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Ab initio Monte Carlo simulations applied to a Sis cluster
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An ab initio Monte Carlo (MC) program has been developed, where the total configurational energies at
each MC step are obtained via density functional theory using localized numerical orbitals as basis sets. As an
initial application we have investigated the structural properties of a silicon cluster (Sis) for different tempera-
tures and estimated its isomerization temperature. In particular, we study how this temperature depends on the
particular choice of exchange-correlation functional. We performed calculations within the local density ap-
proximation (LDA), a generalized gradient approximation (GGA), and the Tao-Perdew-Staroverov-Scuseria
metaGGA. The Monte Carlo method is very useful when complex exchange-correlation functionals are being
used, since in these cases it is computationally difficult to evaluate the forces. From the simulations we have
observed two distinct isomers, which were identified as trigonal bipyramid D5, and C, symmetric structures.
The Dj, was found to be the global minimum and the C, the first local minimum. We obtain that the
isomerization temperature for the small Si5 system has a trend opposite to what happens in the bulk, where the
LDA functional provides the lowest melting temperature, whereas the one obtained using the metaGGA

appears to be the highest one.
DOI: 10.1103/PhysRevB.75.245331

I. INTRODUCTION

Computer simulations are essential tools in the research of
physical systems at finite temperature. Basically, we can di-
vide these simulations into three different categories: (i) situ-
ations where one would like to know the behavior of the
system at a definite temperature or as a function of it (for
example, phase transitions), (ii) situations where the tem-
perature is used as a parameter in order to explore the phase
space of the system, aiming to identify the global minimum
or possible local minima in the potential energy surface
(PES), and (iii) situations where one wants to generate rep-
resentative configurations of disordered systems, such as lig-
uid or amorphous. Monte Carlo (MC) and molecular dynam-
ics (MD) methods are the major techniques used for those
purposes.'

In most of these simulations the nuclear degrees of free-
dom can be described by classical mechanics, whereas the
electronic degrees of freedom must necessarily be described
by quantum mechanics. Moreover, traditionally, the interac-
tions between particles are described by means of empirical
potentials. These potentials have the advantage of being eas-
ily evaluated computationally, and therefore they are appro-
priate to simulate (i) large systems and (ii) for long time
scales. However, they are constructed (fitted) to describe
with precision the system near some region of its configura-
tion space; thus, there is no guarantee that they will provide
reliable results far from these regions. For example, in many
cases the results obtained for clusters using potentials fitted
to the bulk are not accurate enough. Besides, there are inter-
esting situations where empirical potentials have not yet
been developed.

Therefore, there is great interest in the combination of
MC and MD simulations with methods that describe the
electronic structure with high precision (ab initio methods).
Using this approach, the interactions between the constituent
entities and the dynamics of the nuclear degrees of freedom
are determined simultaneously and as accurate as possible as
the system evolves.
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The ab initio MD (AIMD) is already well established and
implemented in a large variety of computational codes. It has
been widely used to provide reliable results for various
systems? since the seminal work of Car and Parrinello’ in
1985. In situations where it is necessary to follow the dy-
namical evolution of the system, the MD technique is obvi-
ously the best choice. However, if the interest is only in static
properties and in average values, the MC method becomes
an alternative choice and sometimes it is even more efficient
regarding the sampling of the phase space. In this method it
is not necessary to evaluate forces (only the energies), so it
can be faster than the MD method. Also, the MC method has
the advantage of being easily implemented in constant-
temperature (or -pressure) situations.

In the case of ab initio MC (AIMC) some codes have
been developed using different methods for the electronic
structure calculations.*=° In the present work, we have devel-
oped a MC program where the total configuration energies
are obtained via density functional theory”® (DFT) at each
MC step. One important feature of our calculations is that the
Kohn-Sham equations® are solved using the numerical linear
combination of atomic orbitals (LCAQO) basis set that are
strictly localized. This method is implemented in the SIESTA
package.’

DFT is one of the most important methods nowadays to
describe the electronic structure of matter. In principle it is
an exact theory, but in practice it is necessary to do some
approximations. The fundamental one is the expression for
the exchange-correlation energy functional E,.. Many E,.
functionals have been proposed in the last decades and were
used to study a large variety of systems and properties. The
validity of these approximations depends on the systems and
on the properties desired, so it should be checked every time
one uses them. The functionals currently used can be classi-
fied basically as local density approximation (LDA), gener-
alized gradient approximation (GGA), metaGGA, hybrid and
exact-exchange (EXX).

Although DFT has provided satisfactory results for a large
range of problems, some situations are still not very well
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described by its approximations. One example is the melting
temperature of silicon at zero pressure, where the results ob-
tained with different functionals are not very accurate when
compared to the experimental ones. It is known that in this
case in particular, the GGA improves the LDA results.!%!!
However, the theoretical transition temperature is still
smaller than the experimental result by approximately
200 K. Therefore, it is an interesting question to see if im-
provements over the E,. functional, such as the metaGGA
functional, would provide a better result for the silicon bulk
melting temperature.'?

The improvement of the melting temperature as the E,.
functional is changed from the LDA to the GGA is mostly
attributed to an improvement in the calculation of the relative
enthalpies of the two phases. This is related to a better can-
cellation of exchange-correlation errors between the liquid
and solid phases for the GGA when compared to the LDA.!
If one looks at the local configurations in a liquid as dynami-
cal structural fluctuations, it is interesting to see the effect of
different functionals on the relative energies between distinct
stable isomers of Si clusters.

Semiconductor clusters (such as the silicon ones) have
received considerable attention for the past decades,' both
theoretically'* and experimentally. One reason for that is the
desire to understand the properties of materials as a function
of their size. Moreover, these clusters have an important role
in a number of industrial applications such as fabrication of
microelectronic devices or catalysis. Also, in the last decade
the experimental techniques for production and analysis of
clusters have improved significantly, allowing the study of
clusters with preselected size and composition.!>16

Most of these works with clusters are related to the study
of the geometries and electronic properties of the systems.
The thermal properties of small clusters are much less inves-
tigated. Usually empirical potentials are used and only re-
cently have there also been some works using tight-binding
MD (TBMD) (Refs. 17 and 18) and AIMD (Ref. 19). These
studies have revealed interesting features about the melting
properties of clusters. For instance, they have shown that the
isomerization usually occurs at a higher temperature than the
bulk melting point for clusters of tin,' in agreement with
experimental evidence.?’

As an initial application of our methodology we have in-
vestigated the structural and energetic properties of a silicon
cluster (Sis) for different E,,. functionals and temperatures.
Indeed, the study of small clusters by first-principles simula-
tions is interesting for many reasons. First of all, empirical
potentials (fitted to bulk phase) do not usually describe them
well. Also, the properties of clusters are often peculiar, being
qualitatively different from their constituent parts (either at-
oms or molecules) and from the bulk. One of the aims of the
present work is to study the structural changes of the Sis
cluster as a function of temperature in order to obtain the
“melting temperature.” Strictly speaking, these changes can-
not be considered as a real phase transition, since this hap-
pens only at the macroscopic limit. Actually, the cluster
phase transition can be viewed as a transition between dis-
tinct isomers, an isomerization. It has the important charac-
teristic that it is not a sharp transition occurring at a definite
temperature, as happens in the bulk phase. Instead, it takes
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place smoothly over a finite temperature range, where two or
more isomers can coexist dynamically. Also, the thermal
properties can be strongly size dependent. With this caveat in
mind, we will refer to this isomerization transition as a phase
transition throughout the paper.

In the following, we briefly describe the computational
method used (Sec. II). Then, in Sec. III, we describe our
results of AIMC simulations for Sis, focusing on the phase
transition for different E, . functionals. Finally, in Sec. IV we
present our main conclusions.

II. COMPUTATIONAL METHODS
A. Monte Carlo simulation

The standard Metropolis algorithm?! was used in our ab
initio MC simulations. Before starting the simulation some
parameters related to the MC method must be chosen: the
initial configuration, the temperature, and the maximum dis-
placement of the particles. After this, the simulation evolves
according to the following steps: (i) given a configuration u
and its energy E, a new configuration v is generated by
random displacements of all particles simultaneously. All
configuration energies are obtained from an ab initio calcu-
lation, as explained below. (ii) The energy of the new con-
figuration (E,) is then obtained, and the acceptance probabil-
ity is determined by

P 1 ifE,<E,, (1

(u—v)= o BAE f EV>E;u )
where AE=E,—E, and B=(kgT)™" (kp is the Boltzmann con-
stant and T the temperature). (iii) If the configuration v is
rejected, the old one is maintained, and if accepted, it serves
as the configuration w in the next step. At the end of the
simulation, the sampled configurations are then used to ob-
tain the equilibrium properties of the system. The acceptance
ratio is maintained at about 50% by adjusting periodically
the maximum displacement of the atoms.

The simulation can be divided into two stages. The first
one is the equilibration period, where the sampled configu-
rations do not reflect an equilibrium distribution and, there-
fore, are not considered in the calculation of the averages.
Thus, before moving to the second stage, it is necessary to
simulate for enough MC steps until quantities like the energy
have started to perform oscillations around their mean val-
ues. The second period is the equilibrium or stationary
phase, where the mean probability of finding the system in a
particular state is proportional to the Boltzmann weight of
this state. In this stage, there is not a simple way to deter-
mine for how many steps one should perform the simulation.
It is necessary to simulate a given system until one obtains
converged mean values within a certain error bar. Besides
that, it is also important to analyze the energy autocorrelation
function to obtain statistically independent configurations,
which were calculated for all simulations performed. In our
case, the number of MC steps was chosen such that the av-
erage fluctuation of the bond lengths, described in detail be-
low, had approximately reached convergency.
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(b)

FIG. 1. Sis isomers: (a) global minimum-energy configuration
(symmetry Ds,) and (b) first local minimum-energy configuration
(symmetry C,).

B. Total energy calculation

All total configurational energies were obtained via DFT
using the SIESTA package.” We have considered three differ-
ent exchange-correlation functionals: LDA® parametrized by
Perdew and Zunger,>> GGA as proposed by Perdew, Burke,
and Ernzerhof (PBE),?* and metaGGA in the form known
as TPSS?* (proposed by Tao, Perdew, Staroverov, and Scu-
seria).?> They were used both for the AIMC simulations and
for the geometry optimization. The calculations done using
the LDA and GGA were self-consistent; however, for the
metaGGA approximation we have a post-self-consistent
implementation, in which a GGA (PBE) self-consistent cal-
culation is performed previously, and the resulting orbitals
and densities are then substituted in the metaGGA E,.
expression.”® In this way, it is only possible to evaluate the
metaGGA total energy, which then makes the MC method a
natural choice to sample the phase space.

The DFT calculations were done considering a cubic su-
percell with 15 A length. One k point (I') was used to sample
the Brillouin zone. For quantities that are calculated in real
space we have used an energy cutoff of 200 Ry for the grid
where the electronic wave function and density are projected.
We have also used norm-conserving Troullier-Martins
pseudopotentials.”® For the valence electrons of Si atoms we
have employed a double-{ basis set with polarization func-
tion (DZP) to describe the Kohn-Sham orbitals.

When necessary, the geometry optimizations were per-
formed using the conjugate gradient method, also calculated
with the SIESTA code. These were done without any symme-
try constraints until all the forces were smaller than
0.015 eV/A. In the case of the metaGGA functional the op-
timization was done via a quenching process starting from
the final geometry obtained using the GGA. This was neces-
sary because in our implementation it is still not possible to
efficiently evaluate computationally the forces using the
metaGGA approximation.”® The quenching process was per-
formed using our MC code modified to accept only configu-
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TABLE 1. Bond lengths (in A) and angles (in degrees) for the
D3y, Sis isomer, calculated using different E,. functionals. AE (in
eV) is the difference in total energy with respect to the global en-
ergy minimum.

Sym. dyy dy3  dis O3 O s AE

LDA 3.04 228 292 834 50.2 -
Dy, GGA 309 232 295 838 50.4 -
metaGGA 3.08 231 295 838 50.4 -

rations with lower energy than the previous one and the tem-
perature was slowly decreased during the simulation, from
T=100 K until it reached the minimum-energy state—i.e.,
T=0K.

III. RESULTS AND DISCUSSION
A. Isomer geometries

As we will discuss later, we have observed two distinct
Si5 isomers during the MC simulations. Thus, before we
present the results of the simulations, we discuss the zero-
temperature properties of these isomers. The ground state of
Sis is a trigonal bipyramid, with symmetry Ds, [see Fig.
1(a)], as was reported before in the literature.?®" In Table I
we present our results for the nonequivalent bond lengths
and bond angles of this structure for the three E,. functionals
used, which are in good agreement with previous calcula-
tions.2%-30

The other isomer observed during the simulations corre-
sponds to the first local minimum, with symmetry C,, shown
in Fig. 1(b) and characterized in Table II. We have found that
this isomer has an energy 0.66 eV above the global mini-
mum for the metaGGA approximation (for the GGA it is
0.69 eV and for the LDA 0.75 e¢V). Tight-binding calcu-
lations!” have previously encountered this structure; it was,
however, described as the global minimum configuration,
with the Dj, trigonal bipyramid being the first local mini-
mum. We believe that this is related to the difficulty of the
tight-binding method, which always has to employ a particu-
lar parametrization, to describe clusters that have isomers
with quite distinct local atomic configurations.

In addition to the energetic and structural properties, we
also show our results for the vibrational frequencies of the
two structures in Table III. We calculated them only for the
LDA and GGA functionals because the dynamical matrix is
not easily evaluated for the metaGGA approximation and we
do not expect large variations when compared to the GGA

TABLE II. Bond lengths (in A) and angles (in degrees) for the C, Sis isomer, calculated using different
E,. functionals. AE (in eV) is the difference in total energy with respect to the global energy minimum.

Sym. diy di3 dyy dis dss 03 0,34 AE
LDA 3.99 2.26 2.31 2.76 2.44 123.2 53.6 0.75

C, GGA 4.04 2.29 2.34 2.80 2.47 123.2 53.6 0.69
metaGGA 4.04 2.29 2.34 2.80 2.47 123.2 53.6 0.66
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TABLE III. Vibrational frequencies (in cm™) calculated for the two Sis isomers using different E,,

functionals (L stands for the LDA and G for the GGA).

Dy, L 187(¢") 228 (a]) 368 (') 411 (a)) 439 (") 467 (a])
G 194 (') 213 (a]) 351 (') 408 (d)) 437 (¢") 458 (a])

c, L 87 149 215 282 323 378 440 444 506
G 86 143 207 275 318 372 436 437 499

results. Our calculated vibrational frequencies are in reason-
ably good agreement with previous results,’® within approxi-
mately 10 cm™'. The exceptions are for the a; and the e’
modes, which are lower in our case by more than 30 cm™
From the MC simulation, we observe that the lowest-
frequency mode (e’) is associated with the transition from
the D;;, to the C, structure. The C, configuration has an
overall softening of the modes, with the appearance of a
particularly low-energy mode (~90 cm™!) which is associ-
ated with the backward conversion to the Ds,. All these re-
sults will be used later to obtain the isomerization tempera-
ture.

B. Monte Carlo simulations

All MC simulations were started from the global mini-
mum geometry [see Fig. 1(a)]. For each functional (LDA,
GGA, and metaGGA) we performed simulations in the range
of 1500-2200 K. After the period of equilibration (~10 000
MC steps), we have performed 45 000 MC steps for each
simulation. It is important to emphasize that in one MC step
in our simulations all atoms are displaced (suppressing clus-
ter global rotation and translation). This should be contrasted
to what is usually done in empirical potential simulations,
where atoms are displaced one at a time.

In Fig. 2 we show the total energy variation relative to its

(a)
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FIG. 2. Variation of the total energy E relative to its mean value
E,.. as a function of MC steps, illustrated by the simulation done
using the metaGGA E,. functional. In the upper picture (a), T
=1500 K, and in case (b), T=2000 K.

mean value as a function of MC steps, illustrated by the
simulations done with metaGGA for two temperatures:
1500 K and 2000 K. In the upper picture [Fig. 2(a)] we can
observe that the energy fluctuates around only one average
value, and this is related to fluctuations of the bond distances
of the global minimum geometry. On the other hand, in the
lower picture [Fig. 2(b)] it is possible to observe basically
two distinct regions. These are related to fluctuations of the
structures of two isomers: the region with lower energy is
related to the D5, isomer and the region with higher energy is
related to the fluctuations of the first local minima isomer C,.
At high temperatures the system can cross the energy barri-
ers separating the global minimum from the local minima.
Therefore, the C, minimum becomes populated and there is a
dynamical coexistence of the two isomers.

One way to monitor the isomerization is analyzing struc-
tural changes in the bond-length and bond-angle distributions
(BLD and BAD, respectively), as a function of temperature.
We illustrate our results for these properties in Figs. 3 and 4,
respectively, calculated using the metaGGA approximation.
In the BLD the peaks around 2.3 and 3 A correspond to the
distances between the first and second neighbors in the Dy,
structure. With increasing temperature these peaks decrease
and a third peak appears around 4 A. This bond length is
typical of the first local minimum (C, structure). In the same
way, we see in the BAD that initially there is no peak around
120°, and then for higher temperatures it appears. Also, the
peak around 80° decreases as the temperature increases, and
in the region close to 55° we observe the opposite. A similar
trend in both the BLD and BAD is observed for all the other
E.. functionals.

8
i — T=1500K
N T=1650K
s - T=1700K
6l — T=1800K
I = T=1900K
L = T=2000K
Q -
- 4
m I
2_
1%

Bond length A)

FIG. 3. (Color online) Bond-length distribution for different
temperatures obtained using the metaGGA approximation.
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FIG. 4. (Color online) Bond-angle distribution for different tem-
peratures obtained using the metaGGA approximation.

The other property monitored aiming at characterizing the
isomerization was the bond-length root-mean-square fluctua-
tion (BLF), defined by

2 2 ((’"?,) - <rij>2)1/2

BLF= )
NIN-1)i; (ryi)

2)

where rij denotes the distance between atoms i and j, N is the
total number of atoms in the cluster, and {:--) indicates the
average over all configurations in the simulation (only for the
equilibrium period). This quantity is related to the mobility
of the atoms and therefore is sensitive to structural changes.
Thus, a sudden increase of its value can be associated with a
phase transition.

As a first step, we have analyzed the evolution of the BLF
as a function of MC steps, illustrated in Fig. 5 for the
metaGGA simulations (for the other functionals the trend is
similar). At low temperatures (for example, 1500 K) there is
no significant change during the simulations. This nearly
constant BLF is indicative of purely vibrational motion.
However, for the higher temperatures the BLF increases until
it converges to a higher value. For intermediary temperatures
(such as 1800 K) there is an oscillatory behavior, related to a

[— T=1500K
M| T=1650K
F|—+ T=1700K
0.20|— T=1800K

F|-— T=1900K

- L
3 0.15_

T
~

\
\

B
~
\ S
|
1
\
b
\:
AN

0.10 4 74

010000 20000 30000 40000 50000
MC steps
FIG. 5. (Color online) Bond-length fluctuation (BLF) at differ-

ent temperatures as a function of MC steps, obtained using the
metaGGA approximation.
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FIG. 6. (Color online) Bond-length fluctuation (BLF) as a func-
tion of temperature for the three E,. functionals (LDA, GGA, and
metaGGA) considered.

highly fluctuating dynamical coexistence of the two isomers
in these temperatures. We can also see that at 7=1650 K the
BLF already increases, which is an indication that the melt-
ing starts at this temperature. Thus, as the temperature in-
creases the cluster spends more time in the C, configuration.
Another important feature is that for both low and high tem-
peratures the number of MC steps seems to be sufficient;
however, for the transition region it might be necessary to
perform longer simulations in order to get better conver-
gence. However, for the main conclusions of our work, this
is not necessary.

Finally, to get the range of temperatures related to the
phase transition, we have plotted the average value of the
BLF in the last 5000 MC steps as a function of temperature
for all E,. functionals considered (see Fig. 6). In this graph
we can see that the BLF for the lowest temperature is small;
then, it rises as the temperature increases. In Table IV we
present the isomerization temperatures extracted from the
BLF data for each functional. We have considered the onset
temperature, where the BLF is equal to 0.01, which is when
it starts to increase. We can also observe that the melting
starts at higher temperatures for the LDA when compared
with the GGA and metaGGA. There is basically no differ-
ence between the GGA and metaGGA, but it seems that the
initial melting temperature is a little bit lower for the GGA
functional.

C. T,, via PES

We have also calculated the melting temperature using a
model based on the probability of occurrence of a new iso-

TABLE IV. Phase transition temperatures for Sis; Ty are the
ones obtained via BLFE, whereas T, are the ones obtained from the
model based on the probability of occurrence of a given isomer (see
text for more details).

LDA GGA metaGGA
Ty (K) 1730 1580 1600
T, (K) 2770 2476 2370

245331-5



LUANA S. PEDROZA AND ANTONIO J. R. DA SILVA

mer, related to their partition function Z; (the index s refers
to the isomer).'3 This probability can be written as

nSZS

Ps="," 3)
where Z is the total partition function and n,=2N!/h; is the
number of equivalent permutational isomers for homoge-
neous clusters (N is the number of atoms and /4 is the order
of the symmetry group for the minimum s). If the coupling
of rotational and vibrational motions can be neglected, we
can factor Z, as Z,=Z"7"7"", and using a harmonic ap-

‘ s
proximation for Z'"” we have

vib —ﬁE0ﬁ< kT )
s =e s s

i=1 ﬁws,i

(kTN (omkl, |
LZiNgm) BT ) W

where E? is the minimum energy of isomer s, w,; are the
normal-mode frequencies, V is the volume of the box where
the clusters are confined, M is the total cluster mass, and Z is
the average inertial moment in s [I,=(F"F*F¥)3, with I,
P?, and I¥* the principal moments of inertia].

The melting temperature is then obtained equating the
probability of occurrence of each isomer (p,r=p,):

AE Ngr 3 TS’
Tp=—|In|—]+>In| =] +In . )
k ng 2 I K
’ st/,i

K
H ws,i
i

where AE =E§),—E§,). This temperature can be viewed as a
threshold, above which the isomer s’ becomes more probable
than the isomer s, and for temperatures below it the opposite
is true.

Using our results for these quantities (for each isomer and
each functional) we have obtained T:?*=2270 K for the
LDA approximation and Tfn;GA:247O K for the GGA. As we
did not calculate the vibrational frequencies for the
metaGGA functional, we cannot evaluate 7,,. However, if we
suppose that there is not a big difference between the fre-
quencies obtained using either the GGA or metaGGA, we
can use the ones obtained for the GGA to estimate T, for the
metaGGA as a first approximation. In this way, we have
769422370 K. All results are collected in Table IV.

IV. CONCLUSIONS

We have implemented a Monte Carlo method where the
total configurational energies are calculated using an ab ini-
tio density functional theory approach. In the present work
we have used this implementation to study the isomerization
of a Sis cluster. We have performed simulations for a variety
of temperatures, in the range between 1500 K and 2200 K,
and for the LDA, GGA, and metaGGA E,, functionals.
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From the simulations performed, we have observed two
distinct isomers, which were identified as trigonal bipyramid
D5, and C, symmetric structures. The D3, was found to be
the global minimum and the C, the first local minimum in
the PES. This is contrary to what has been found in tight-
binding simulations,!” indicating the importance of using ab
initio calculations in the description of small covalent sys-
tems such as Si clusters. The energy difference between
these two isomers is lower for the metaGGA; then, we have
the GGA and the highest value is for the LDA functional. On
the other hand, the geometrical parameters for the two struc-
tures are very similar for all three functionals considered and
are in agreement with previous results.?%3%

We have also obtained the bond-length fluctuation using
the results of the MC simulations. The graph of this quantity
as a function of temperature can provide an estimate of the
isomerization temperature; for the GGA, the isomerization
begins at TgGA= 1580 K, which is basically the same as the
metaGGA result T ““=1600 K. For the LDA we have ob-
tained a higher temperature TéDA: 1730 K, which is consis-
tent with the higher energy value of the C, isomer at the
LDA level.

As a second approach to determine the phase transition
temperature, we have considered a theoretical model using
some information of the PES of the system, such as the prob-
ability of occurrence of a given isomer. Using this model we
still obtain the highest temperature for the LDA functional,
T:PA=2770 K. In this case the metaGGA (TY“*=2370 K)
functional has a slightly lower temperature when compared
to the GGA (T9“*=2476 K).

However, it is important to notice that this temperature
(T,,) is obtained equating the probability of occurrence of
two isomers, whereas the BLF estimate of the isomerization
temperature looks at the onset of the transition. Therefore, 7,
will certainly provide a higher temperature than the one ob-
tained using the BLF since it indicates where the two iso-
mers will coexist dynamically.

Another interesting feature in the phase transition of a
small Si system is that we have obtained a trend opposite to
what happens in the bulk. In the latter, the LDA functional
provides the lowest melting temperature, whereas the one
obtained using the metaGGA appears to be the highest one.!?

Finally, we would like to emphasize that the MC method
allows more complex functionals, such as metaGGA, to be
studied as a function of temperature without the necessity of
evaluating forces. Furthermore, the MC method can be more
efficient than molecular dynamics regarding the sampling of
the phase space, which may be very useful when studying
phase diagrams and phase transition temperatures.
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