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We develop a systematic theory of microwave-induced oscillations in the magnetoresistivity of a two-
dimensional electron gas, focusing on the regime of strongly overlapping Landau levels. At linear order in
microwave power, two mechanisms of the oscillations �“quadrupole” and “photovoltaic”� are identified, dis-
tinctly different from those studied before �“displacement” and “inelastic”�. The quadrupole and photovoltaic
mechanisms are shown to be the only ones that give rise to oscillations in the nondiagonal part of the
photoconductivity tensor. In the diagonal part, the inelastic contribution dominates at moderate microwave
power, while at elevated power the other mechanisms become relevant. We demonstrate the crucial role of
feedback effects, which lead to a strong interplay of the four mechanisms in the nonlinear photoresponse and
yield, in particular, a nonmonotonic power dependence of the photoconductivity, narrowing of the magne-
toresonances, and a nontrivial structure of the Hall photoresponse. At ultrahigh power, all effects related to the
Landau quantization decay due to a combination of the feedback and multiphoton effects, restoring the clas-
sical Drude conductivity.
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I. INTRODUCTION

In recent years, the nonequilibrium properties of quantum
Hall systems in a moderate perpendicular magnetic field B
have become a subject of intense experimental1–30 and
theoretical31–68 research �for review see Refs. 69–72�. Much
attention has been attracted to the experimental discovery of
a novel type of 1 /B-periodic resistivity oscillations which
arise in these systems under microwave illumination.1,2 Re-
markably, it was demonstrated soon after the first experi-
ments that at higher radiation power the minima of the os-
cillations evolve into novel “zero-resistance states” �ZRS�.4,5

As was shown in Ref. 31, the ZRS can be understood as a
direct consequence of the oscillatory photoconductivity
�OPC�, provided the latter may become negative. Indepen-
dently of the microscopic origin of the oscillations, the nega-
tive OPC signifies an instability leading to the formation of
spontaneous-current domains, which in turn yields the van-
ishing of the observable resistance.

Unlike the explanation of the ZRS, so far there
has been no common agreement as to the microscopic
origin of the OPC. The most frequently studied
mechanism32,33,36–39,44,45,47,48,55–57,61–65,67 of the OPC, sug-
gested long ago in Ref. 32, implies that the oscillations occur
due to complex scattering processes in which electrons si-
multaneously are scattered off impurities, absorb �emit� mi-
crowave quanta, and are displaced along the applied dc elec-
tric field. We term this mechanism a “displacement”
mechanism. A different mechanism, called here the “inelas-
tic” mechanism, was recently proposed in Ref. 34 and stud-
ied in detail in Refs. 40 and 50 �similar ideas were also
discussed in Ref. 7�. In the inelastic mechanism, the
magneto-oscillations of the dc current are generated by a
microwave-induced change of the isotropic time-independent
part F00��� of the electron distribution function,

f��,�,t� = �
�n

F�n���exp�i�� + in�t� , �1.1�

where � is the electron energy, � the angle of the quasiclas-
sical momentum, and � the microwave frequency.

The above mechanisms have much in common. In both of
them, the OPC originates from oscillations of the density of
states �DOS� ���� of disorder-broadened Landau levels with
changing �. Due to the oscillatory ����, optical transitions in
the system lead to a nonequilibrium correction to the distri-
bution function f which oscillates with both � /�c and � /�c,
where �c is the cyclotron frequency. In turn, the � /�c oscil-
lations of f translate into the observed � /�c oscillations of
the magnetoresistivity.

A crucial difference between the two mechanisms is the
following. In the displacement mechanism, the radiation di-
rectly affects the first angular harmonic F10��� of the distri-
bution function �and thus the dc current�, whereas all effects
of the ac and dc fields on the even angular harmonics are
neglected. By contrast, in the inelastic mechanism the ac
field influences the isotropic part F00��� only. A calculation
of the dc response in the resulting state with a modified
F00��� yields the OPC. While in the first case the effect on
the current is gained directly in every microwave-assisted
impurity-induced electron scattering event, in the latter case
the effect is accumulated over a long period of time during
which the electron diffuses in the field of impurities until it
experiences inelastic scattering. At experimentally relevant
temperatures T�1 K, the inelastic relaxation is governed by
electron-electron scatterings40,50 with the inelastic relaxation
time �in�T−2.

In the linear regime with respect to the microwave power,
the contributions to the OPC generated by the displacement
and inelastic mechanisms sum up independently. A compari-
son shows �see Eqs. �16� and �17� of Ref. 50 and Eqs. �6� and
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�11� of Ref. 39� that both mechanisms produce the OPC with
the experimentally observed phase, period, and B-damping
of the oscillations. However, the slow inelastic relaxation
rate �compared to the rate of electron collisions with impu-
rities, �q

−1� makes the inelastic contribution larger by a factor
�in /�q	1. According to the calculation in Ref. 50, �in /�q
�100 under the experimental conditions.73 Apart from the
magnitude of the effect, the two contributions are qualita-
tively different in their dependence on T and polarization of
the radiation. In accord with the experiments, the inelastic
contribution decreases as �in�T−2 with increasing T and does
not depend on the direction of linear polarization of the mi-
crowave field. By contrast, the displacement mechanism
yields a T independent contribution which depends essen-
tially on the relative orientation of the microwave and dc
fields. Despite the above arguments, in a number of recent
works44,45,47,48,55–57,61–65,67 on this subject the inelastic
mechanism has not been taken into account.

In this work, we perform a systematic study of all relevant
contributions to the OPC both in the linear regime and in
several nonlinear regimes which emerge with increasing mi-
crowave power. On the experimental side, this work has been
motivated by a number of interesting nonlinear phenomena
observed in recent experiments.25–30 From the theoretical
point of view, a unified approach to the problem is necessary
since at high microwave power the interplay of the inelastic
and displacement mechanisms becomes essentially impor-
tant. We show that the different mechanisms of the OPC
strongly affect each other due to feedback effects already at
moderate power levels which are easily accessible in the ex-
periment. In particular, while in the linear regime the dis-
placement and inelastic contributions to the OPC add up in
phase, in the regime of a “saturated inelastic contribution”
�SIC� the displacement contribution changes its sign, which
leads to a nonmonotonic behavior of the photoresponse �still
dominated by the inelastic contribution� with growing micro-
wave power. In the ultrahigh power regime, all contributions
to the dc conductivity that are related to the Landau quanti-
zation decrease with increasing power due to a competition
between the feedback and multiphoton effects. As a result,
the oscillations of the photoresponse vanish and the classical
Drude conductivity tensor is restored in the limit of high
radiation power.

On top of the nonlinear interplay between the inelastic
and displacement mechanisms, we find two additional
mechanisms leading to the OPC, “quadrupole” and “photo-
voltaic.” In the quadrupole mechanism, the microwave radia-
tion leads to excitation of the second angular harmonic F20 of
the distribution function. The dc response in the state with
nonzero F20 yields an oscillatory contribution to the Hall part
of the photoconductivity tensor which violates Onsager sym-
metry. In the photovoltaic mechanism, a combined action of
the microwave and dc fields produces nonzero temporal har-
monics F21 and F01, so that the distribution function �1.1�
acquires an oscillatory time dependence. The ac response in
the resulting state with excited F21 and F01 contributes to
both the longitudinal and Hall parts of the OPC. Provided
�in /�q	1, the inelastic mechanism still gives the dominant
contribution to the diagonal part of the photoconductivity
tensor. However, the quadrupole and photovoltaic mecha-

nisms are the only ones yielding oscillatory corrections to the
Hall part.

The paper is organized as follows. In Sec. II we formulate
the problem and overview the main steps in the derivation of
the quantum kinetic equation obtained in Ref. 39. Using this
kinetic equation, in Sec. III we put forward a general classi-
fication of contributions to the photoconductivity at first or-
der in the microwave power. We discuss here four distinctly
different mechanisms of the OPC. In Sec. IV we write down
the kinetic equation for the case of strongly overlapping Lan-
dau levels, which we focus on hereafter. In Sec. V we calcu-
late the linear photoconductivity. In Secs. VI and VII we
analyze several nonlinear regimes the system passes through
with increasing microwave power. Namely, in Sec. VI we
study the SIC regime at moderate power, driven by feedback
effects. In Sec. VII we turn to the interplay of the feedback
and multiphoton effects in the regime of ultrahigh micro-
wave power. In Sec. VIII we consider the possibility of ex-
perimental observation of the nonlinear effects in the mag-
netoresistivity measurements. In Sec. IX the range of
applicability of the theory is discussed. The main results are
summarized in Sec. X.

II. TWO-DIMENSIONAL ELECTRON GAS IN A
CLASSICALLY STRONG MAGNETIC FIELD UNDER

MICROWAVE IRRADIATION

Our theory is based on the approach to the problem of
kinetics of a two-dimensional electron gas �2DEG� in the
presence of magnetic field and radiation that was developed
by Vavilov and Aleiner.39 This approach was used for a sys-
tematic study of the displacement mechanism of the OPC in
Ref. 39. It was further developed to treat the inelastic mecha-
nism in Ref. 50. Based on controllable approximations, the
approach allows us to analytically describe the nonlinear be-
havior of the system under intense microwave radiation.

A. Model and parameters

Let us first specify the model. The relation between the
main parameters of our theory, which is also satisfied for the
characteristic parameters of the 2DEG studied in the experi-
ments on the OPC, is as follows:

�F	 T,�,�c,�q
−1	 �tr

−1,�in
−1. �2.1�

Here �F is the Fermi energy, T the temperature, � the micro-
wave frequency, �c the cyclotron frequency, �q and �tr the
quantum �single-particle� and transport disorder-induced
scattering times, respectively, and �in the inelastic relaxation
time. The conditions �2.1� imply:

�1� quasiclassical kinetics: the 2D electron states that
contribute to transport belong to high Landau levels in a
narrow energy strip of width T around the Fermi level, �F
	T ,�c;

�2� predominantly small-angle scattering �smooth disor-
der�, �tr	�q;

�3� classically strong magnetic field, �c�tr	1; and
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�4� pronounced oscillations in the DOS due to the Landau
quantization, �c�q�1.

In the high-mobility structures used in the experiment a
smooth random potential in the plane of the 2DEG was cre-
ated by remote donors separated from the 2DEG by a spacer
of width 
 /2	kF

−1, where kF is the Fermi momentum. The
Fourier transform of the correlation function of the random
potential,

W�q� = W�0�e−q
, �2.2�

falls off exponentially for momentum transfers q	
−1, lead-
ing to �q /�tr= �kF
�−2�1, where the quantum and transport
scattering times in zero magnetic field are given by

1

�q
= �

0

� dq

2

W�q�
2vF

, �2.3�

1

�tr
= �

0

� dq

2

W�q�
2vF

� q

2kF
	2

. �2.4�

Effects of the smooth disorder on the spectral and transport
properties of 2D electrons occupying high Landau levels can
be properly described by the self-consistent Born approxima-
tion �SCBA�,74 provided that 
 does not exceed the magnetic
length75 �which is the case for the relevant magnetic fields in
most of the experiments�.

B. Quantum Boltzmann equation

Using the SCBA under the conditions listed in Eq. �2.1�,
Vavilov and Aleiner derived the quantum Boltzmann equa-
tion �QBE�,39 which is the starting point of our calculation.
The derivation of the QBE includes a few key steps which
we highlight below.

�1� Moving coordinate frame. The initial problem of elec-
tron kinetics in the quantizing magnetic field and the external
�microwave+dc� electric field E�t� in the presence of static
impurities is reduced to a problem of kinetics in the presence
of “dynamic” impurities, whose potential is t dependent, by
changing to a moving coordinate frame r→r−��t�, where
��t� obeys

�t��t� = � �t − �c�̂

�t
2 + �c

2 	 eE�t�
me

,

�̂xy = − �̂yx = 1. �2.5�

All effects of the external electric field are now included in
the time dependence of ��t�. The transformation �2.5�, which
is particularly convenient for treating the external electric
field nonperturbatively, is equivalent to the transformation to
Floquet states used in a number of works44,45,47,55,57,62,63,67 on
the OPC.

�2� Keldysh equations within the SCBA. Within the

SCBA, the Green’s functions Ĝ��� and the self-energies �̂���

����→R ,A ,K refers to the retarded, advanced, and Keldysh
components, respectively� are related to each other as

�̂21
��� =� d2q

�2�2W�q�e−iq�21�eiqr̂Ĝ���e−iqr̂�21, �2.6�

where the subscript �21� denotes the times t2 and t1 on the
Keldysh contour and �21=��t2�−��t1�.

�3� Quasiclassical approximation. Most importantly, using
the conditions �2.1�, Vavilov and Aleiner reduced Eq. �2.6� to
a simpler quasiclassical equation in the “action-angle” repre-
sentation:

�21
������ = − iK̂21g21

������ , �2.7�

g21
������ 
 i�c�

k

Ĝ21
����n̂ + k;�̂� , �2.8�

where the operators n̂ and �̂ are canonically conjugated,
�n̂ , �̂�=−i. The eigenvalues of n̂ and �̂ are the Landau level
index and the angle coordinate of the momentum, respec-

tively. The explicit expression for the linear operator K̂ is
given below in Sec. II C.

A significant difference between Eqs. �2.6� and �2.7� is
that for high Landau levels the self-energy becomes n̂ inde-

pendent. It follows that the distribution function f̂ , defined in
the usual way by

ĜR − ĜA − ĜK = 2�ĜRf̂ − f̂ ĜA� , �2.9�

commutes with �̂. Accordingly, the operator �̂, which enters
Eq. �2.7� and the impurity collision integral

i Stim�f� = �̂Rf̂ − f̂�̂A +
1

2
��̂K + �̂A − �̂R� , �2.10�

can be treated as a c–number. Substitution of Eqs. �2.7� and
�2.8� into Eqs. �2.9� and �2.10� leads to the following quan-
tum kinetic equation:

L�f� = Stim�f� , �2.11�

L�f�21 = ��t + �c���f21 − Stin�f�21, �2.12�

Stim�f�21 =� dt3�K̂21�g23
R f31 − f23g31

A � − f31K̂23g23
R

+ f23K̂31g31
A � . �2.13�

Here

t = �t1 + t2�/2 �2.14�

is the “center-of-mass” time. The inelastic collision integral
Stin�f�21 accounts for electron-electron scattering and for
coupling to a thermal �phonon� bath.

The spectrum of the problem is found from the coupled
set of Eq. �2.7� and the equation of motion

�i
�

�t2
− �cn̂	Ĝ21

R �n̂,�̂� =
��t2 − t1�

2
+ �

t1

t2

dt3�̂23
R ��̂�Ĝ31

R �n̂,�̂� .

�2.15�

Altogether, Eqs. �2.7�, �2.11�, and �2.15� determine both the
spectrum and the distribution function. The dc current in the
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presence of microwave radiation is then given according to
Eq. �3.30� of Ref. 39 by

j̄ = j̄d + j̄nd, �2.16�

j̄nd = ene�t��t� , �2.17�

j̄d = − 2epF�cos �

sin �
	2 Re � d�gt,t+�

R ft+�,t� , �2.18�

where jnd and jd stand for the nondissipative and dissipative
components of the current, respectively, and ne is the elec-
tron concentration. Here and below, the bar denotes time
averaging over the period of the microwave field in the sta-
tionary state, and the angular brackets denote averaging over
the angle �.

C. Kernel of the QBE

To complete the formulation of the model, we now

specify the kernel K̂ in Eqs. �2.7� and �2.11�. According to
Ref. 39, it can be represented as

K̂21 =
1

2�q
�

−�

�

dx exp� x��
2kF


	e−�x�−ixX21��� exp� x��
2kF


	 ,

�2.19�

with all effects of the external electric field E�t� being incor-
porated in the function X21�����21�E. Specifically, we pa-
rametrize E�t� as

E�t� = Edc +
E�
�2

Re�� s− + s+

is− − is+
	e−i�t� , �2.20�

where Edc is the dc electric field, E� the amplitude of the
microwave field E�, and real s± with s+

2 +s−
2 =1 define ellip-

tical polarization of E� with the main axes along x and y. In
particular, s+=1 �s−=1� corresponds to passive �active� cir-
cular polarization, s+=s−=1/�2 to linear polarization along
the x direction ��=0�.

Using Eqs. �2.5� and �2.20�, X
X21��� is written as

X =
��t2� − ��t1�



�− sin �

cos �
	 = Xdc + X�, �2.21�

where

Xdc = − t−��q

�tr

evF

�c
Edc�cos �

sin �
	 , �2.22�

X� = − sin
�t−

2 �
±

E± cos�� ± �t� , �2.23�

t−= t2− t1, t is given by Eq. �2.14�, and

E± = s±�2�q

�tr

eE�vF

���c ± ��
. �2.24�

After a series expansion in 1/kF
�1 the kernel �2.19� ac-
quires the final form we use below throughout the paper:

K = �q
−1 + K� + K j + K� + O��kF
�−2� , �2.25�

�qK� = −
X2

1 + X2 , �2.26�

�qK j = − i��q

�tr
���

X
�1 + X2�2 +

X
�1 + X2�2��� , �2.27�

�qK� =
�q

�tr
��

1 − 3X2

�1 + X2�3��. �2.28�

Equations �2.25�–�2.28� correspond to Eqs. �3.48� and �3.49�
of Ref. 39. We now turn to a systematic analysis of the QBE,
starting with a general classification of various contributions
to the OPC at order O�E�

2 �.

III. MECHANISMS OF THE OSCILLATORY
PHOTOCONDUCTIVITY

In this section we present a general solution to the QBE
�2.11� to first order in both the microwave power and the dc
electric field. The case of strongly overlapped Landau levels,
�c�q�1, on which we focus in this paper will be considered
at this order in more detail in Sec. V. Throughout the paper
we neglect any effect of the microwave radiation on the
functions gR�A� which determine the DOS:

���,t� = 2�0 Re � d�

2
� dt−ei�t−gt+t−/2,t−t−/2

R ��� . �3.1�

This approximation is well-justified in the limit �c�q�1.
However, at �c�q�1 the microwave and dc fields may lead
to a pronounced modification of the DOS �see Secs. V and
VI of Ref. 39�. A manifestation of the effect of the external
electric fields on the DOS in the photoresponse will be dis-
cussed elsewhere.78

A. Classical limit

To better understand the role of different terms in the
kernel �2.25�, it is instructive to look first at the QBE in the
classical �with respect to the magnetic field� limit �c�q→0.
In this limit, the DOS �=�0=m /2 is constant, the functions
g21

R =−g21
A =��t2− t1� /2, and the collision integral Stim�f�21

=K̂21f21− f21K0, where K0=�q
−1 results from the action of the

operator K̂tt on unity. After the Wigner transformation, Eq.
�2.11� reduces to

��t + �c���f − Stin�f� = −
f���
�q

+� d�

2
K̂���f�� −�� .

�3.2�

In the absence of electric fields �X=0�, the right-hand side
�rhs� of Eq. �3.2� is written as K�f =�tr

−1��
2 f , which describes

a diffusive relaxation of the electron momentum in a smooth
random potential. This part of the kernel, which is the small-
est one in the parameter 1 /kF
�1, plays no role in this
paper.
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The linear response to a small electric field X�1 is fully

governed by the part K̂ j of the kernel, which is odd in E�t�.
Substituting K̂ j into Eq. �3.2� immediately gives the Drude
formula for the conductivity. The term K�, of zero order in
1/kF
�1, is even in the electric field. It modifies the isotro-
pic part of the distribution function, which leads to the effect

of heating. Also, K̂� is responsible for the electric-field-
induced changes in higher even angular harmonics of f �as
we show below, this yields additional contributions to the
photoconductivity�.

It is worth noting that under the standard assumption of an
energy-independent �tr in the degenerate Fermi gas, all non-
linear �in Edc and E�� corrections to the Drude formula van-
ish to zero at the classical level.39,41 In order to get a finite dc
photoresponse, one should then include an energy variation
of �tr around the Fermi level, which is, however, still insuf-
ficient to get the oscillatory photoresponse.41 As far as the
OPC is concerned, at the classical level it can only come
from the non-Markovian electron dynamics in a random po-
tential �“memory effects”�. This classical contribution to the
OPC �in contrast to the classical contribution to the oscilla-
tory ac conductivity� was shown41 to be parametrically
smaller than the quantum contributions we consider below.

B. Quantum mechanisms of the oscillatory
photoconductivity

The Landau quantization leads to a periodic modulation
of the DOS for high Landau levels, ����=���+�c�, which,
as far as the OPC is concerned, essentially modifies the clas-
sical picture above. In particular, in the high-temperature
limit �T	� ,�c�, the distribution function acquires fast en-
ergy oscillations with the period �c on top of a smooth ther-
mal smearing �see Appendix A�:

f��,t,�� = fT��� + F��,t,����fT��� ,

F��,t,�� = F�� + �c,t,�� , �3.3�

where fT��� describes the thermal distribution. What is im-
portant to us is that the amplitude of the part of F that os-
cillates with � oscillates also with the ratio � /�c, which
gives rise to the OPC.

Neglecting the effect of microwaves on the DOS, we thus
assume that the function gt+�,t

R ��� does not depend on t and �.
Then, using Eq. �3.1�, the dissipative dc current �2.18� can be
expressed as

jd = 2evF�cos �

sin �
	 � d�����f����

= 2evF� d������ Re F10

− Im F10
	 , �3.4�

where F10��� is the time-independent first angular harmonic
of the distribution function �1.1�.

In the absence of external fields,

Stin
�e-ph��f���� = 0 �3.5�

and the 2DEG is in equilibrium with a thermal bath at

temperature T, f���= fT���. Applying the electric field pro-
duces perturbative corrections to fT:

f = fT + �
n

�L−1Stim�nfT, �3.6�

where L−1= ��t+�c��−Stin�−1 is the propagator in the left-
hand side �lhs� of the QBE �2.11� and the collisions integral
Stim, given by Eq. �2.13�, should be expanded in powers of
Edc and E� according to Eqs. �2.21�–�2.27�

Stim = �
mk

Stim
�a,m,k�,

Stim
�a,m,k� � K̂a

�m,k� � Xdc
m X�k . �3.7�

The index a= � , j �introduced for ease of visualization�
shows which part of the kernel, K̂ j or K̂�, enters Stim at a
given order in the fields: a=� or j for even and odd m+k,
respectively.

FIG. 1. All possible contributions to the photoconductivity at
minimal order O�EdcE�

2 � are illustrated as graphs in �� ,n� space of
angular and temporal harmonics of the distribution function F�n,
according to Eqs. �3.4� and �3.8�. The arrows denote coupling of the
harmonics F�n by the impurity collision integral Stim �Eq. �2.10��.
The filled circles denote the action of the propagator L−1 in the
resulting state. More precisely, Stim

�j,1,2� �which is of third order in the
electric fields� is denoted by the thick line in diagram �A�, while the
first-order collision integrals Stim

�j,1,0� and Stim
�j,0,1� in diagrams �B�-�F�

are denoted by the thin lines. The double-line arrows in diagrams
�B�–�F� correspond to the second-order integrals Stim

��,1,1� and
Stim

��,0,2�.
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The condition �q��tr allows us to neglect K̂� and higher-
order terms in the expansion of the kernel �2.25�. To the

same accuracy, we omit all terms in Eq. �3.6� with K̂ j enter-
ing more than once, since these are small in the same param-

eter �q /�tr. The terms of zero order in K̂ j do not contribute to
the current, as they are even in the electric fields and, hence,
in �. As a result, we represent F10, which determines the dc
current �3.4�, in the form

F10 = e−i��
�n

�
M+K=odd

�L−1 �
�+�=even

Stim
��,�,����L−1Stim

�j,M,K��L−1 �
m+k=even

Stim
��,m,k��n

fT� , �3.8�

where the summation indices run over non-negative values
and �+� and m+k are even, while M +K is odd.

To obtain the linear dc response in the absence of radia-
tion from Eq. �3.8�, we put M =1 and all other indices equal
to zero, which yields

F10 = �e−i���c���−1Stim
�j,1,0��fT�� . �3.9�

Here Stim
�j,1,0��fT� is given by Eq. �2.13� with K̂ represented by

K̂ j, Eq. �2.27�, and the latter taken at first order in the dc field
and at zero order in the microwave field,

K̂ j
�1,0� = −

i

��q�tr�1/2 ���Xdc + Xdc��� . �3.10�

Being substituted into Eq. �3.4�, F10 from Eq. �3.9� gives the
familiar linear-response dc conductivity, including the
Shubnikov-de Haas oscillations and the nonoscillatory quan-
tum correction �see Eqs. �4.14� and �5.7� below�.

The effect of the microwave field on the dc current ap-
pears at order O�EdcE�

2 �. To this order, we pick up all terms
with ��+M +mn=1 and ��+K+kn=2 in the expansion
�3.8�. The result is illustrated in Fig. 1, where diagrams �A�–
�F� correspond to the following terms in Eq. �3.8�:

�1� “displacement” contribution �A�: M =1, K=2, �=n
=0;

�2� “inelastic” �B� and “quadrupole” �C� contributions:
M =n=1, k=2, K=�=m=0. The two contributions are dis-
tinguished by the angular dependence of Stim

��,0,2�: �B� and

�C� include the isotropic and quadrupole parts of K̂
�

�0,2�, re-
spectively;

�3� “photovoltaic” contributions �D�: K=n=m=k=1, M
=�=0;

�4� diagrams �E�: M =�=1, �=2, K=n=�=0; and
�5� diagrams �F�: K=�=�=�=1, M =n=0.

We now analyze these terms in more detail.

1. Displacement mechanism (A)

The displacement contribution to the distribution function

is obtained by expanding K̂ j to order O�EdcE�
2 �,

K̂ j
�1,2� = −

6i

��q�tr�1/2 ���XdcX�2 + XdcX�2 ��� , �3.11�

and averaging X�2 over t,

X�2 =
1

2
�E+

2 + E−
2 + 2E+E− cos 2��sin2 �t−

2
, �3.12�

while neglecting all effects related to K̂� by putting �=n
=0 in Eq. �3.8�. The result,

F10
�A� = �e−i���c���−1Stim

�j,1,2��fT�� , �3.13�

is represented in Fig. 1 by diagram �A�. The thick arrow

denotes the action of the term in K̂ j
�1,2� proportional to

exp�i��, which couples the zero angular harmonic f00= fT to
f10. The filled circle stands for the propagator L−1

= ��c���−1 in the resulting state �1,0�.
Equation �3.13� can be understood as follows. In the ab-

sence of the microwave field, the dc current occurs due to a
difference in the rates of disorder-induced scattering with
electron displacements along and against the applied dc field,
so that the distribution function becomes anisotropic, Eq.
�3.9�. Absorption or emission of microwave quanta during
these scattering processes, Eq. �3.13�, modifies the current by
changing the final states and their occupancy. The displace-
ment mechanism of the OPC was predicted long ago in Ref.
32 and addressed in the majority of theoretical
works32,33,36–39,44,45,47,48,55–57,61–65 on the OPC. Its compre-
hensive study is presented in Ref. 39.

2. Inelastic mechanism (B)

The inelastic contribution to the photoconductivity is gov-
erned by a change of the isotropic time-independent part of
the distribution function, F00, due to the absorption and emis-
sion of microwave quanta. The change of F00 is related to the
t and � independent part of the kernel, which, at order
O�E�

2 �, is given by

�K�
�0,2�� = −

1

�q
�X�2 � = −

1

2�q
�E+

2 + E−
2�sin2 �t−

2
. �3.14�

The QBE for F00 to order O�E�
2 � reads

Stin
�e-ph��F00� + Stin

�e-e��F00� = − �Stim
��,0,2��fT�� . �3.15�

Equation �3.15� with Eq. �3.14� substituted into the rhs de-
scribes two effects: �i� electron heating, i.e., a modification
of the smooth part of the electron distribution, and �ii� the
appearance of an oscillatory correction to the isotropic part
of the distribution on top of the smooth part �cf. Eq. �3.3��.
The heating is controlled by electron-phonon scattering �the
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first term on the lhs of Eq. �3.15�� and leads to an effective
electronic temperature Te larger than the bath temperature T.
We relegate the discussion of Te as a function of the system
parameters and the microwave power to Sec. VIII. Much
faster processes of electron-electron inelastic scattering �the
second term on the lhs� cannot stabilize the increase of Te,
but are capable of equilibrating electrons among themselves.
The amplitude of the part of F oscillating with � in Eq. �3.3�
and the amplitude of the oscillations in the photoconductivity
are thus proportional to the rate of e-e collisions,50 �in

−1

=�in
−1�Te�,

Stin
�e-e��F00� = − �in

−1F00. �3.16�

Having obtained the nonequilibrium F00, we use K̂ j given by
Eq. �3.10� to calculate the linear response with respect to the
dc field, so that altogether at order O�EdcE�

2 � we have

F10
�B� = �e−i���c���−1Stim

�j,1,0���in�Stim
��,0,2��fT���� . �3.17�

Equation �3.17� is represented by diagram �B� in Fig. 1,
where the double-line loop denotes the action of �Stim

��,0,2�� on
fT and the thin arrow corresponds to the action of Stim

�j,1,0� on
the resulting F00.

One can see that, as compared to the displacement contri-
bution to the OPC, the effect of the inelastic mechanism is
accumulated during a much longer time �in	�q. The period
and the phase of the oscillations are the same for the two
mechanisms �and correspond to those observed in the experi-
ment�; however, the amplitude of the inelastic contribution is
�in /�q	1 times larger. Another important difference is that
the T dependence of �in makes it possible to explain the
temperature-induced decay of the oscillations as observed in
the experiment, in contrast to the oscillations produced by
the displacement mechanism, which are T independent. The
inelastic mechanism of the OPC was proposed in Ref. 34 and
discussed in detail in Ref. 50.

While mechanisms �A� and �B� are widely discussed in
the literature, already at first order in the microwave power
there exist additional contributions �C�–�F� to the OPC,
which have not been studied before.

3. Quadrupole mechanism (C)

In addition to the effect on F00, the absorption and emis-

sion of microwave quanta, described by K̂
�

�0,2�=−�q
−1X�2 ,

leads to the appearance of a quadrupole correction F20 to the
distribution function �see Eq. �3.12��:

F20 = �e−2i���c���−1Stim
��,0,2��fT�� . �3.18�

Acting by the operator K̂ j
�1,0� �Eq. �3.10�� on the quadrupole

correction yields

F10
�C� = �e−i���c���−1Stim

�j,1,0��e2i�F20�� , �3.19�

as illustrated by diagram �C� in Fig. 1.

4. Photovoltaic mechanism (D)

The photovoltaic contribution to the photoconductivity is
generated by the action of

K̂�
�1,1� = − 2�q

−1X�Xdc �3.20�

on the equilibrium distribution, which leads to the excitation
of the components F01 and F21 oscillating with time. Acting
then by

K̂ j
�0,1� = − i��q�tr�−1/2���X� + X���� , �3.21�

we calculate the ac response in the resulting state, which
gives

F10
�D� = �e−i���c���−1Stim

�j,0,1����c�� + �t�−1Stim
��,1,1��fT��� ,

�3.22�

see diagram �D� in Fig. 1.

5. “Inverse-order” contributions (E) and (F)

Additionally, contributions similar to �B�–�D� but with the
inverse order of the operators Stim

�j� and Stim
��� in Eq. �3.8� are

also possible. Diagrams �E� and �F� in Fig. 1, which describe
these processes, involve harmonics of the distribution func-
tion different from those in diagrams �B�–�D�. Namely, while
contributions �B�–�D� include even angular harmonics only,
except for the final F10, all harmonics in diagrams �E� and
�F� are odd in the angle of the momentum, except for the
initial F00= fT. Despite yielding nonzero contributions to F10,
diagrams �E� and �F� vanish in the dc current in the limit of
high T and strongly overlapping Landau levels �see the para-
graph following Eq. �4.11��. The explicit calculation in Secs.
IV and V shows that, in the limit of strongly overlapping
Landau levels, mechanisms �A�–�D� give a complete set of
contributions to the photoresponse to leading order in the
microwave power.

IV. QBE FOR OVERLAPPING LANDAU LEVELS

From now on, we study the effect of microwave radiation
on dc transport in the case when the Landau quantization
modulates the DOS only weakly. In this limit, the modula-
tion is represented by a single cosine term,

�̃��� = ����/�0 = 1 − 2� cos �tB, tB = 2/��c� , �4.1�

where

� = exp�− tB/2�q�� 1. �4.2�

It is worth mentioning that the modulation of the DOS at
order O��� is insensitive to the external electric fields
�corrections39,78 to the DOS induced by the electric fields
appear at order O��2��.

The existence of the small parameter � greatly simplifies
the solution of the kinetic equation in energy space, see Ap-
pendix B. The solution can be represented in the form �3.3�
with

F��,t,�� = �0��,t� − 2� Re��1��,t�exp�i�tB�� . �4.3�

For T	 tB
−1, the integration over � in Eq. �3.4� averages out

terms in the current of first order in �. As a result, in the
high-T limit the oscillations of the DOS manifest themselves
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in the current at order O��2�. We therefore expand �0 up to a
term quadratic in �:

�0 = �0
D + 2�2�0

�2�, �4.4�

where �0
D is the Drude part independent of �, and write the

current to order O��2� as

jd = 2evF�0� Re

− Im
	�e−i���0 + 2�2 Re �1�� . �4.5�

It is convenient to introduce new functions � j and �� ac-
cording to

� j = �0
�2� + Re �1, �4.6�

�� = Im �1, �4.7�

after which the current �4.5� is split into the classical �Drude�
and quantum parts as follows:

jd = 2�xx
D Edc + 4�2evF�0�Re

Im
	�ei�� j� . �4.8�

As shown in Appendix B, the functions �0
D, � j, and �� obey

i��t + �c����0
D = ��t−

K̂ j�t,t−��t−=0, �4.9�

i��t + �c���� j = ���t−
−

1

2
�t	K̂ j�t,t−��

t−=tB

− K̂ j�t,tB���

− ��K̂ j�t,tB� , �4.10�

��t + �c�� − K̂��t,tB���� + �in
−1����

= ��1

2
�t − �t−	K̂��t,t−��

t−=tB

. �4.11�

Here and below, any operator K̂ j,� in the rightmost position
is understood as acting on unity.

The first term on the rhs of Eq. �4.10� gives the displace-
ment contribution �A� to the dc current �4.8�, while the sec-
ond and third terms yield the inelastic, quadrupole, and pho-
tovoltaic contributions �B�–�D�. It is important to notice that
Eq. �4.10� for the function � j includes the odd part of the

kernel K̂ j only, while the function �� �Eq. �4.11�� is com-

pletely determined by the even part K̂�. It follows that dia-
grams �E� and �F� in Fig. 1 produce no contribution to the dc
current because of the absence of coupling between � j and

K̂�. Although the functions �0
�2� and Re �1 are coupled with

each other �see Eqs. �B6� and �B8�� and do have contribu-
tions of type �E� and �F�, each of these contributions van-
ishes in the combination � j �Eq. �4.6�� which determines the
current according to Eq. �4.8�.

As follows from Eq. �4.8�, for the calculation of jd we
need only the t independent parts of �0

D and � j. Using the

explicit form of K̂ j �Eq. �2.27�� and the fact that X�t−=0�
=0, the rhs of Eq. �4.9� averaged over t reads

�t−
�K̂ j�t,t−��t−=0 = − i��

�t−
Xdc

��q�tr

, �4.12�

which gives

�0
D =

evF

�c
2�tr

Edc�cos �

sin �
	 �4.13�

and, correspondingly, the Drude conductivity

�xx
D =

e2�0vF
2

2�c
2�tr

. �4.14�

Similarly,

� j =
− �tB

+ 2��

�c
��q�tr

X

�1 + X2�2 , �4.15�

where

X 
 �X�t−=tB
= Xdc + X� �4.16�

and for later use we introduce also

X� 
 �X��t−=tB
,

Xdc 
 �Xdc�t−=tB
. �4.17�

The derivative �tB
in Eq. �4.15� should be understood accord-

ing to the notation which we also use below in the paper:

�tB
A�X�,Xdc� 
 ��t−

A�X�,Xdc��t−=tB
, �4.18�

where A is an arbitrary function.
Now that � j, which determines the dc current �4.8�, is

obtained in the form of Eq. �4.15�, the problem of finding the
OPC to arbitrary order in E�

2 or Edc is reduced to solving Eq.
�4.11� for the function ��. In this paper, we restrict ourselves
to the calculation of the linear response with respect to the dc
field. In Sec. V, we obtain explicit expressions for the linear
photoconductivity, corresponding to j̄�EdcE�

2 . With increas-
ing microwave power, the system passes through several
nonlinear regimes, which are studied in Secs. VI–VIII.

V. LINEAR PHOTOCONDUCTIVITY

According to the general classification presented in Sec.
III, at order O�EdcE�

2 � one can distinguish four different
mechanisms of the photoconductivity, illustrated by dia-
grams �A�–�D� in Fig. 1. We now calculate terms in the
photoconductivity associated with the corresponding non-
equilibrium corrections to the distribution function, given by
Eqs. �3.8�, �3.13�, �3.17�, �3.19�, and �3.22�.

The displacement contribution �A�, Eq. �3.13�, is pro-
duced by K j

�1,2��EdcE�
2 . All effects on even angular harmon-

ics of the distribution function, governed by K̂�, are ne-
glected, i.e., �

�

�A�=0. Equation �4.15� then reduces to

� j
�A� =

6�tB

�c
��q�tr

XdcX�
2 . �5.1�
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By contrast, contributions �B�–�D� are related to the effect
of the microwave and dc fields on even angular harmonics.
At order O�X2�, Eq. �4.11� reads

��t + �c����� + �in
−1���� = �q

−1��tB
− �t/2�X2. �5.2�

To linear order in the dc field, we replace X2 in the rhs of Eq.
�5.2� by X�

2 +2X�Xdc. The isotropic and quadrupole parts of
X�

2 �Eq. �3.12�� yield the inelastic �B� and quadrupole �C�
contributions, respectively, while the photovoltaic contribu-
tion �D� is generated by the product X�Xdc:

��
�B� =

�in

�q
�tB

�X�
2 � , �5.3�

��
�C� =

�tB

�c�q��
�X�

2 − �X�
2 �� , �5.4�

��
�D� = �q

−1��t + �c���−1�2�tB
− �t�X�Xdc. �5.5�

In Eqs. �5.3�–�5.5�, �
�

�B� and �
�

�C� are averaged over t,
whereas �

�

�D� is not. The current �4.8� is then produced by the
dc �in the case of �B� and �C�� or ac �in the case of �D��
response in the resulting state:

� j =
2

�c
��q�tr

���Xdc + X�� . �5.6�

Substituting Eqs. �5.3�–�5.5� into Eq. �5.6� and using the re-
sulting � j together with � j

�A� �Eq. �5.1�� in Eq. �4.8� yields
the current j̄= �̂phEdc.

It is convenient to parametrize the photoconductivity ten-
sor �̂ph by four functions ds, da, hs, and ha:

�̂ph

2�xx
D = �1 + 2�2 − �c�tr

�c�tr 1 + 2�2 	 − 2�2� ds ha

− ha ds
	

− 2�2�da hs

hs − da
	 . �5.7�

The first matrix in Eq. �5.7� is the linear dc conductivity in
the absence of microwaves. The quantum correction 2�2 to
the dissipative part comes from inserting Eq. �4.15� into Eq.
�4.8� if one puts ��=0 in Eq. �4.15� and also substitutes Xdc
for X / �1+X2�2. The resulting � j coincides with �0

D �Eq.
�4.13��.

Two other matrices in Eq. �5.7� represent the microwave-
induced corrections. We express the elements of these matri-
ces in terms of the following dimensionless parameters:

w = �tB/2 = �/��c� , �5.8�

Q = sin2 w�E+
2 + E−

2� , �5.9�

QAI = sin2 wE+E−, �5.10�

QS = 2 sin2 w�E+
2 � + �c

� + 2�c
+ E−

2 � − �c

� − 2�c
	 , �5.11�

QAS = 2 sin2 w
�c

2

�
�E+

2 1

� + 2�c
+ E−

2 1

� − 2�c
	 , �5.12�

where E± are defined in Eq. �2.24�. In addition to the effec-
tive microwave power Q we introduced three similar param-
eters, Eqs. �5.10�–�5.12�, with the subscripts “AI,” “S,” and
“AS” standing for “anisotropic,” “symmetric,” and “antisym-
metric,” respectively �in accord with their appearance in the
corresponding components of �̂ph, see below�.

The diagonal isotropic part ds of �̂ph, Eq. �5.7�, is a sum
of the displacement, inelastic, and photovoltaic contribu-
tions:

ds = ds
�A� + ds

�B� + ds
�D�, �5.13�

ds
�A� = 3Q + 6Qw cot w , �5.14�

ds
�B� = 2

�in

�q
Qw cot w , �5.15�

ds
�D� = −

wQS

��q
. �5.16�

The diagonal anisotropic part da is governed by the displace-
ment and photovoltaic mechanisms:

da = da
�A� + da

�D�, �5.17�

da
�A� = 6QAI�1 + 2w cot w� , �5.18�

da
�D� = −

4wQAI

��q
. �5.19�

The nondiagonal symmetric term hs is due to the quadrupole
mechanism:

hs = hs
�C� =

QAI

�c�q
w cot w , �5.20�

while the antisymmetric Hall part is generated by the photo-
voltaic mechanism:

ha = ha
�D� =

QAS

�c�q
�1 + w cot w� . �5.21�

Let us now discuss the results �5.13�–�5.21�, obtained for
the linear regime in the microwave power.

�1� The inelastic mechanism yields the dominant effect
because of �in /�q	1: �B�	 �A� , �C� , �D�.

�2� �C� , �D�	 �A� for the case of �c�q���q�1 �strongly
overlapping Landau levels�. Note, however, that since � �Eq.
�4.2�� depends exponentially on �c, a pronounced effect
�from the practical point of view� is only possible at not too
small magnetic fields. The effects of �A�, �C�, and �D� are
then comparable in magnitude, differing only in ln �.

�3� Although �B�	 �C� , �D�, the oscillatory corrections to
the Hall conductivity are entirely governed by the quadru-
pole �C� and photovoltaic �D� mechanisms.

�4� The quadrupole contribution hs violates Onsager sym-
metry: �ik�B ,s− ,s+���ki�−B ,s+ ,s−� �the effect of time inver-
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sion on the microwave field polarization can be expressed as
s+�s−, which is equivalent to �→−�, see Eq. �2.24��. Al-
though Onsager symmetry need not be satisfied in nonequi-
librium systems, there are not many examples of its viola-
tion. One of them, for a different system but under similar
conditions, was found in Ref. 77. Symmetry with respect to
the parity transformation, x→−x, must be satisfied:
�ik�B ,s− ,s+�=rik�ik�−B ,s+ ,s−�, where rxx=ryy =1, rxy =ryx=
−1. It can be easily verified in our case since all parameters
�5.8�–�5.12� are unaffected by the simultaneous change B
→−B and s+�s−.

�5� The quadrupole term hs and the anisotropic term in the
diagonal photoresponse da vanish in the case of circular po-
larization of the microwaves �QAI=0�.

VI. FEEDBACK EFFECT: SATURATION OF THE
INELASTIC CONTRIBUTION (SIC)

The results for �̂ph�E�
2 obtained in Sec. V are valid at not

too high microwave power. The QBE in the form �4.11� con-
tains two sources of nonlinearity in E�

2 . At Q�1, high-order

terms in the expansion of K̂ j and K� in powers of E� be-
come important, leading to multiphoton corrections to both
�� and � j, see Eqs. �4.11� and �4.15�. The other source of
nonlinearity, the “feedback” term K��� in Eq. �4.11�,
strongly modifies the photoresponse at much smaller micro-
wave power, Qin�1, where

Qin 

�in

2�q
Q . �6.1�

Since �in	�q, the multiphoton corrections can still be ne-
glected at Qin�1. As we show below in this section, at Qin
	1 the single-photon feedback effect leads to a saturation of
the inelastic contribution and to a strong modification of all
other contributions to the photoconductivity.

A. Feedback effect on the isotropic part of the distribution

The feedback effect on the inelastic mechanism was stud-
ied in detail in Ref. 50. Here, we reproduce the results50

within the more general framework of Secs. III and IV. Using
Eq. �2.26�, we rewrite Eq. �4.11� in the limit Q�1 as

��t + �c�� +
X2

�q
	�� +

����
�in

=
2�tB

− �t

2�q
X2. �6.2�

Averaging Eq. �6.2� over t and �, we obtain the equation for
the isotropic time-independent part �

�

�B�
����:

� �q

�in
+ �X�

2 �	��
�B� = �tB

�X�
2 � − �X�

2 ��� − ��
�B��� . �6.3�

In the linear regime with respect to the microwave power,
i.e., for Q��q /�in, we return to �

�

�B��Q given by Eq. �5.3�.
At Q��q /�in�1 two terms on the lhs of Eq. �6.3� become of
the same order of magnitude, whereas the last term on the rhs
is still small and can be neglected �corrections of higher or-
der in Q, generated by this term, are considered in Sec.
VI C�. We thus obtain for Q�1 and arbitrary order in Qin:

��
�B� =

Qin

1 + Qin
� cot w . �6.4�

It follows that in the limit Qin	1 we reach a saturation of
the inelastic contribution �SIC�:

��
�B� →

�tB
�X�

2 �

�X�
2 �

= � cot
�

��c�
. �6.5�

The dc response in the stationary nonequilibrium state �6.4�
yields

ds
�B� =

4Qin

1 + Qin
w cot w , �6.6�

reproducing Eq. �15� of Ref. 50.
The saturation of the inelastic contribution at large Qin has

much in common with the well-known effect of “self-
induced transparency” for a two-level system in a strong
resonant electromagnetic field, which occurs due to equaliza-
tion of the population of the levels. Clearly, in the system we
consider here the complete transparency cannot be obtained
since the electron spectrum in our problem is continuous.
Even in the SIC regime, absorption does not tend to zero.
Electrons still absorb microwave quanta and transmit the ab-
sorbed power to the phonon bath: the dynamic equilibrium
between these two processes determines the effective elec-
tronic temperature Te, see Sec. IX. However, the saturation
�6.5� of the amplitude of the oscillations in the isotropic part
of the distribution function is governed by the same feedback
effect as the transparency in the two-level system.

B. Quadrupole, photovoltaic, and displacement contributions
in the SIC regime

In the nonlinear regime, the strong oscillations of F00���
produced by the inelastic mechanism essentially modify con-
tributions �A�, �C�, and �D�. Since �

�

�C� and �
�

�D� are still
small at Qin�1, we replace �� in the term X2�� /�q on the
lhs of Eq. �6.2� by �

�

�B�. Solving Eq. �6.2� for the quadrupole
and photovoltaic contributions then gives:

��
�CB� = ��

−1
�tB

− ��
�B�

�c�q
�X�

2 − �X�
2 �� , �6.7�

��
�DB� = 2��t + �c���−1

�tB
− �t/2 − ��

�B�

�q
X�Xdc. �6.8�

Here and below we emphasize the influence of the inelastic
mechanism by adding the second superscript B. Substituting
Eqs. �6.7� and �6.8� into Eq. �4.15� and using the resulting � j
in Eq. �4.8� yields the photovoltaic and quadrupole contribu-
tions to the Hall part of �̂ph �Eq. �5.7��:

hs
�CB� =

QAI

�c�q

w cot w

Qin + 1
, �6.9�

DMITRIEV, MIRLIN, AND POLYAKOV PHYSICAL REVIEW B 75, 245320 �2007�

245320-10



ha
�DB� =

QAS

�c�q
�1 −

Qin − 1

Qin + 1
w cot w	 . �6.10�

The diagonal photovoltaic contributions ds
�D� and da

�D�, which
originate from the derivative �t in Eq. �6.8�, are not affected
by the oscillations in F00 and remain the same as in the linear
regime, Eqs. �5.16� and �5.19�.

The oscillations of F00 also modify the displacement con-
tribution to the current. Similarly to Eqs. �6.7� and �6.8� we
substitute �

�

�B� for �� in Eq. �4.15�, which gives

� j
�AB� =

�tB
− 2��

�B�

�c
��q�tr

6XdcX�
2 . �6.11�

Using Eq. �6.11� in Eq. �4.8� we have

ds
�AB� = 3Q�1 −

Qin − 1

Qin + 1
2w cot w	 , �6.12�

da
�AB� = 6QAI�1 −

Qin − 1

Qin + 1
2w cot w	 . �6.13�

We thus see that in the SIC regime, Qin	1, the quadrupole
term hs

�CB� saturates as a function of the microwave power,
whereas the nondiagonal photovoltaic term ha

�DB� and both
displacement terms ds

�AB� and da
�AB� continue to grow linearly

with increasing power but are strongly modified as compared
to the linear regime.

C. Two-photon and double-frequency corrections to the
isotropic part of the distribution

For Qin	1, the main �inelastic� contribution to the oscil-
latory part of the photoconductivity is independent of the
microwave power as long as Q is sufficiently small. Devia-
tions from the “plateau” come from contributions �A� and
�D� �which, as shown in Sec. VI B, grow linearly with Q in
the SIC regime�, and also from corrections of order O�Q� to
the Q independent term �

�

�B� �Eq. �6.5��, which we obtain
below.

Equation �4.11� produces two types of corrections to �
�

�B�

of linear order in Q. One of them is related to two-photon

processes in K̂�, which come from the expansion of K� to
fourth order in X�, yielding

��
�B� =

�tB
�X�

2 − X�
4 �

�q�in
−1 + �X�

2 − X�
4 �

= � cot w
Qin

Qin + 1
�1 −

3

4
Q

Qin + 2

Qin + 1
	 .

�6.14�

The other is associated with single-photon excitation of the
second temporal harmonic of the distribution function. This
correction originates from the term �tX�

2 in Eq. �6.2� �which
has played no role so far� and to leading order in X�

2 reads

��
�2�� = C −

�2�q�−1

�t + �c��
�t�X�

2 − X�
2 � , �6.15�

where

X�
2 − X�

2 =
1

2
sin2 w�E+

2 cos�2�t + 2�� + E−
2 cos�2�t − 2��

+ 2E+E− cos 2�t� . �6.16�

The constant of integration C in Eq. �6.15� should be found
from the periodic boundary condition for the function
�

�

�2���� , t�. Averaging Eq. �6.2� over � and t, we get the

boundary condition in the form �in�X�
2�

�

�2���=−�q��
�

�2���,
which gives C=�q

−1Q2�Qin / �1+Qin�, where

Q2� =
sin4 w

8Q
�4E+

2E−
2 +

�

� + �c
E+

4 +
�

� − �c
E−

4	 .

�6.17�

Only the constant C contributes to the double-frequency cor-
rection to the dc current at first order in Q. Summing up the
contributions �6.14� and �6.15� to �

�

�B� we obtain ds
�B�

=2tB��

�B� with the linear-in-Q terms included:

ds
�B� �

4wQin

1 + Qin
�cot w�1 −

3

4
Q

Qin + 2

Qin + 1
	 +

Q2�

��q
� .

�6.18�

Equation �6.18� tells us that for strongly overlapping Landau
levels the double-frequency correction is much stronger than
the one coming from the two-photon processes, except for
the close vicinity of the cyclotron-resonance harmonics
where the two-photon correction exhibits singular behavior.

D. Discussion of the results

Equations �6.9�, �6.10�, �6.12�, �6.13�, and �6.18�, together
with Eqs. �5.16� and �5.19�, describe the photoconductivity
�̂ph �Eq. �5.7�� to arbitrary order in Qin=�inQ /2�q and to first
order in Q. In the limit Qin�1, Eqs. �5.13�–�5.21� are repro-
duced. At Qin�1, the evolution of the photoresponse with
increasing power can be summarized as follows.

�1� Growth of the leading �inelastic� term ds
�B� saturates

due to the feedback effect, Eq. �6.6�, and so does the quad-
rupole term hs

�CB�, Eq. �6.9�.
�2� Remarkably, the parts proportional to w cot w of the

displacement contributions ds
�AB� and da

�AB�, as well as that of
the photovoltaic contribution ha

�DB�, change sign at Qin=1,
and the linear growth is recovered with opposite sign at
higher power.

�3� While at Qin�1 the inelastic contribution is the only
one that is T dependent, in the crossover region, Qin�1, all
contributions, except for the diagonal photovoltaic terms ds

�D�

and da
�D�, change strongly as a function of T.

�4� However, apart from the small quadrupole correction
hs

�CB�, the photoconductivity in the limit Qin	1 becomes in-
dependent of �in and, hence, of temperature:

ds
�B� = w cot w�4 − 3Q� + 4wQ2�/��q, �6.19�

ds
�AB� = 3Q�1 − 2w cot w� , �6.20�

da
�AB� = 6QAI�1 − 2w cot w� , �6.21�
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ds
�D� = wQS/��q, �6.22�

da
�D� = − 4wQAI/��q, �6.23�

hs
�CB� = �QAI/Qin�w cot w/�c�q, �6.24�

ha
�DB� = QAS�1 − w cot w�/�c�q. �6.25�

Equations �6.19�–�6.25� predict that there are two sources of
nonlinearities which will essentially modify the plateau be-
havior in the SIC regime with increasing microwave power:
the multiphoton processes and the “spreading” of the feed-
back effect over higher temporal and angular harmonics. The
multiphoton effects become strong at Q�1, whereas the
feedback-related excitation of distant harmonics becomes
strong already at much lower power, namely at Q��c�q. It
is important that the strong deviations from the plateau be-
havior take place when Q is already much larger than �q /�in
and, therefore, inelastic scattering can be completely ne-
glected. In Sec. VII we discuss the regime of ultrahigh
power in more detail.

VII. ULTRAHIGH POWER: FEEDBACK VS
MULTIPHOTON EFFECTS

A. Classification of contributions to �̂ph at ultrahigh power

In the SIC regime considered in Sec. VI, strong oscilla-
tions in the isotropic part of the distribution function essen-
tially modified all contributions to the dc current �A�–�D�. At
ultrahigh power, contributions involving high angular and
temporal harmonics of the distribution function become im-
portant, so that our previous �A�–�D� classification, devel-
oped in Sec. III for the linear �̂ph, should be generalized.
Despite the excitation of the high harmonics, at ultrahigh
power it is still possible to distinguish the generalized dis-
placement �A�, photovoltaic �D�, and nonphotovoltaic contri-
butions. In the linear regime with respect to the dc field Edc,

the latter enters the part of the kernel K̂� in the photovoltaic

term only. In all other terms, Edc belongs to K̂ j. Further, in
the displacement term all effects of the microwave and dc
fields on even angular harmonics are absent. We now pro-
ceed to calculate various contributions to �̂ph in the limit of
ultrahigh power, where the inelastic scattering is of no im-
portance.

The displacement contribution is readily calculated to ar-
bitrary order in microwave power by putting ��=0 in Eq.
�4.15� for � j and extracting the part linear in Edc:

� j
�A� =

evF

�c
2�tr

Re�Edc
+ e−i���tB

tB

1 − 3X�
2

�1 + X�
2 �3 , �7.1�

where Edc
+ = �Edc�x+ i�Edc�y and we used the explicit form of

Xdc given by Eq. �2.22�. As for the effect of the ac and dc
fields on even angular harmonics, Eq. �4.15� yields

� j
�0� =

2��
�0�Xdc

�c
��q�tr

1 − 3X�
2

�1 + X�
2 �3 , �7.2�

� j
�D� =

2��
�D�

�c
��q�tr

X�
�1 + X�

2 �2 . �7.3�

Here �
�

�0� is the solution of Eq. �4.11� that is independent of
Edc �at small power, �

�

�0� is the sum of the inelastic and
quadrupole terms� and �

�

�D� is the linear-in-Edc �photovoltaic�
solution:

��t + �c�� +
1

�q

X�
2

1 + X�
2 	��

�0� =
�tB

− �t/2

�q

X�
2

1 + X�
2 , �7.4�

��t + �c�� +
1

�q

X�
2

1 + X�
2 	��

�D� =
�tB

− �t/2 − ��
�0�

�q

2XdcX�
�1 + X�

2 �2 .

�7.5�

In Eq. �7.4�, we omitted the term which describes inelastic
scattering, since in the following we consider the limit Q
	�q /�in. In this limit, the inelastic scattering is irrelevant, as
demonstrated in Sec. VI D. For simplicity, we focus here on
the case of circularly polarized microwaves. Linear polariza-
tion is briefly discussed in the end of Sec. VII C.

B. Circular polarization: General solution

For a circularly polarized microwave field, the solution of
Eqs. �7.4� and �7.5� greatly simplifies. For definiteness, let us
consider passive circular polarization by putting s+=1, s−
=0 in Eq. �2.21�, so that

X� = �Q cos x, x 
 � + �t , �7.6�

Q =
2�q

�tr
� eE�vF

���c + ���2

sin2 w . �7.7�

It is convenient to introduce new functions g0�x� and g1�x�
by casting �

�

�0��x� and �
�

�D��x ,�� in the form

��
�0� = 2tB

−1g0�x� , �7.8�

��
�D� = −

evF

�c

��q

�tr
2 Re�Edc

�+�g1�x�exp�− i��� . �7.9�

The partial differential equations �7.4� and �7.5� transform
then into ordinary differential equations for g0,1�x�:

gN� �x� + ��p�x� − i��N1�gN�x� = ��N�x� , �7.10�

where N=0 or 1, the constants � and � are given by

� = 1/�� + �c��q, � = �c�q� , �7.11�

and the functions p�x� and �N�x� are written in terms of X�
as

p�x� =
X�

2

1 + X�
2 , �7.12�

�0�x� = w�cot w + tan x�
X�

2

�1 + X�
2 �2 , �7.13�
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�1�x� = �1 − 2g0�x��
X�

�1 + X�
2 �2

+ w�cot w + tan x�X�
1 − 3X�

2

�1 + X�
2 �3 . �7.14�

Integration of Eq. �7.10� with a periodic boundary condition
gN�0�=gN�2� yields

gN�x� = GN�x� + exp�− SN�x��
GN�2�

1 − exp�− SN�2��
,

�7.15�

GN�x� = ��
0

x

dy�N�y�exp�SN�y� − SN�x�� , �7.16�

SN�x� = − i�x�N1 + ��
0

x

dyp�y� . �7.17�

Note that for the case of circular polarization the aniso-
tropic contributions to the photoconductivity tensor �̂ph �Eq.
�5.7�� vanish, da=hs=0, so that �̂ph reduces to

�̂ph = 2�xx
D�1 + 2�2�1 − ds� − �c�tr − 2�2ha

�c�tr + 2�2ha 1 + 2�2�1 − ds�
	 . �7.18�

By using Eqs. �4.8�, �7.1�–�7.3�, �7.8�, and �7.9�, the terms ds
and ha in Eq. �7.18� are expressed as

ds = ds
�A� + ds

�0� + ds
�D�, �7.19�

where

ds
�A� = 1 − �1 + 2w cot wQ�Q� 1 − 3X�

2

�1 + X�
2 �3�

x

, �7.20�

ds
�0� = 4g0�x�

1 − 3X�
2

�1 + X�
2 �3�

x

, �7.21�

ds
�D� = 4 Reg1�x�

X�
�1 + X�

2 �2�
x

, �7.22�

and

ha = − 4 Img1�x�
X�

�1 + X�
2 �2�

x

. �7.23�

The brackets �¯�x denote averaging over x.

C. Photoresponse at ultrahigh power

Being represented in the form of Eq. �7.20�, the displace-
ment contribution is easily calculated,

ds
�A� = 1 +

Q/2 − 1

�1 + Q�5/2 + 2w cot wQ
3 − Q/4

�1 + Q�7/2 , �7.24�

reproducing Eq. �6.8� of Ref. 39. Unlike ds
�A�, the terms ds

�0�,
ds

�D�, and ha, which are expressed through the functions g0�x�

and g1�x�, cannot be written in a closed analytical form for
arbitrary �, �, and Q. When discussing �̂ph at ultrahigh
power in various limiting cases, it is useful to represent ds
and ha as

ds = w cot wF1d�Q,�,�� + wF2d�Q,�,�� + F3d�Q,�,�� ,

�7.25�

ha = w cot wF1h�Q,�,�� + wF2h�Q,�,�� + F3h�Q,�,�� ,

�7.26�

where the different terms are in one-to-one correspondence
with the terms in the functions �N�x� on the rhs of Eq. �7.10�
proportional to w cot w, w, and independent of w �except for
the dependence on � in X��.

The results of a numerical calculation of ds and ha �Eqs.
�7.20�–�7.23�� are illustrated in Figs. 2–5, where Fnd and Fnh
�with n=1,2 ,3� are drawn as a function of Q for �=0.3 and
several values of �=1, 10, and 30. Since �in is assumed to be
infinite throughout Sec. VII, the scale of Q��q /�in, below
which the system exhibits the linear response with respect to
the microwave power, vanishes. As a result, the function F1d
is nonzero �F1d=4� at Q=0 in Fig. 4. With the exception of
F3d, all other functions Fnd and Fnh show nonmonotonic be-
havior with increasing Q and decay to zero in the limit of
large Q. The function F3d→1 for Q→�, thus eliminating, as
can be seen from Eq. �7.18�, the quantum correction 2�2 to
the dissipative part of the classical Drude conductivity. It
follows that all quantum effects in �̂ph are destroyed and the
classical Drude conductivity is restored in the limit of high
power.

For �	1 �which is the case for strongly overlapping Lan-
dau levels, unless � /�c is too large�, the displacement con-
tribution �7.24� is clearly insufficient to correctly describe
the behavior of ds as a function of Q. This can be seen, e.g.,
in Fig. 2, where the displacement contribution to F3d is
shown by the dashed line. A much faster behavior of F3d at
small Q is due to the photovoltaic contribution. Indeed, the
expansion of F3d in powers of Q reads

FIG. 2. Evolution of the contribution F3d�Q�, Eq. �7.25�, to the
photoconductivity �7.18� with increasing effective microwave
power Q, Eq. �7.7�, for �=1, 10, and 30, and �=0.3 �Eq. �7.11��.
Dashed curve: the displacement contribution to F3d�Q�, given by
the first two terms in Eq. �7.24�.
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F3d � 3Q +
��Q�2

2

1 + 3�2

�1 − �2�2 , Q�
1

�
, �7.27�

where the linear term, due to the displacement mechanism,
crosses over at Q��−2 into the faster quadratic term related
to the photovoltaic mechanism. At Q��−1, F3d reaches a
maximum value of order unity. In the limit of large Q, F3d
approaches unity from above.

The displacement contribution to the function F2d, shown
in Fig. 3�a�, is exactly zero, so that F2d is entirely due to the
contribution of ds

�0� and ds
�D�. At Q��−1, F2d behaves linearly

with Q:

F2d �
�Q

2
−

2�Q

1 − �2 . �7.28�

The first term in Eq. �7.28� comes from ds
�0� and is associated

with excitation of the double-frequency harmonics F22 and
F−2,−2 �Eqs. �6.15� and �6.19��. The second, photovoltaic
term, which is due to excitation of F21, F01, F−2,−1, and F0,−1,
has a larger slope with opposite sign �Eq. �6.22��. Their be-
havior at arbitrary Q is illustrated in Fig. 3�b�: one can see
that each term decreases slowly with increasing Q for
Q	�−1, but they strongly compensate each other, leading to
a much faster decay of F2d.

The function F1d is shown in Fig. 4�a�. It is finite at
Q=0 and therefore is much larger than both F2d and F3d at
Q��−1. The expansion of F1d in powers of Q reads

F1d � 4 – 9Q −
��Q�2

2

1 + 3�2

�1 − �2�2 . �7.29�

The nonzero value of F1d at Q=0 is due to the saturated
inelastic contribution ds

�B� �Eq. �6.19��, whereas the linear
term comes from both the two-photon correction to the in-
elastic contribution �Eq. �6.19�� and from the displacement
contribution �Eq. �6.20��. The two contributions related to
ds

�0� and ds
�A� are presented for arbitrary Q in Fig. 4�b�. Simi-

larly to F3d, the photovoltaic term grows quadratically at Q
��−1. As seen from Fig. 4�b�, for �	1 it dominates at large
Q, so that F1d changes sign, reaches negative values of order
unity, and approaches zero in the limit Q→� from below.

The functions Fnh contributing to the Hall part of �̂ph are
shown in Fig. 5. All three are related to the photovoltaic
mechanism and come from the imaginary part of g1�x� in Eq.
�7.23�. At Q��−1 they grow with increasing microwave
power,

F1h � −
2�

1 − �2�Q , �7.30�

F2h �
2�

�1 − �2�2 ��Q�2, �7.31�

FIG. 3. �a� Contribution F2d�Q�, Eq. �7.25�, to the photoconduc-
tivity �7.18� for �=1, 10, and 30, and �=0.3. �b� “Nonphotovol-
taic” �positive� and photovoltaic �negative� contributions to F2d�Q�
for �=1 and 10.

FIG. 4. �a� Contribution F1d�Q�, Eq. �7.25�, to the photoconduc-
tivity �7.18� for �=1, 10, and 30, and �=0.3. �b� Contributions to
F1d�Q� �Eq. �7.19�� for �=1 and 10: Dashed line: Displacement
contribution �third term in Eq. �7.24��; solid line in the upper half-
plane: nonphotovoltaic contribution �second term in Eq. �7.19��;
and solid line in the lower half-plane: photovoltaic contribution
�third term in Eq. �7.19��.
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F3h �
2�

1 − �2�Q , �7.32�

and decay to zero in the limit of large Q. The maximum
values of �Fnh�, which are reached at Q��−1, are of order
unity �for ��1�, similarly to the behavior of Fnd. It follows
that at Q��−1 the Hall part ha of the photoresponse be-
comes as strong as the diagonal part ds.

The behavior of ds and ha in the limit of large Q can be
found by observing that the main contribution to the integrals
�7.20�–�7.23� over x comes then from a close vicinity �of
width Q−1/2� of points x= /2 and 3 /2. Around these points
the multiphoton processes, which sum up to produce the fac-
tors �1+X�

2 �−1 in Eqs. �7.20�–�7.23�, are strongly suppressed.
For Q	�2, the expansion of the factors exp�±SN� around
unity in Eq. �7.16� yields the asymptotic behavior of the
functions Fnd and Fnh:

F1d � −
7�2

16Q3/2 , �7.33�

F3d � 1 +
�2

8Q3/2 , �7.34�

F1h � −
3��

4Q3/2 , �7.35�

F3h �
��

2Q3/2 . �7.36�

Note that the displacement mechanism gives terms of order
Q−3/2 in F1d and F3d, which are much smaller than the terms
of order �2Q−3/2 in Eqs. �7.33� and �7.34� for �	1.

In the intermediate interval �−1�Q��2, where all the
functions Fnd and Fnh, n=1,2 ,3, fall off with increasing Q as
a power law, the function gN�x� can be approximated as
gN�x��GN�x���N�x� / p�x� everywhere except for a vicinity
of the singular points x= /2 and 3 /2. The singular behav-
ior around these points requires special care for the function
F2d, contributions to which coming from ds

�0� and d�D� only
weakly depend on Q and strongly compensate each other, as
illustrated in Fig. 3�b�. Consider the part F2d

�0� related to ds
�0�:

F2d
�0� �

2


�

0

2

dx��x�
1 − 3Q cos2 x

�1 + Q cos2 x�3 , �7.37�

where

��x� = �Q�
0

x

dy
sin y cos y

�1 + Q cos2 y�2

� exp�− �
y

x

dz
�Q cos2 z

1 + Q cos2 z	 . �7.38�

In Eq. �7.37� we neglected the exponentially small �for Q
	�−1� boundary term in the solution �7.15�. For Q	�−1 the
main contribution to F2d

�0� given by Eq. �7.37� comes from the
singularities at x= /2 ,3 /2. For Q��2 one can neglect Q
in all the denominators in Eqs. �7.37� and �7.38�, after which
F2d

�0� is represented as

F2d
�0� �

2�Q


�

−�

�

dx1�
−�

�

dx2x1 sgn�x1 − x2�

� exp�− �Q
�x2

3 − x1
3�

3
	 =

4
�3

. �7.39�

The result does not depend on Q, which explains the “pla-
teau” in the behavior of F2d

�0��Q� shown in Fig. 3�b�. It is
important, however, that a similar calculation of the contri-
bution to F2d coming from the photovoltaic term ds

�D� exactly
cancels the constant term in Eq. �7.39�, so that the difference
between the two falls off rapidly with increasing Q for Q
	�−1, as observed in Fig. 3�a�.

FIG. 5. Hall contributions �7.26� to the photoconductivity �7.18�
for �=1, 10, and 30, and �=0.3: �a� F1h�Q�; �b� F2h�Q�; and �c�
F3h�Q�.

MICROWAVE PHOTOCONDUCTIVITY OF A TWO-… PHYSICAL REVIEW B 75, 245320 �2007�

245320-15



To summarize, in the limit of strongly overlapping Lan-
dau levels and low temperatures, 1����in /�q, there appear
five regions of Q with essentially different behavior of the
photoconductivity as a function of Q and T:

�1� Q��q /�in: the photoresponse is linear in Q and is
strongly dependent on T;

�2� �q /�in�Q�1/�: the strong feedback effect leads to
the saturation of the photoresponse as a function of Q. In this
interval of Q, as well as at higher Q, the photoconductivity
ceases to depend on T;

�3� �−1�Q�1: the feedback effects strongly suppress
the photoresponse;

�4� 1�Q��2: the multiphoton effects become important
and modify the feedback effects; and

�5� �2�Q: the photoresponse is dominated by the multi-
photon effects, the feedback effects can be treated perturba-
tively. In the limit Q→� the classical Drude conductivity is
restored.

Above, in the bulk of Sec. VII C, we focused on the case
of circular polarization in the limit of high power. Two main
differences of linear polarization as compared to circular po-
larization are as follows. First, the photoresponse becomes
anisotropic, i.e., depends on the mutual orientation of E� and
Edc. Second, the photoresponse may show much stronger
resonant features at n�=2m�c, where m and n are integer
numbers. The latter is related to the different structure of a
perturbation in �� ,n� space �Eq. �1.1�� induced by the radia-
tion. For the case of passive circular polarization considered
above, only the harmonics F2m,2m along the diagonal are ex-
cited in the absence of the dc field �they are all contained in
the function g0 in Eq. �7.8��. The linear response to the dc
field, included in St�, couples these harmonics with their
neighbors F2m,2m±1. Under the action of Stj all these harmon-
ics contribute to F±1,0 and thus to the dc photoconductivity.
In the case of linear polarization, however, all harmonics
F2m,n, with m and n integers, are excited by radiation, which
leads to the “spreading” of the perturbation all over the �� ,n�
plane. The resonances at n�=2m�c for the case of linear
polarization warrant additional study.

VIII. MICROWAVE-INDUCED MAGNETORESISTIVITY
OSCILLATIONS

In Secs. V–VII we have calculated the photoconductivity
tensor �̂ph and discussed its evolution with increasing “effec-
tive” microwave power Q defined in Eq. �5.9� as

Q = P sin2 �

�c
�2� s+

2

��c + ��2 +
s−

2

��c − ��2� , �8.1�

where

P =
2�q

�tr
� eE�vF

�2 	2

. �8.2�

However, what is usually measured in the experiment is the
photoresistivity �̂ph as a function of �c at fixed � and P. The
dependence of �̂ph on �c /� for a given P is discussed below,

assuming, as in Secs. VII B and VII C, passive circular po-
larization of the microwave field.

For circular polarization, the photoresistivity tensor is eas-
ily obtained in the limit of classically strong magnetic field,
�c�tr	1, by inverting Eq. �7.18�:

�̂ph �
1

2�xx
D ��c�tr�2�1 + 2�2�1 − ds� �c�tr − 2�2ha

− �c�tr + 2�2ha 1 + 2�2�1 − ds�
	 .

�8.3�

Here we neglect a small admixture of −4�2ha /�c�tr in the
diagonal part of �̂ph, as well as a similar admixture of
±4�2ds /�c�tr in the Hall part.

It was shown in Sec. VII that, while in the linear regime
with respect to the microwave power the inelastic contribu-
tion to the photoresponse dominates, already at Q��−1 the
inelastic and photovoltaic contributions become comparable
in magnitude. The displacement contribution becomes also
relevant at this power if ��1. The interplay of the three
contributions in the traces of ds and ha as a function of the
ratio �c /� is illustrated in Figs. 6–9 for the case of passive
circular polarization. The dependence of ds and ha on �c is

FIG. 6. Diagonal, ds, and Hall, ha, parts of the magnetoresistiv-
ity tensor �8.3� at moderate microwave power P=0.01 �Eq. �8.2�� vs
�c /�. Solid lines: the functions −ds �panels �a� and �c�� and ha

�panels �b� and �d��; �a� and �b� correspond to �1/2=1, while �c� and
�d� to �1/2=10. Dashed lines: the linear-in-P asymptotes ds

�B�+ds
�D�

and ha
�D� �Eqs. �5.15�, �5.16�, and �5.21��.

FIG. 7. Solid lines: same as in Fig. 6 for P=0.1. Dashed lines:
the asymptote for ha in the SIC regime �Eq. �8.7��. Dotted lines: the
saturated inelastic contribution �Eq. �6.6��.
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shown over a single period of oscillations around the second
harmonic of the cyclotron resonance for 2 /5��c /��2/3.
Each of Figs. 6–9 corresponds to one of four values of the
microwave power P=0.01, 0.1, 1, and 10.

Within each of Figs. 6–9 two cases are illustrated, corre-
sponding to two different values of the parameter � �Eq.
�7.11�� taken at �c /�=1/2. In every figure, �a� and �b� cor-
respond to �1/2= �3�c�q�−1=1, while �c� and �d� to �1/2=10.
In all the figures we take the same ratio �in /�q=50, thus
neglecting the heating effect, discussed separately in Sec.
IX B.

At P=0.01 �Fig. 6�, not only Q but also Qin=�inQ /2�q is
small compared to unity in the whole interval 2 /5��c /�
�2/3. Therefore the photoresponse is well-described by the
linear-in-P asymptotes �5.13� and �5.21�. More specifically,
the diagonal part at ��1 is dominated by the inelastic con-
tribution ds

�B� �Eq. �5.15��, while at �	1 the photovoltaic
contribution ds

�D� �Eq. �5.16�� becomes pronounced near the
ends of the interval �where inelastic contribution vanishes,
cot w=0�. The Hall response is governed by the photovoltaic
contribution ha

�D� �Eq. �5.21��. The displacement part ds
�A� is

small due to the large ratio �in /�q=50, while the quadrupole
contribution to the Hall part, hs

�C� �Eq. �5.20��, as well as the
anisotropic diagonal part �5.17� are absent for circular polar-
ization. In the case of linear polarization, hs

�C� would provide
a Hall contribution of the same order of magnitude as ha

�D�.
For comparison, the linear asymptotes ds

�B�+ds
�D� and ha

�D� are

shown in Fig. 6 by the dashed lines. The mismatch between
the solid and dashed lines is negligible for small detuning
from the resonance,

�
 ��/�c − 2�� 1, �8.4�

owing to the sin2 � term in Eq. �8.1�. Away from the reso-
nance, at ��1/2, the parameter Qin�0.1 and the feedback
effects �Sec. VI� lead to a noticeable correction to the linear
behavior.

The evolution of ds and ha with increasing P reveals the
nonlinear effects studied in Secs. VI and VII. First of all,
note that the part of �̂ph associated with F1d and F1h �Eqs.
�7.25� and �7.26�� vanishes both at �=0 and at �c /�=2/5
and 2/3, where �=1/2. The photoresponse at both ends of
the interval is, therefore, fully governed by the contributions
to �̂ph coming from F2d, F3d, F2h, and F3h, which represent
subleading terms for small P. In accord with the results of
Sec. VII, Figs. 7�a� and 7�c� show that the photoresponse at
�=1/2 in ds is indeed discernible only at P��−1; otherwise,
it is masked by the much stronger inelastic contribution that
develops at ��1/2.

In the vicinity of the resonance, the diagonal photoresis-
tivity is dominated by the F1d term in Eq. �7.25�, which at
�2� �P��−1 can be represented as

ds � w cot wF1d �
2�

�c

Pin
* sin�2�/�c�

1 + Pin
* sin2��/�c�

−
9�

2�c
P* sin

2�

�c
−
�

4�c
sin

2�

�c
� P*

��q
sin
�

�c
	2

�
�� + �c�2 + 3�c

2

�� + 2�c�2 , �8.5�

where

P* = P
�2

�� + �c�2 , Pin
* =

�in

2�q
P*, �8.6�

see Eqs. �6.18�, �6.20�, and �7.29�. The asymptote �8.5� is
shown in panels �a� and �c� of Figs. 8 and 9 by the dashed
line, while the dotted line describes the behavior of the first
term of Eq. �8.5�, which represents the saturated inelastic
contribution �Eq. �6.6�, see also Eq. 15 of Ref. 50�. For P
	�−1 the photoresponse tends to concentrate at ��1, which
can be seen from its evolution with increasing P in Figs.
6–9.

Similarly, the Hall part at �2� ��P�−1 can be approxi-
mated by

ha �
2�cP

* sin2��/�c�
��q�� + 2�c�

+ 2�1 +
�c

�
	�P* sin2��/�c�

�� + 2�c��q
	2

−
P* sin�2�/�c�

�� + 2�c��q

1 − Pin
* sin2��/�c�

1 + Pin
* sin2��/�c�

, �8.7�

see Eqs. �6.10�, �7.31�, and �5.10�. The asymptote �8.7� is
shown in panels �b� and �d� of Figs. 7–9 by the dashed line.

Let us now briefly recall the physics behind the calculated
dependencies by the example of Fig. 9, where the microwave
power P=10 is large and the effective power Q �Eq. �8.1��

FIG. 8. Solid lines: same as in Fig. 7 for P=1. Dashed lines: the
asymptotes for ds and ha in the SIC regime �Eqs. �8.5� and �8.7��.
Dotted lines: the saturated inelastic contribution �Eq. �6.6��.

FIG. 9. Same as in Fig. 8 for P=10.
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changes from Q=0 at �c /�=1/2 to Q�10 at �c /�=2/5
and 2/3. As a result, in Fig. 9, the system passes with in-
creasing � through all regimes discussed in Secs. V–VII.

�1� �=0: exactly on resonance, the photoresponse is zero.
�2� ���max�1: the linear photoresponse, ds ,ha�P�

�Sec. V�. The inelastic contribution dominates the photore-
sponse in the diagonal part,

ds = −
8

9
�2�2�in

�q
P� �8.8�

�linear-in-P part of the first term in Eq. �8.5��, while in the
Hall part the photovoltaic mechanism produces

ha = −
1

3
�2�2�1/2P� , �8.9�

�linear-in-P part of the last term in Eq. �8.7��. The maximum
value of the inelastic term in ds as a function of � is reached
at

�max 
 �9�q/22�inP . �8.10�

�3� ���max: the crossover to the SIC regime �Sec. VI�.
As detuning from the resonance � approaches �max, the non-
linear corrections in the first term of Eq. �8.5� and in the last
term of Eq. �8.7�, driven by the feedback effects related to
the strong oscillatory pattern in the isotropic part F00��� of
the distribution function, become important. At �=�max, the
inelastic contribution to ds reaches maximum, ds= ±4�max

−1

��P, and crosses over into the �−1 decay at ���max �illus-
trated by the dotted lines�. In the Hall term ha, the strong
oscillations of F00 change sign of the photovoltaic contribu-
tion at �=�max.

�4� �max��� �P��−1/2: the SIC regime, in which the
photoresponse becomes independent of �in and, hence, of
temperature. This property of the high-power photoresponse
can be easily verified experimentally.

At �	�max, the two last terms in Eq. �8.5� become rel-
evant, leading to a decrease of the diagonal photoresponse.
The last term is actually irrelevant in Fig. 9�a� �which corre-
sponds to �1/2=1�, so that �Eq. �7.29��

ds �
�

�c
cot
�

�c
�4 – 9Q� �

8

�
− 82P� . �8.11�

The second term in Eq. �8.11� consists of the displacement
contribution modified by the strong oscillations in F00 �in the
SIC regime, its sign is inverted compared to the linear case,
Eq. �6.12�� and the two-photon correction to F00 itself �Eq.
�5.3��. This term is responsible for the strong narrowing of
the oscillation in ds as a function of � and also for the non-
monotonic dependence on power at fixed �. At �	1, the
last photovoltaic term in Eq. �8.5� becomes important, lead-
ing to additional narrowing of the peak in Figs. 9�c� and 8�c�
compared to Figs. 9�a� and 8�a�.

The Hall part hs exhibits an additional oscillation at �
��P��−1/2 and decays for larger � due to the feedback and
multiphoton effects. At �	�max, the first two terms in Eq.
�8.7� �which, in contrast to the last term, are even in detuning

�−2�c from the resonance� become pronounced, as can be
seen, for example, from the difference in amplitude of the
second peak and the second dip in Fig. 9�d�.

�5� �	 �P��−1/2: the ultrahigh power regime, in which all
effects related to the Landau quantization decay to zero due
to the feedback and multiphoton effects.

Figures 6–9 demonstrate that, for large P and/or large �,
the strongly nonlinear effects studied in Sec. VII essentially
modify the behavior characteristic of the SIC regime50 �dot-
ted lines in Fig. 7–9�. In particular, high-power measure-
ments should reveal the significant narrowing of the oscilla-
tion in �xx with increasing P, manifest in Figs. 8 and 9. It
should be noted that, in addition to the magnetoresistivity
traces dominated by the strong feature in the vicinity of �
=0, it is worth studying the Q and T dependences of the
photoresponse at several fixed ratios � /�c; in particular, the
contributions F2d and F3d which manifest themselves at �
�1/2.

At P��−1 the magnitude of the photoresponse in �xy,
Fig. 7�d�, becomes comparable to the effect in �xx, Fig. 7�c�,
which seems to be in accord with the experiment.13 How-
ever, the experiments that revealed the Hall oscillations with
ha�−ds were performed at ��q�1, i.e., at ��1, where for
the level of power used in the experiment the predicted os-
cillations in ha should be more than an order of magnitude
smaller than those in ds. Our theory is not capable of explain-
ing the observed effect in �xy �probably related to
microwave-induced � /�c-dependent changes in the electron
concentration, see discussion in Sec. VIII of Ref. 50�.

IX. RANGE OF APPLICABILITY OF THE THEORY

The above calculation of the OPC is based on the assump-
tions that �i� disorder is smooth, Eq. �2.2�; �ii� temperature is
high, Eq. �3.3�; and �iii� Landau levels strongly overlap with
each other, Eq. �4.1�. Altogether, these conditions made the
analytical treatment of the problem possible to all orders in
the microwave power. Now let us briefly discuss the range of
applicability of the above approximations, especially in the
limit of strongly nonlinear photoresponse. In particular, it is
important to discuss the role of heating.

A. Heating effects

The high-T approximation led us to Eq. �3.3� for the os-
cillatory distribution function �see Appendix A�. The Fermi-
Dirac part of the distribution is characterized by the effective
temperature Te	�c. The oscillatory part appears due to the
Landau quantization, which, in the limit of strongly overlap-
ping Landau levels, is weak: the amplitude of the oscillations
of the DOS is proportional to the small parameter � �Eq.
�4.1��. The heating of electrons, which leads to a growth of
Te with increasing microwave power, can therefore be treated
separately within the framework of the classical Boltzmann
equation with a constant DOS. Such a calculation leads to
the following equation for Te:

41

�Te/T0�4�Te/T0 − 1� = � , �9.1�
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� =
�e-ph�T0�
�tr

� evFE�
2T0

	2

�
±
� s±

� ± �c
	2

. �9.2�

Here �e-ph
−1 �T0��T0

3 is the inelastic relaxation rate due to scat-
tering on acoustic phonons �the latter represent a thermal
bath at temperature T0� and s± describes polarization of mi-
crowaves �Eq. �2.20��. At a typical value of T0�1 K, the
electron-phonon scattering rate exceeds �tr

−1 by more than an
order of magnitude, so that the parameter � in Eq. �9.2� can
vary between 1 and 1000 under realistic experimental condi-
tions. At first glance, the large values of � imply a strong
heating, Te	T0. However, this is not actually the case in
view of the strong temperature dependence of �e-ph�T�. While
at � 1 the temperature grows linearly with � �specifically,
Te−T0���, in the limit of strong heating the growth is much
weaker, Te /T0��1/5	1. The weak dependence on the mi-
crowave power at large � means that, in practice, the heating
can be substantial but never strong, i.e., Te /T0�2 to 3. At
the same time, with lowering bath temperature well below
1 K, while keeping the microwave power constant, the heat-
ing effect may become significantly more pronounced �since
� grows with lowering temperature as T0

−5�, in effect restor-
ing the high-T limit we deal with in the paper.

In the dc response, the strongest manifestation of the heat-
ing effect is the exponential suppression of the Shubnikov-de
Haas oscillations �provided the latter are visible in the ab-
sence of microwaves at Te=T0�. The OPC is influenced much
more weakly, since Te enters the photoconductivity only in-
directly, through the T dependence of the electron-electron
inelastic scattering rate, �in

−1�Te
2. In particular, in the linear

regime, P��q /�in, taking the heating effects into account
leads to a sublinear dependence of the diagonal photore-
sponse on the microwave power, namely ds�PTe

−2�P�, while
at high power, P	�q /�in, the maxima and minima of ds scale
as �P /Te�P�.

B. Stratification of the distribution function

Apart from the condition on the temperature Te	1/ tB, the
approximation �3.3� is valid only if the oscillatory correction
to the distribution function remains much smaller than unity,
so that the general requirement 0� f����1 is met. Despite
the DOS being only weakly modulated ���1�, the above
condition is violated at sufficiently high power for the values
of the ratio � /�c corresponding to the minima and maxima
of ds �see Figs. 9�a� and 9�c��. Near these points, the effect is
governed by the inelastic mechanism, Eq. �8.11�, and the
oscillatory part of Eq. �3.3� can be estimated as

F�����fT �
�ds

tBTe
sin��tB� 

�

tBTe�max
, �9.3�

where we used Eqs. �4.3�, �4.7�, �6.4�, �6.6�, and �8.11�.
At large power, the maximum value of ds grows as

�P /Te�P� �see Eq. �8.8� at �=�max�. It follows that at P
� P�= ��c� /Te�2�in /�q the oscillations of the isotropic part of
the distribution near the maxima and minima of ds become of
order unity. At small detuning from the cyclotron resonance
harmonics, ���max, and at P�P�, the splitting of f��� into

the smooth and oscillatory parts �3.3� is no longer possible.
The distribution function in this regime can be calculated
numerically according to Eq. �11� of Ref. 50 �for details of
the numerical procedure, see Ref. 68�. An illustrative ex-
ample of the stratification of the distribution function at P
� P� is shown in Fig. 10. Both the heating and the stratifi-
cation of the distribution function suppress the growth and
the narrowing of the peak in ds at very high power. Beyond
the close vicinity of maxima and minima, at ���= �� /�c
−N�	� / tBTe �where N is an integer�, the oscillatory correc-
tion to the distribution function remains small at any power
level and the high-T approximation works well, so that our
results remain intact whatever the microwave power.

C. Smooth vs short-range disorder

In this paper we assumed that the disorder potential is
created solely by charged impurities separated from the plane
of the 2DEG by a spacer of width 
 /2	kF

−1 �Eq. �2.2��. Such
a minimal model of disorder allowed us to account for the
experimentally relevant small-angle scattering condition �q
	�tr and to consider in an unambiguous way the region of
magnetic fields �tr

−1��c��q
−1. On the other hand, a “two-

component model” of disorder,76 including strong scatterers
on the background of the smooth potential �2.2�, is known to
provide a better description of real ultrahigh-mobility struc-
tures.

To our current understanding, the inclusion of the strong
scatterers into the theory should not lead to any qualitative
change of the results presented here �provided the conditions
�2.1� remain satisfied�. In particular, the derivation of the
linear-order inelastic contribution �5.15� in Ref. 34 does not
require any assumptions as to the type of disorder.

By contrast, the strong scatterers were shown3,66 to play a
crucial role in the nonlinear dc response �in the absence of
microwaves�, where strong oscillations of the magnetoresis-
tivity �“HIRO”� were observed,3,20,21,28,29 governed by the
ratio of the Hall electric field to the magnetic field. Remark-
ably, a strong interplay between two types of oscillations in
the 2DEG driven by both microwave and strong dc fields
was recently observed experimentally.30 The theoretical de-
scription of this experimental situation necessitates the inclu-
sion of the backscattering off strong impurities, which we

FIG. 10. Isotropic part of the distribution function at three levels
of the microwave power: P=0, P�P�, and P� P�.
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relegate to future work. It was argued in Ref. 57 that, in the
regime of strong dc field and in the presence of short range
disorder, effects of the microwave field on screening of im-
purities should also be taken into account.

D. Stronger magnetic fields, �c�qœ1

The calculations in Secs. V–VII were performed for the
case of strongly overlapping Landau levels, �c�q�1. In this
limit, �i� microwave-induced corrections to the DOS can be
neglected; �ii� there are substantial effects related to excita-
tion of higher angular and temporal harmonics of the distri-
bution function; in particular, the photovoltaic and quadru-
pole contributions to the OPC. At stronger magnetic fields,
the modulation of the DOS due to the Landau quantization
becomes more pronounced: in the SCBA approximation, at
�c�q�1.8 the Landau levels get separated from each other.68

For the case of separated Landau levels, the effect on higher
harmonics of the distribution function becomes strongly sup-
pressed and the diagonal part of the photoresponse is deter-
mined by the interplay of the inelastic and displacement
mechanisms.

In addition to the nonlinear effects considered in this pa-
per, at �c�q�1 the DOS itself is modified by microwave
radiation. In particular, microwave-induced sidebands appear
on both sides of the Landau levels, leading to the appearance
of an additional structure in the OPC pattern near the frac-
tional harmonics of the cyclotron resonance, n�=m�c.

78 A
similar structure in photoresponse also arises as a multipho-
ton correction to the inelastic contribution to the OPC. Both
structures have precisely the same shape �as a function of ��;
however, the multiphoton mechanism dominates in the case
of strongly separated Landau levels.78 Such a “fractional os-
cillatory pattern” �FOP� in the nonlinear photoresponse was
observed in recent experiments10,26,27 and explained in terms
of either multiphoton corrections to the displacement
contribution10,26,64 or, alternatively, in terms of single-photon
resonant corrections to the inelastic contribution which are
specific to the crossover region �c�q�1.27,68 All four contri-
butions to the FOP will be compared and analyzed
elsewhere.78

X. CONCLUSIONS

Summarizing, we have developed the systematic ap-
proach to the microwave-induced oscillations in the magne-
toresistivity of a 2DEG. This approach has enabled us to
classify contributions to the photoresistivity according to the
combined action of the microwave and dc fields on the tem-
poral and angular harmonics of the distribution function
�Sec. III�. We have studied the interplay of the resulting
mechanisms of photoresponse at high microwave power. In
the limit of strongly overlapping Landau levels �Sec. IV�, the
dc photoconductivity has been calculated to all orders in the
microwave power �Secs. V–VII�.

To linear order in the power, two mechanisms of the os-
cillations �quadrupole and photovoltaic� have been identified,
distinctly different from the known ones �displacement32 and
inelastic34�. The quadrupole and photovoltaic mechanisms

have been shown to be the only ones leading to oscillations
in the Hall part of the photoconductivity tensor. Of particular
interest is the result that the quadrupole contribution violates
Onsager symmetry. In the diagonal part, the inelastic contri-
bution dominates at moderate microwave power, while at
elevated power the contributions of other mechanisms be-
come important.

In Secs. VI and VII we have considered the strongly non-
linear photoresponse at high microwave power. We have
shown that a competition between various nonlinear effects
�the feedback effects, the excitation of high angular and tem-
poral harmonics of the distribution function, and the multi-
photon effects� drives the system through four different non-
linear regimes with increasing microwave power.

Most dramatic changes in the photoresponse are due to
the feedback effects. In the SIC regime, Sec. VI, the feed-
back from the microwave-induced oscillations of the isotro-
pic part of the distribution, F00, leads to the saturation of the
inelastic contribution,40,50 and to the strong interplay of the
inelastic effect and all other contributions to the OPC. In
particular, the strong oscillations of F00 change sign of the
most relevant parts of the displacement and photovoltaic
contributions. Remarkably, in the SIC regime the photore-
sponse becomes independent of the inelastic scattering rate
and, therefore, of temperature.

At higher power, Sec. VII, the feedback suppresses the
effects on higher temporal and angular harmonics of the dis-
tribution function. At still higher power, the multiphoton ex-
citation becomes pronounced and starts to compete with the
feedback effects. At ultrahigh power, the feedback and mul-
tiphoton effects destroy all quantum contributions, restoring
the classical Drude conductivity.

Our theory predicts nonmonotonic behavior of the diago-
nal photoresponse as a function of the microwave power at a
fixed ratio � /�c. As illustrated in Sec. VIII, in magnetore-
sistivity measurements such a nonmonotonic dependence
should result in a significant narrowing of the oscillatory
structure around the integer values of � /�c at sufficiently
large power, see Eq. �8.11�. To a large extent, the narrowing
is due to the displacement contribution. At the same time, the
amplitude of the oscillations is controlled by the inelastic
mechanism at any power level. We suggest to experimentally
measure the power and temperature dependences of the pho-
toresponse at fixed � /�c not too close to the cyclotron reso-
nance harmonics. Such experiments will make it possible to
observe the rich behavior of the photovoltaic contributions.
Also, our theory predicts oscillations in �xy, which, in the
limit of strongly overlapping Landau levels, can be compa-
rable in amplitude with those in �xx.
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APPENDIX A: QUANTUM BOLTZMANN EQUATION IN
THE HIGH-TEMPERATURE LIMIT

In this appendix we derive the high-T version of the quan-
tum Boltzmann equation starting from its general form, Eqs.
�2.11� and �2.13�. We show that the solution of the QBE in
the limit T	�c has the form

f21 
 f�t−,t� = G�t−� + �
n=−�

�

!n��,t�it−
�n�G�t−

�n�� �A1�

and obtain the equations for the amplitudes !n�� , t�. Here
t−= t2− t1, t= �t2+ t1� /2, and G�t−�= �2�−1�d�fT���exp�
−i�t−� is the Fermi distribution function in the time represen-
tation,

G�t−� =
iT exp�− i�Ft−�

2 sinh T�t− + i0�
, t−

�n� = t− − ntB.

In the energy representation, the solution �A1� acquires
the form �3.3�,

f��,�,t� =� dt−ei�t−f21 = fT��� + F��,t,����fT��� ,

�A2�

F��,�,t� = �
n=−�

�

!n��,t�exp�in�tB� . �A3�

In the high-T limit, the function f��� shows fast oscillations
on top of the smooth thermal distribution fT���. The function
f21, Eq. �A1�, is composed of equidistant sharp peaks of
width 1/T, with the distance between them being equal to tB.

The DOS �3.1� for high Landau levels is a periodic func-
tion of energy and the functions gR=−�gA�†, entering Eq.
�2.13�, obey

g21
R = �

m=0

�

gm�t���t−
�n�� . �A4�

In terms of the coefficients gm, the QBE is rewritten as

��t + �c���f31 − Stin�f�31 = Stim�f�31 �A5�

with

Stim�f�31 = �
m"0

�K̂31gm� t2 + t3

2
	 f21

− f21K̂32gm� t2 + t3

2
	�

t2=t3−mtB

+ �
m"0

�K̂31f32gm
* � t2 + t1

2
	

− f32K̂21gm
* � t2 + t1

2
	�

t2=t1−mtB

. �A6�

Now we substitute the solution in the form �A1� into the
kinetic equation. The unperturbed part G�t−� gives zero on
the lhs of Eq. �A5�. The impurity collision integral acting on
G�t−� produces

Stim�G�31 = �
m"0

�G�t2 − t1��K̂31 − K̂32�gm�t3 − mtB/2��t3−t2=mtB

+ �
m#0

�G�t3 − t2��K̂31 − K̂21�

�gm
* �t1 − mtB/2��t1−t2=mtB

, �A7�

where we took into account the fact that the operator K̂, in
the time representation, commutes with an arbitrary function
independent of �, see Eq. �2.25�.

Let us consider the first sum in the above expression. At
TtB	1, the �-function-like G�t2− t1� puts t2 within the inter-
val �t2− t1 � 1/T. Strictly at the point t2− t1=0, the function
G�t2− t1� is infinite, while the expression in the square brack-
ets is zero. Recalling that the kernel changes smoothly on the
scale of �t2− t1 � �1/T� tB, one can replace the difference in

the brackets by the derivative �1K̂31. The result is a series of
peaks of identical shape,

Stim�G�21 = �
−�

�

AN�t�it−
�n�G�t−

�n�� ,

AN�0 = − i���t−
− �t/2�K̂21�t−=NtB

gN�t� ,

AN�0 = − i���t−
+ �t/2�K̂21�t−=NtB

g−N
* �t� ,

AN=0 = − 2i��t−
K̂21�t−=0g0 = � − i�t−

K̂�t−=0, �A8�

where the square brackets mean that the time derivatives act
on the kernel only and do not act on the functions gN�t�. In
the last expression, we took into account that g0, representing
the DOS in the absence of magnetic field, is not affected by
the external fields and by disorder: the average DOS is a
conserved quantity, g0=1/2.

One can see that Stim�G�, given by Eq. �A8�, has exactly
the same form as the oscillatory correction to the distribution
function, Eq. �A1�. It follows that the solution at TtB	1
indeed has the form �A1�. Substituting the perturbed part of
the distribution function �A1� into the kinetic equation, Eqs.
�A5� and �A6�, we finally arrive at the equations for the
amplitudes !n,

��t + �c���!N + �in
−1�!N�

= AN + �
m#0

�K̂N�t�!N−m�tm�gm�tm−N�

−!N−m�tm�K̂m�tm−N�gm�tm−N�

+ K̂N�t�!N+m�tm�gm
* �tm+N�

−!N+m�tm�K̂−m�tm+N�gm
* �tm+N�� , �A9�

where K̂n�tm�=K̂�t−=ntB , t= tm� and tm= t−mtB /2. The in-
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elastic relaxation, which controls the magnitude of the oscil-
lations in the isotropic part of the distribution function, can
be described in the relaxation time approximation, with �in
being the effective electron-electron inelastic scattering
time.50

APPENDIX B: QUANTUM BOLTZMANN EQUATION:
OVERLAPPING LANDAU LEVELS

In this appendix we consider the high-T version of the
QBE, Eq. �A9�, in the limit of weak magnetic field, which
corresponds to the exponentially small modulation of the
DOS. In this case, only the first two terms in the expansion
�A4� should be taken into account, namely, g0=1/2 and g1
=−�, where �=exp�−tB /2�q��1. Other terms, gn=O��n�, are
exponentially smaller and can be neglected. We will also use

the smallness of the odd part of the kernel, K̂ j, with respect

to K̂�, controlled by the parameter ��q /�tr. At zero order in

K̂ j, the distribution function is even in � and the current is

zero. Thus K̂ j�K̂� should be taken into account once, while

the contributions of the second and higher orders in K̂ j
should be neglected.

At zeroth order in �, the kinetic equation �A9� gives

��t + �c���!0 = � − i�t−
K̂�t−=0 = � − i�t−

K̂ j�t−=0, �B1�

where the operator K̂ at the last position in any expression
should be understood as acting on unity. The inelastic term
on the lhs is omitted as the resulting !0 contains odd angular
harmonics only. Indeed, according to Eq. �2.21�, X�t−=0�
=0. It follows that only the odd part of the kernel, K̂ j, pro-
duces a nonzero contribution to the rhs of Eq. �B1� �see Eqs.
�2.25�–�2.28��. Also, on the rhs of Eq. �B1� we omitted

�K̂0�t�!0�t� −!0�t�K̂0�t��/2 = �tr
−1��

2!0, �B2�

originating from the m=0 term in Eq. �A9�. �Here we used

again the fact that X�t−=0�=0, which gives K̂0=�q
−1

+ �K̂��X=0�. In the case of classically strong magnetic field,
�c�tr	1, the term �B2� can be safely neglected. Note, how-
ever, that the dc conductivity is infinite in the absence of this
term in the opposite limit, B=0.

At order O���, the kinetic equation �A9� produces an os-
cillatory correction with the amplitude !1�� , t� obeying

��t + �c���!1�t� + �in
−1�!1�

= i���tB
− �t/2�K̂�tB,t� + �K̂1�t� − K̂0�!1�t�

− ��K̂1�t�!0�t1� −!0�t1�K̂1�t�� . �B3�

In classically strong magnetic field, the last term should be
neglected, since �i� !0, according to Eq. �B1�, is generated

by K̂ j���q /�tr�1; and �ii� the leading part of the kernel,

K̂�� ��q /�tr�0, commutes with �. Thus only the odd part of

the kernel, K̂ j, produces a nonzero term in the curly brackets,

and the result, of second order in K̂ j, is proportional to �q /�tr
and should be neglected. With the same accuracy, O���q /�tr�,
the expression in the square brackets should be replaced by

�K̂ j�t�+K̂��t��t−=tB
.

In the high-T limit, the leading contribution to the current
is of order �2 �Sec. IV�. Accordingly, we represent the
nonoscillatory part of the solution �A3� as

!0 = �0
�D� + 2�2�0

�2�, �B4�

with �0
�D� obeying Eq. �B1� and �0

�2� generated by the m=1
term in the sum �A9�,

2���t + �c����0
�2��t� = − K̂0�t�!−1�t1� +!−1�t1�K̂1�t1�

− K̂0�t�!1�t1� +!1�t1�K̂−1�t1� .

�B5�

Now we recall that the distribution function �A3� is real,

!n=!−n
* , K̂n=K̂−n

* , and take into account that Im K̂=−iK̂ j.
After that, Eq. �B5� can be rewritten as

��t + �c����0
�2��t� = Im��1�t1��iK̂ j�tB,t1�

− Re��1�t1��K̂��tB,t1� , �B6�

where the part K̂� of the kernel is neglected, t1= tB /2, and we
switched to the more convenient notation of Sec. IV by put-
ting �1=−!1 /�.

Equation �B3�, being rewritten separately for the real and
imaginary parts, reads

��t + �c���Im �1�t� + �in
−1�Im �1�t��

= ��t/2 − �tB
�K̂��tB,t� + K̂��tB,t�Im �1�t� , �B7�

��t + �c���Re �1�t� = ��t/2 − �tB
�iK̂ j�tB,t� + K̂��tB,t�Re �1�t�

+ iK̂ j�tB,t�Im �1�t� . �B8�

Equation �B8� shows that Re �1 is of first order in K̂ j, hence
an odd function of �. Accordingly, we omitted the inelastic
collision term in Eq. �B8�, as well as the term

iK̂ j�tB , t1�Re �1�t� on the rhs of Eq. �B7� which is of second

order in K̂ j and thus small in parameter �q /�tr.
The similarity of the rhs of Eq. �B8� to that of Eq. �B6� is

not accidental. In fact, the dc current is expressed in terms of
the combined quantity, � j�t�=�0

�2��t+ tB /2�+Re �1�t�, see
Eq. �4.8�. Both Eqs. �B8� and �B6� contain the term

K̂��tB , t�Re �1�t�=Re �1�t�K̂��tB , t� �unlike K̂ j, the operator

K̂� commutes with �, see Eqs. �2.26� and �2.27��. This term
generates contributions to �0

�2� and Re �1�t�, as illustrated by
diagrams �E� and �F� in Fig. 1. However, in the dc current
�4.8� these contributions cancel each other, as the rhs of the

equation for � j contains K̂ j only, whereas ���t�=Im �1�t� is

fully governed by K̂�. The final equations for �0
�D�, ��, and

� j, Eqs. �4.9�–�4.11�, are given in Sec. IV.
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