depending on the chemical properties of the impurity. The
excess carrier captured by the short-range potential attracts a
carrier of the opposite sign. Hence, an electron-hole pair is
localized on a center with hydrogenlike properties of donor
or acceptor type. The exciton localization mechanism was
proposed by Hopfield et al.6 and was confirmed by Cohen
and Sturge.7 Since then, this complex excitation in semicon-
ductors has been studied both experimentally and
theoretically.8–14

It is known that, as a rule, 3d transition elements in
AxB8−x compounds form isoelectronic impurity centers with a
dn configuration of the incomplete shell.15 Like other isoelec-
tronic impurities, these impurities are also known to bind
excitons. Unlike simple neutral impurities, however, isoelec-
tronic transition metal �TM� impurities capture one carrier in
their electrically active d shell, i.e., in the deep level of this
impurity, and the second carrier is attracted by the Coulomb
potential of the first carrier. In the excitation spectra, such
bound excitons are observed as lines in the low-energy onset
of the charge-transfer band. Involvement of the impurity d

shell in the formation of the bound exciton is manifested by
various features, e.g., possible multicharge states of the TM
impurities and the amphoteric behavior of the excitons.16

These deeply bound excitons �DBEs� have been studied ex-
tensively, both experimentally17–21 and theoretically.16,22 See
Ref. 23 for a general review of the subject.

Isoelectronic 3d elements in bulk semiconductors can also
form an intermediately bound exciton �IBE�, which was ob-
served and explained for Ni in CdS �Ref. 24� and Cu in
ZnO.25 This kind of exciton, in which both carriers are cap-
tured in intermediate-radius orbitals, results from the lower,
wurtzite type of the crystalline environment of both CdS:Ni
and ZnO:Cu systems compared with that of the zinc-blende
symmetry in other systems. Such IBEs were found to be
responsible for a significant change in the complex excitation
spectra and in other properties. The idea that these excita-
tions are due to intermediately bound excitons is supported
also by additional experimental data on their isotope shifts
and relaxation behavior.26

The effect of impurities on various kinds of exciton states
�e.g., charged or neutral bound excitons� in a quantum well
�QW� has received much attention over the years. Donor-
related complexes in QW were proposed by Shanabrook and
Comas.27 Excitons bound to ionized donors located at the
center of the QW,28–30 as well as to isoelectronic
impurities,28,29,31–33 have also been studied both theoretically
and experimentally.

In this paper, we present a microscopic theory of excitons
bound to isoelectronic transition metal impurities in QW. The
different properties of bound excitons in simple and struc-
tured isoelectronic impurities are presented. Such differences
are connected to the properties of the d level and to the
crystalline symmetry: three-dimensional �3D� systems crys-
tallize in a tetrahedral lattice �Td group�, whereas the Td sym-
metry in QW is lowered to a tetragonal D2d symmetry. We
show that while 3D systems with a Td symmetry �e.g., GaAs
and ZnS� form a DBE with a hydrogenlike spectrum, the
quantum well made by the same material forms an interme-
diately bound exciton with a Koster-Slater-type single state.
The lower symmetry of the crystalline environment of the

PHYSICAL REVIEW B 75, 245410 �2007�

1098-0121/2007/75�24�/245410�9� ©2007 The American Physical Society245410-1

http://dx.doi.org/10.1103/PhysRevB.75.245410


substitutional impurity results in the essential modification of
the wave functions of electrons localized around the impu-
rity. This eventually leads both to a transformation of the
deeply bound excitons into intermediately bound excitons
and to partial equalizing of the behavior of the electron and
hole that constitute the bound exciton. This equalization
means that, unlike the standard cases in which excitons are
bound to neutral impurities, both bound carriers acquire fea-
tures of localized, deeply bound d states. It is shown that, in
addition to the attraction of the first carrier by the short-range
impurity potential, the outer carrier is attracted by the short-
range pseudopotential, whereas the Coulomb potential leads
only to small corrections. As an example, we consider bound
excitons in III-V compounds.

II. GENERAL MODEL

Excitons that are bound to 3d impurities in QW are simi-
lar in many aspects to those deeply bound to common neutral
impurities in the bulk case. Both are characterized by multi-
electron impurity configurations �A�−��dn−1+e� ,h� and
�A�+��dn−1+h� ,e� for acceptor- and donor-type excitons, re-
spectively. Here A�±� represents the impurity configuration
whose shell either possesses or lacks an extra electron. As an
example, we choose an acceptor-type bound exciton with a
binding energy defined as the energy required to capture a
free electron-hole pair23

Ebex = E�dn,h� − E�dn−1� . �1�

This expression produces an energy that is close to that of
deep levels, i.e., the exciton line appears in the optical spec-
tra as satellites at the edges of the impurity charge-transfer
bands. The multielectron function Eq. �1� is constructed us-
ing the eigenfunction of the single-electron Hamiltonian of
the impurity located in the QW

He = H0 + Vd�r − R0� + U��r − R0� , �2�

where H0 is the Hamiltonian describing the motion of an
electron in the conduction and valence bands with an effec-
tive mass m*, which is confined in the z direction by the
potential V�z�. U��r−R0� is the lattice crystal-field potential
acting on the impurity at site R0, and Vd�r� is the d-impurity
potential. The effect of the periodic lattice potential is taken
into account in the effective-mass approximation, which may
be used since we are interested in the properties of states
near the bottom of the lowest conduction band. The band
wave functions then assume the form of

��,j�r� = �ak�
���� j�z� . �3�

Here � and j are the quantum numbers describing the finite
electron motion, �, in the xy plane and in the z direction,
respectively, where ��ak� and a represents an electron or a
hole in the conduction and valence bands, respectively. � j�z�
are eigenfunctions of the confining potential V�z�. The hole
wave function �i�

�h� is an eigenfunction of the Hamiltonian
−Hv�r� of the valence band, with one electron removed. Af-
ter excluding the core part of the impurity pseudoion, dn−1,
the general Schrödinger equation is reduced to the following
two-particle equation

�He�r1� + Hh�r2� + U�r1 − r2� − EI
ex� � Â�i	

�n��r1��i�
�h��r2� = 0,

�4�

where the exciton energy, EI
ex, is simply the difference be-

tween the total energies of the system with and without the
exciton, �i	

�n� is the wave function of the nth electron, and
U�r1−r2� is the electron-hole Coulomb interaction. Here the
indices 	 and � correspond to the electron and hole quantum
numbers in the irreducible representation, respectively.

Since the electron wave function is more localized than
the hole wave function, the single-electron Schrödinger
equation

�He + Ei
��d
n−1� − E��i	

�n��r� = 0 �5�

is considered first, and the electron-hole Coulomb interac-
tion, U�r1−r2�, is neglected. This equation determines the
position of the Ei	

�n� level of the �n�th bound electron and its
wave function �i	

�n��r� in the potential Ud	�r� created by the
d�n−1� core of the impurity d shell with the energy Ei
��d

n−1�.
Similarly, the following equation:

��T̂ + 	
j

Uh��r − R j� + V�z� + Ud��r�
 + U�r� − Eh��i�
�h��r�

= 0, �6�

can be derived from Eq. �4� for the hole wave function,
where Eh=E−Ei	

�n�. The Coulomb potential U�r� arises due to
the interaction between the hole and the nth electron in the d
shell of the impurity ion, and Uh��r−R j� is the periodic po-
tential of lattice with the lack of the impurity site.

In the case of conventional isoelectronic d impurity in Td
bulk semiconductors, Eqs. �5� and �6� lead to a standard
bound exciton �see, for instance, Refs. 6, 20, and 34�. Many
features were analyzed in Refs. 16 and 22, but the possibility
of forming an electron-hole pair with comparable radii in
QW requires special consideration. This mechanism, there-
fore, should be revised as in the case of a wurtzite-type lat-
tice �C6v hexagonal group�.24,25 Special attention should be
paid to the short-range central-cell pseudopotential, which
will be shown to play an important part in the formation of
bound excitons in QW. In the two following sections, we will
consider the difference between degrees of localization of
both electron and hole pair. In order to investigate the
electron-hole carriers, as described by Eqs. �5� and �6�, we
will consider the example of the electronic properties of a
TM impurity in a GaAs quantum well.

III. TIGHTLY BOUND ELECTRON

We first describe, using the resonance scattering model,
how an electron interacts with a single isoelectronic TM im-
purity centered in a QW. From the general theory of 3d im-
purities in semiconductors,35–38 we know that the shape of
the wave function and the position of the impurity deep level
are determined largely by the covalent hybridization of the
impurity d orbitals with the band states of the host material.
To solve Eq. �5�, we use the set of functions ��̃�,j ,�d	� as
our basis for the expansion of the localized electron wave
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function. This set includes �i� the atomic d orbital, �d	�, that
forms the “core” of the impurity wave function, which re-
tains its 3D character because its radius, rd, is small in com-
parison with the width of the well, V�z�, which is responsible
for the confinement in the z direction wave functions; and �ii�
the wave functions of the quantum-well states, which should
be orthogonalized to the d-electron wave functions

�̃�,j = ��,j − 	
	�

�d	���, j��d	�.

The energy level of the electron in the d�n� shell, Ei	
�n�, is then

determined by the equation

Ei	 = �	
�n� + U + M�Ei	� , �7�

where the potential part of the impurity scattering is negli-
gible compared with the resonant scattering by the d level of
the unfilled impurity shell. Here, the n electron ionization
energy is defined as

�	
�n� = E�dn� − E�dn−1� ,

U is the renormalization energy due to the response of
the host states to the excess impurity charge,35

M�Ei	� = 	
�j

�V	�,�j�2

Ei	 − E�j
�8�

is the self-energy part, and

V	�,�j = �d	��U��r − R0���j˜ � �9�

is the hybridization matrix element responsible for the mix-
ing of atomic and band states in the above basis.

The wave function of the nth electron consists of a local-
ized core and an extended Bloch tail,

�i	�
�n� = �1/�1 + M̃a	� ���d	 ± �M̃a	� �b	� , �10�

where

M̃a	� = − dM̃a�Ei	�/dEi	

and

�M̃a	� �b	 = 	
j,�

V	�,�j

Ei	 − Ej,�
�̃ j,�.

It is known that in bulk semiconductors, the states in the
lower part of the conduction band have only a weak influ-
ence on the electronic structure of 3d impurities in zinc-
blende crystals since these states are formed predominantly
by the s orbitals, which can form only nonbonding states
with TM d orbitals.15,39 As a result, the hybridization matrix
elements of Eq. �9� are propotional to the absolute value k of
the wave vector near the bottom of the conduction band. The
main contribution to the tail part is, therefore, the antibond-
ing combination from the heavy-hole band �denoted by the
minus sign in Eq. �10��. Since the impurity level position is
counted from the top of the valence band, the level in the
upper part of the forbidden energy gap appears to be very
deep. This means that the Bloch tail, �b	, of the wave

function Eq. �10�, is rather short ranged and has relatively
little weight in the impurity wave function compared with
that of the atomic d function, �d	. This weight is propor-

tional to the factor M̃a	� �shown in Fig. 1 of Ref. 24�.
In a QW, the situation with respect to the same level is

quite different: The presence in the integral of the envelope
function, � j�z�, lifts the selection rules for the hybridization
integrals since this axially symmetric function contains all
spherical harmonics, Yl0. It is instructive to review the sym-
metries of the states, as follows:40 The conduction-band s
states and the valence-band p state are represented in the
cubic zinc-blende Td group as 1	1 and 3	5, respectively. In
the double group representation, which takes into account
electron spin, the 1	1 conduction band becomes 2	6 and 3	5
transforms into 2	7+ 4	8. Spin-orbit coupling splits off the
2	7 and 4	8 bands, leaving the 4	8 as the ground state of the
holes. In a quantum well, which lowers the Td symmetry to
D2d, this band is split into 2	6 �light-hole� and 2	7 �heavy-
hole� bands.

The resulting bound d electron states with crystal-field
splitting transform according to irreducible representations
	3 and 	5. However, accounting for the spin-orbit interaction
in the Td group �see, e.g., Ref. 15�, the 	3 becomes 	8 and 	5

states split into 	8+	7 states. After lowering symmetry, the
newly split representations 2	6+ 2	7 of the tetragonal D2d

replace the 4	8 of Td. As a result, the wave function of the
nth electron in the d shell of the charged A�−� ion, which
transforms according to representation 2	6, hybridizes
strongly with both valence- and conduction-band states so
that both matrix elements V	6,c and V	6,v �see Eq. �9��, are
constant at k�→0.

The nonzero hybridization of the d levels with the states
near the bottom of the conduction band can radically change
the structure of the impurity states in quantum wells in com-
parison with those in the bulk case. The basic equation of the
theory responsible for this difference is the self-energy part,
M�E�, which is the principle part integral of Eq. �8�

FIG. 1. Qualitative graphical solution of Eq. �7� for the first
exciton carrier �electron� in a quantum well. The sum of the Hilbert
transform is shown �solid line� with the singularities near the band
edges �dashed line�, which are typical for constant density of states.
The intersection of this curve with the straight line Ei	−�d	 is the

eigenvalue, Ei	. The shape of the function M̃c	6
� is also shown

�dot-dashed line�.
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M�Ei	6
� = 	

aj
� S	6aj���d�

Ei	6
− Ej − �

. �11�

This integral is a conventional Hilbert transform of
the local partial densities of states, S	6aj���
=	k�

�V	6,aj�k���2���−�ajk�
�. The mass operator M�E� esti-

mated under the assumption of a constant hybridization pa-
rameter becomes

M�Ei	6
� = 	

j=1
�V	6,aj�2�Sj − Sj−1� ln�Ei	6j + Dj

Ei	6j − Dj
� , �12�

where 2Dj is the subband width and Sj =
1
2

� 2m
�2 �j is the two-

dimensional constant density of states. The nonzero value of
V	6,c�k� =0� in a QW leads to a logarithmic singularity of the
Hilbert transform, M�Ei	6

� and, as a result, to a singularity of
its derivative M��Ei	6

→�c�→� �see Fig. 1�. Then, the im-
portant parameter used to compare the contributions of the
valence and conduction bands to the Bloch tail, �b	 �see Eq.
�10��, is the energy distance between the impurity level and
the corresponding band edges. For impurities with energy
levels, Ei	, that are very close to the conduction band, the
contribution of the conduction band becomes dominant. For
example, a vanadium impurity V2+ in GaAs exhibits this
kind of spectrum.41 In some cases �e.g., Cr in GaAs�, the e
state of the charged impurity may appear above the bottom
of the conduction band.15

Therefore, similar to the case of CdS:Ni discussed in our
previous paper,24 the electron wave function, Eq. �10�, can be
represented as a bonding combination

�i	6

�n� = �1/�1 + M̃c	6
� ���d	6

+ �M̃c	6
� �s� . �13�

Thus, the Bloch tail �see Eq. �A1�� dominates in the wave
function of the nth electron in the unfilled d shell of an
impurity pseudoion A�−�, and the wave function in a QW
appears to be much more extended than in the bulk case.
This wave function, Eq. �A5�, transforms according to the
irreducible representation 	6 and, as we shall see below, also
determines the symmetry properties of the bound hole states.

IV. LOOSELY BOUND HOLE

We now calculate the hole eigenenergy, Eh, and its wave
function, �i�

�h�. The second carrier in an electron-hole pair
bound to a simple isoelectronic impurity is usually well de-
scribed by assuming a point-charge potential. The effective-
mass approximation with central-cell corrections is then
applied.42 As a result of the singularity in the mass operator,
the shell of the impurity is strongly distorted due to the hy-
bridization with the conduction-band states. Thus, the
central-cell correction obtained in the QW case becomes
much more important than in the bulk case.

A loosely bound state is usually orthogonalized to the
core states of the impurity, which results in a contribution to
the impurity potential known as a central-cell correction.43 In
the case of a bound exciton, the hole wave function is or-
thogonalized to the wave function of the nth electron. There-
fore, the hole wave function takes the form

�i�
�h� =

1
�A�

�	
�

F�
��̃��r� + Fd

���i��� . �14�

The first term of this equation is the Bloch tail, expanded
over the QW functions of the valence band, �=vjk�,

�̃� = �� − 	
���

�d̃����vjk���i���, �15�

which is orthogonalized to all states of the A�−� pseudoion
�the �� states include the 	 states of the outermost electron�.
To find coefficient Fd

��, the Harrison procedure is repeated
for the resonance pseudopotential of noble and transition
metals.44 Inserting Eq. �14� into Eq. �6�, one readily obtains

Fd
�� = −

�d̃��W��b��
Ei	 + Eh

,

where W�r�=U��r−R0� is the crystal-field potential. Factor
A� can be determined from the normalization condition for
Eq. �14�. Then, in close analogy with the case of the deep
resonance state,37 we find the effective Schrödinger equation
for the band part of the loosely bound hole wave function,
�b��r−R0�;

��T̂ + U0�r� + V�z�� + Uc�r − R0� + Us + Û�
res − Eh�

��b��r − R0� = 0, �16�

where

Û�
res�b��r − R0� =� Û�

res�r,r���b��r − R0�d3r�

Û�
res�r,r�� = 	

��

W�r��d̃����d̃���W�r��
Ei	 + Eh

.

Here U0�r� is the periodic potential, Uc�r−R0� is the Cou-
lomb potential, and Us=Vd�r−R0�−Uh�r−R0� is the short-

range impurity potential. The resonance potential Û�
res�r ,r��

and its role in the formation of bound excitons in the bulk
case were discussed in Ref. 23.

Inserting the orthogonalized Bloch functions described by
Eq. �15� into Eq. �16� leads to a system of linear equations
for coefficients Fvj

� �k�� that determine the wave function
described by Eq. �14�,

�E� − Eh�F�
� − 	

��

�U���
s + U�,���

cc − U�,���
res �F��

� = 0.

�17�

Here U���
s are the matrix elements of the Coulomb potential

and U�,���
cc and U�,���

res are the short-range potential and reso-
nance scattering potential, respectively. The states of the va-
lence bands have different symmetries, 2	6 �light hole� and
2	7 �heavy hole�, and are therefore decoupled, i.e.,
U���

s =U���
s �vv�

. It should be also taken into account that this
potential is created by the charge of the exciton electron
bound to the impurity with a finite localization radius. The
corresponding corrections were discussed in Ref. 16, in
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which it was shown that it is possible to make the hole level
shallower provided the radius of the swollen electron orbital

d̃� is sufficiently different from that of the hydrogenlike
bound hole. The term

U�,���
cc = ���Us���� + S���Ei� − Eh�S���

* + V��S���
* + S��V��

*

�18�

is simply a conventional short-range impurity pseudopoten-
tial, which has a standard form, as described by Harrison.44

Here ���Us����= ���Vd�r−R0�−Uh�r−R0����� is a matrix el-
ement of the substitutional potential that arises due to the
difference between the core states of the impurity and host

ion. S��= �� � d̃�� and V��= ���W�d̃�� are the orthogonality
and hybridization integrals, respectively.

Substituting the last electron wave function, Eq. �13�, into
Eq. �18�, we obtain the contribution due to the Bloch tails of
Eq. �13�,

U	,���
cc �� M̃c	6

�

1 + M̃c	6
�

Ud,���

, �19�

where

Ud,���
= �j,vk��EP̂	 + WP̂	 + P̂	W�j�,v�k��� , �20�

P̂	= ��	���	� is the projection operator, �	 is the Bloch tail
of the impurity wave function Eq. �13�, and E=Ei	−Eh.
Excitons bound to TM impurities with a deep d state in a
host with a Td symmetry were studied in Ref. 16. It was
found that both pseudopotential and resonance contributions
are small due to the weak hybridization with the conduction-
band states discussed previously. In addition, the wave func-

tion is sufficiently localized, i.e., M̃a	� �1, thus the term de-
scribed by Eq. �18� is of no importance in the formation of
the hole bound state. The bound electron charge can also be
considered to be practically pointlike and its conventional
effective-mass approximation, with central-cell corrections,
can be used, applying Eq. �17�, to describe the bound hole in
the Td bulk case.

The situation in QW �D2d symmetry� appears to be quite
different. The pseudopotential Eq. �18� is strongly enhanced
due to the lift of the symmetry constraint for the hybridiza-
tion, as discussed in the previous section, which results also

in M̃a	� �1. This pseudopotential is responsible for the hole
binding, whereas the Coulomb potential �decreased due to
smearing of the electron charge in the center� can lead only
to small corrections. It is worthwhile to compare this situa-
tion with the results of Perel’ and Yassiyevich,45 who consid-
ered the formation of deep levels by a short-range impurity
potential. Although the problems are very similar, two im-
portant differences should be mentioned. The impurity po-
tential considered by Perel’ and Yassiyevich transforms ac-
cording to the irreducible representation 	1 and does not
introduce any symmetry restrictions. The structure and sym-
metry features of the levels created by such a potential are
controlled by the host band structure. In our case, on the
other hand, the impurity potential transforms according to

the irreducible representation 	6 and has properties of the
corresponding projection operator. This means that only 	6
band states participate in the formation of the impurity lev-
els. As a result, our classification of the levels obtained is
different than that of Perel’ and Yassiyevich. The second dif-
ference is connected with the fact that Perel’ and Yassiyevich
considered neutral impurities, whereas we are dealing with a
charged impurity. Thus, the corresponding Coulomb poten-
tial is relatively weak and may introduce only small pertur-
bations without changing the symmetry properties of the lev-
els. The same is true for the resonance term in Eq. �16�.

The hole of the bound exciton in QW can be described as
follows: �i� The short-range potential does not interact with
the QW states of the topmost 	7 band and corresponding
hydrogenlike shallow levels are formed by the Coulomb part
of the impurity potential. �ii� The short-range pseudopoten-
tial splits a bound hole state from the subsequent 	6 bands
with energies which may be essentially deeper than that of
the hydrogenlike states. �iii� This level turns out to be the
lowest bound hole state, and it has a smaller effective radius
than that of the hydrogenlike state. Other properties of this
ground state and estimates of its energy will be discussed
below.

A. Hole binding energy

In the quantum well, the short-range pseudopotential de-
scribed by Eq. �19� forms the bound hole states. As men-
tioned in the previous subsection, this potential may, there-
fore, form bound hole states only from the wave function of
the valence band that transforms according to the 	6 �light-
hole� representation. Thus, only one valence band can par-
ticipate in the creation of bound hole states such that coeffi-
cients F	6j

� �k�� satisfy the equation

Fjv	6

� �k�� =
1

�Ejv	6
�k�� − Eh�

M̃c	6
�

1 + M̃c	6
�

� 	
j�k��

Ud,j j��k�,k���Fj�v	6

� �k��� = 0. �21�

The energies of this level can be calculated using the same
procedure used in our paper,24 which takes advantage of the
fact that the short-range potential of Eq. �20� contains factor-
izable terms. The quantities

AS = 	
jk�

Sjk�	6
Fjv	6

� �k�� ,

AV = 	
jk�

Vjk�	6
Fjv	6

� �k�� , �22�

are defined. Multiplying Eq. �21� by Sjk�	6

* and Vjk�	6

* and
summing over jk� give the system of equations

AS�1 − BSSE − BSV� − AVBSS = 0,

− AS�EBSV + BVV� + AV�1 − BSV� = 0, �23�

where
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BSS�Eh� =
M̃c	6

�

1 + M̃c	6
�

	
j,k�

Sjk�	6

* Sjk�	6

Evj +
��k��2

2mh
* − Eh

,

BSV�Eh� =
M̃c	6

�

1 + M̃c	6
�

	
j,k�

Sjk�	6

* Vjk�	6

Evj +
��k��2

2mh
* − Eh

,

BVV�Eh� =
M̃c	6

�

1 + M̃c	6
�

	
j,k�

Vjk�	6

* Vjk�	6

Evj +
��k��2

2mh
* − Eh

. �24�

The summation over k� and the symmetry properties of the
Bloch wave functions make these quantities real. The set of
Eq. �23� has nonzero solutions if

�1 − BSV�Eh��2 − BSS�Eh��E + BVV�Eh�� = 0, �25�

which is the equation for the hole binding energy, Eh. The
simplifying approximation Vjk�	6

=VSjk�	6
, where V is a pa-

rameter that characterizes the impurity potential, allows Eq.
�25� to be rewritten in the form of

BSS�Eh� = 1/�2V + E� . �26�

This is standard for a Koster-Slater type of problem
�a graphical analysis of this kind of equation, for the case of
zinc-blende semiconductors, can be found, for example, in
Ref. 15�. Then, Eq. �26� determines the energy of the outer
exciton hole, where

BSS�Eh� =
M̃c	6

�

1 + M̃c	6
�

	
j
� S	jv���d�

� − Eh
�27�

is the conventional Hilbert transform of the local partial den-
sities of states, S	jv���=	k�

�Sjv	6
�2���−� jvk�

�. The position of
the bound hole level within the forbidden energy gap is de-
termined by the analytical properties of function BSS�Eh� out-
side the region of the allowed states in which S	j����0.
BSS�Eh� in the allowed part of the spectrum is complex,
BSS�Eh�=Rv�Eh�+ i	v�Eh�, where the integral Rv�Eh� is un-
derstood to be a principle part integral. The analytical prop-
erties of the density of the states of QW, S	1���
= 1

2
� 2mh

*

�2
��S1	6

�2, are reflected in the behavior of the Hilbert
transform,

BSS�Eh� =
M̃c	6

�

1 + M̃c	6
�

1

2
�2mh

*

�2 
�S1	6
�2 ln�Eh + D1

Eh − D1
� , �28�

where 2D1 is the first subband width. Due to logarithmic
singularities, Eq. �26� has a solution, which means that a
localized level is always created in the forbidden energy gap
�see Fig. 2�. In the bulk case, with a wurtzite symmetry, a
localized level is created only when there is a sufficiently
strong scattering potential on its right-hand side. Recollect-
ing the contribution of the electron-hole interaction to the

binding energy, the results can be summarized as follows. In
bulk tetrahedral semiconductors, the Coulomb potential of
the bound exciton electron attracts a hole and creates a series
of hydrogenlike levels, which are corrected only slightly by
the short-range part of the potential. In contrast, the short-
range potential of the impurity in a quantum well is rela-
tively strong and creates a single-hole level of 	6 symmetry,
which is corrected by the Coulomb interaction.

V. EXCITON WAVE FUNCTION

Using the quasiatom model,46 based in part on the formal-
ism of the conventional strong crystal-field theory, the mul-
tielectron wave functions of the bound exciton become

�

�ex��d̃1,h� = Â	

	�

C	�

 �i	

�n��r1��i�
�h��r2� .

Here C	�

 are the Clebsch-Gordan coefficients realizing the

direct product 
 of the multielectron wave functions that
correspond to the irreducible representations, 	, of the elec-

tron and the loosely bound � hole. Â is the antisymmetriza-
tion operator, here 	 ,�=	6. The electron wave function,
�i	

�n��r1�, is given by Eq. �13� and the normalized hole wave
function, Eq. �14�, takes the form �cf. Eq. �31� in Ref. 24�

�i	6

�h� =
1

�1 + �Fd
	�2

�� 1

�M̃v	6
�

	
j,k�

Sjk�	6

Evj +
��k��2

2mh
* − Eh

�̃��r� + Fd
	�i	� .

�29�

We see that the hole wave function has acquired a core part,
denoted by subscript d, which results from the resonance
mechanism. Thus, the hole state has a structure similar to
that of its electron counterpart, Eq. �13�, in the bound exciton
state. The contributions of the Bloch tail to the electron wave
function, Eq. �13�, and of the d core to the hole wave func-

tion are controlled by coefficients M̃c	6
� and �Fd

	�2, respec-
tively. If special reasons exist for the enhancement of these

FIG. 2. Qualitative graphical solution of the Koster-Slater-type
equation, Eq. �26�, for the outer exciton carrier �hole� in a quantum
well. The solid line shows the Hilbert transform and the dashed line
shows the two-dimensional density of states. The intersection of
this curve with the horizontal line representing the inverse value of
the impurity potential, U�Eh�= �2V+E�, is shown as well.
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coefficients, then “equalization” of the above-mentioned
electron and hole wave functions can occur. It can now be

seen that swelling of the electron component �large M̃c	6
� ,

Fig. 1� results in strong orthogonalization corrections to the
hole wave function �large �Fd

	�2�, and the ultimate source of
these two effects is the anomalously strong hybridization of
the d	6 states with the conduction-band states of the same
symmetry. Such behavior is consistent with a quenching of
the orbital angular momentum of the loosely bound hole in
the short-range potential, which causes it to behave like a
pure spin 1

2 particle.
The various exciton wave functions transform according

to the irreducible representation 	�ex�=	�de��	�h�, which is
merely a direct product of the electron and hole representa-
tions. The hole representation, 	�h�=	�vb��	�env�, is the
product of the valence bands, 	�vb�, and the hydrogenlike
envelop functions, 	�env�. Therefore, patterns obtained for
standard bound excitons in TM impurities are known for
their rich and complicated structure. Here, in the case of
IBE, the state of the hole is formed by the short-range

pseudopotential Eq. �18� with the projection operator P̂	6
built in. Thus, its wave functions transform according to rep-
resentation 	6. The 	6 of the impurity d electron gives
	�ex�=	6�	6=	1+	2+	5 representation for the exciton
bound states. The exchange interaction splits this level into a
singlet, 	1, and a triplet, 	2+	5.

The electron-hole wave functions of the IBE are charac-
terized by their intermediate radius of localization. Hence,
the electron hole’s overlapping wave function of IBE be-
comes much greater than that of standard bound excitons. As
a result, the exciton recombination is enhanced �cf. the an-
tenna effect considered by Rashba and Gurgenishvili47�. The
enhanced overlapping may also increase the electron-hole
exchange interaction. The electron-hole scattering via the ex-
change scattering may give rise to spin relaxation by the
so-called Bir Aronov-Pikus �BAP� process.48 Since the
electron-hole pair is bound by selective short-range pseudo-
potentials that attract only light holes with 	6 symmetry,
mixing of light and heavy holes is not allowed. On the other
hand, the long-range Coulomb potential, which allows mix-
ing of different hole states and is effective for the BAP
process,49 is weak in the IBE. Therefore, the spin relaxation
of the BAP process is not effective for IBE in QW of III-V
elements.

CONCLUSION

We found that there are reasons for introducing the inter-
mediately bound exciton concept in the case of a QW. We
have also seen that the difference between the bound exciton
states in the zinc blende, Td, bulk case and the QW case is
due primarily to the lower D2d symmetry of the latter. It is
also important to note that only when the relevant impurity
deep level is close enough to the bottom of the conduction
band does the enhancement of the d-s hybridization play a
truly important part. The structures of the bound exciton
wave functions in the two cases are strongly at variance. The
bulk case is characterized by standard excitons that are

bound to the TM impurity as described, for instance, in
review.23 The electron is bound in a strongly localized d state
described by an antibonding superposition, while the hole is
loosely bound by the Coulomb field of the electron.

The QW case is characterized by an IBE in which the first
carrier is also bound rather loosely due to a strong hybrid-
ization of the d states with the states at the bottom of the
conduction band. This is described by a bonding superposi-
tion with a higher-lying QW subband of the conduction band
states. This hybridization of the impurity d states with
conduction-band states leads to a symmetry that is forbidden
in the bulk case but is allowed in the lower-symmetry QW.
As an example, we examined the D2d symmetry with an
acceptor exciton and showed that the wave function of the
nth electron of the A�−� pseudoion is significantly swollen
due to the hybridization of the d states with the Bloch states
at the bottom of the QW subband in the conduction band.
The dominant potential responsible for binding the outer car-
rier �hole� is a short-range pseudopotential with properties of
a projection operator projecting onto the 	6 subspace. This
potential is therefore capable of binding only light holes
from the valence bands of 	6 symmetry. Unlike the conven-
tional binding scheme of the second carrier with a hydrogen-
like excited-state spectrum, only one energy state of the
Koster-Slater type is expected here, which might be deeper.

There are various consequences of this model that can be
examined experimentally. An important manifestation of the
differences between IBE and DBE is completely different
values of the exciton g factors, which reflect the different
localizations and symmetries of the exciton wave functions.
We should also mention the shift of the IBE’s binding
energy, as well as some other physical properties of these
systems.

APPENDIX: THE ELECTRON PART

Here the Bloch tail of the impurity wave function Eq. �13�
is calculated according to

�M̃c	6
� �b	 = 	

cjk�

�d	6�U��r − R0��cjk�
˜ �

�Ecj +
��k��2

2mh
* 
 − Ei	

�̃cjk�
, �A1�

assuming that the main contribution is from the vicinity
of the 	 point of the conduction band, thus allowing
the use of the following approximation. It is assumed

that the hybridization with the conduction band, Ṽcj	, is

�d	6 �U��r−R0� �cjk�
˜ �� Ṽcj	6

. The basis of the orthogonal-
ized Bloch functions, �̃cjk�

, is substituted by the set of Kohn-
Luttinger functions

�̃cjk�
= ũ0cje

−k�·�

with the Bloch amplitude at k� =0

ũ0cj��,z� = u0c���� j�z� − 	
��

�����u0c���� j�z�����

orthogonalized to the core states. As a result, the tail wave
function becomes
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�M̃c	6
� �b	 � 	

cjk�

Ṽcj	
e−k�·�

�Ecj − Ei	� +
��k��2

2me
*

ũ0cj��,z� .

�A2�

Replacing the summation over k� with integration for the
two-dimensional case yields

�M̃c	6
� �b	 � � 1

2�

22me

*

�2 	
j

Ṽcj	ũ0cj��,z�

� ��2� �
00

e−k�� cos �k�dk�d�

k	cj
2 + k�

2 , �A3�

where k	cj
2 =

2me
*

�2 cj	 and cj	= �Ecj −Ei	�. By expanding the
plane wave in the cylindrical component using the Bessel
function of the first kind, J0�k���, and performing the angular

integral and the integral over k�, the tail wave function be-
comes

�M̃c	6
� �b	 � � 1

2�

22me

*

�2 	
j

Ṽcj	ũ0cj��,z�2�K0�k	cj�� ,

�A4�

where K0�k	cj�� is the modified Bessel function. The normal-
ized wave function of this tail part can be presented as

�M̃c	6
� �b	 � 	

j

Ṽcj	

cj	
�cj�z,�� , �A5�

�cj�z,�� = �� �ũ0cj��,z�K0�k	cj���2d3r
−1/2

� ũ0cj��,z�K0�k	cj�� . �A6�
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