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Mesoscopic Hall effect driven by chiral spin order
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A Hall effect due to spin chirality in mesoscopic systems is investigated. We consider a four-terminal Hall
system including local spins with geometry of a vortex domain wall, where strong spin chirality appears near
the center of the vortex. The Fermi energy of the conduction electrons is assumed to be comparable to the
exchange coupling energy where the adiabatic approximation ceases to be valid. Our results show a Hall effect
where a voltage drop and a spin current arise in the transverse direction, which is shown to survive in the
presence of weak disorder. The similarity between this Hall effect and the conventional spin Hall effect in

systems with spin-orbit interaction is pointed out.
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I. INTRODUCTION

Recent research on the anomalous Hall effect has shown
that the spin chirality of a local spin system induces a Hall
conductance via exchange coupling.'>> The anomalous Hall
effect can be seen in ferromagnetic metallic systems, where
the time reversal symmetry (TRS) is broken. When TRS is
preserved, the spin current in a transverse direction is driven
by a longitudinal voltage drop. Such a spin current, the so-
called spin Hall current,®8 can be seen in semiconductor
systems with a spin-orbit interaction. Both anomalous and
spin Hall effects were originally expected in bulk systems,
where the gauge field related to monopoles in momentum
space plays a crucial role. The spin Hall effect can also be
seen in mesoscopic two-dimensional samples with Rashba
spin-orbit interaction.” Numerical calculations using both the
Kubo and Landauer-Biittiker formulas predict the spin Hall
effect. Note that the Landauer-Biittiker formula®!® does not
explicitly assume a local electric field inside the sample.'!

Recently, it has been shown that a Hall conductance is
expected in mesoscopic systems, such as dilute magnetic
semiconductors with artificial magnetic structures.'>”'* The
spin of the conduction electron couples to the local magnetic
moment via an exchange interaction. The Hall conductance
is determined in such a well-ordered magnetic system by
using a local gauge transformation and the adiabatic approxi-
mation, in which only a majority spin component is consid-
ered. This approximation changes the symmetry of the sys-
tem from SU(2) to U(1). However, the minority spin of
conduction electrons cannot be neglected when the exchange
coupling energy J,, is comparable to the Fermi energy E as
in magnetic semiconductors.'> Furthermore, the characteris-
tic length of the local spin modulation & can be comparable
to the Fermi wavelength A due to the small Fermi energy
(Ep~10 meV). For such conditions, one cannot apply the
adiabatic approximation.'?

In this paper, we show that mesoscopic systems with in-
ternal chiral magnetic order exhibit Hall effects in such a
way that both the charge and the spin Hall effects occur
simultaneously. We consider a two-dimensional electron sys-
tem that interacts with local spins via exchange coupling.
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The local spins have a vortex structure with a finite out-of-
plane component that determines the spin chirality. We as-
sume that the Fermi energy of the conduction electron is
comparable to the exchange coupling energy as in some
magnetic semiconductors. In such energy region, the adia-
batic approximation and the U(1) mean field theory* that
explains the anomalous Hall effect cannot be applied. We
calculate the spin-resolved Hall conductance numerically by
using the recursive Green’s function method.'®!” Qur nu-
merical results show that a Hall voltage is induced when the
system has spin chirality. Furthermore, a spin Hall current
can be observed even if the system does not have a spin
chirality. This spin Hall current does not require a uniform
electric field inside the system unlike conventional spin Hall
effects in bulk systems with spin-orbit interaction.® We also
study the effect of randomness and find that the Hall effect
survives in the presence of the impurities. We mention that
the system considered here is related to a two-dimensional
spin-orbit system for which the spin Hall effect has been
reported. We show that the previously reported spin Hall
effects'®!” obtained from the Landauer-Biittiker formula are
similar to the Hall effect presented here. We investigate the
coupling constant dependence of the spin Hall conductances
for these systems. Both of the spin Hall conductances oscil-
late when increasing the exchange or spin-orbit coupling
strength and show linear dependences in the weak coupling
regime.

II. MODEL AND METHOD

We consider a two-dimensional electron system with ex-
change interaction,?”

H= E WicZaCiU_t E c;—(rcjo'_‘] E CZUUU,U’CiU’ : S(X»Y),
i,o

(i.j),0 Qoo
(1)

with the nearest-neighbor hopping parameter t=#%/2m"a?
(m” the effective mass and a the lattice parameter). Fermi
energy is defined as Er=4¢+E from the band edge. The op-
erator ¢;, (c;,) creates (annihilates) an electron of spin o at
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FIG. 1. Spatial average of the chirality Ch;;, in Eq. (3) as a
function of 6. Inset: schematic of proposed four-terminal system,
including chiral magnetic structure. Labels 1-4 indicate leads that
are free from randomness, local magnets, or spin-orbit interaction.

lattice site i, o’s are the Pauli matrices, and J(>0) is the
exchange coupling constant. W; is the random potential dis-
tributed uniformly in the range of —W/2 and W/2. The local
spin S(x,y) has the geometry of a vortex in the x-y plane, in
addition to the uniform S, component,

S(x,y) = S[cos ¢(x,y)sin 6,sin P(x,y)sin 6,cos 6]. (2)

Here, S is the modulus of the local spin, ¢(x,y)
=—tan~'(y/x), such that the center of the vortex is located at
the origin. We assume that the dynamics of the local spins is
much slower than the dynamics of the conduction electrons,
and treat the local spins as static. A schematic view of the
system is shown in the inset of Fig. 1, in which we assume
four-terminal geometry. The leads are labeled as 1-4 and the
+x(y) direction is set to the direction from lead 1(4) to 3(2).
We define the chirality of the local spin system as

g

V_ —_—

(N2 =Ry 201 = Roypnu) o = (Toyy ay + oy ) g
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Chyj = Ejj + Ey, (3)

where E;;=S;-(S;X8;) for a plaquette of a square lattice
labeled as (i,j,k,l) counterclockwise. The system shows
large spin chirality near the center of the vortex. Figure 1
shows the spatial average of the spin chirality as a function
of 6. The value of the spin chirality changes its sign when the
sign of the S, component changes. When the conduction
electron spin is parallel to the local spin, the conduction elec-
trons feel the effective magnetic flux by propagating around
the square lattice.?! The effective magnetic flux is propor-
tional to Ch;j,, and the sign of the Hall conductance will
change at 6=m/2. Obviously, the local spin system does not
have a chirality, (Ch;;;)=0, for #=0,7/2,m. As in the case
of the bulk anomalous Hall effect due to spin chirality,* we
expect that the Hall effect can be obtained except for these
values of 6.

We calculate the spin-resolved transmission amplitudes
by using the recursive Green’s function method.'®!” By em-
ploying the Landauer-Biittiker formula, we assume that the
net current of leads 2 and 4 is zero. The charge current of
lead Il=20'a"(NI_RIVO',IVO")MI_ZI#I’UJ’TIVU,I’Vo":ul” where Nl
is the number of propagating channels per spin for the lead /,
T1v6.17vo' (R1yg11vo0) 1s the transmission (reflection) amplitude
from the o’-spin channel (polarized in the v direction) of
lead I' to the o-spin channel of the lead /, and w; is the
chemical potential of the reservoir attached to the lead /. We
assume that the chemical potential of lead 3 is zero. The Hall
conductance is defined as Gy=-r,/ (rl+7r2), where Fyx
=(uo—ma)/ I, and r,=u,/1, are the Hall resistance and the
resistance, respectively. On the other hand, the spin current
(polarized in the v direction) of lead [ is given by ;¢
=EU’(NI_RIV0',IV0")/*LI_EI’#lo”Tlva',l’Vo"lu‘l" The Spin Hall
conductance is defined as

2
= _2,U«1=2 = Toptavt = Toppan +

; 4)
M1

where the subscripts »] and v| indicate the eigenstates of ¢,. Second equality of Eq. (4) comes from the condition I;T+I;’L
=0. Chemical potentials are calculated by u;=1;R;, ur,=I1R;;, and u,=1;R3;. R is the inverse matrix of G given by

2]Vl - ZL)'o"Rlva',l vo'! - Z0',0"T1 vo,2vo’ -2
2N2 - EUG”RZVU,ZVU" - EU,O"TZVO'AVU’ . (5)
- 2o’,tr’T4VtT,2Vo" 2N4 -

G= - E(r,a"TZV(r,l vo!
-2

o0’ T4V0',1 va'!

III. RESULTS

The uppermost panel of Fig. 2 shows the Hall conduc-
tance as a function of the energy of the conduction electrons
and the angle of the local spin @ for JS=1.07 in a system size
of 30a X30a. The Hall conductance is nonzero for 6#0,
/2, . Its sign changes when the sign of S, changes. The

o0’ Tl vo,dvo’

Ea'a"R4 vo,4vo'!

amplitude of the Hall conductance oscillates with the energy.
This is because the Hall effect is proportional to the momen-
tum of the x direction; hence, it decreases when the Fermi
energy is close to the energy where new propagating chan-
nels open. We note that the (charge) Hall effect also induces
spin current density to be polarized parallel to the local spins
near the interface between lead 2 (or 4) and the sample.
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FIG. 2. (Color) Hall conductance Gy and spin Hall conductance
Giy(v=X,Y,Z) for each polarization: Exchange coupling constant
is JS=t and the system size of 30a X 30a. Hall conductance and x
component of the spin Hall conductance disappear at 6=0,m7/2,,
where the spin chirality vanishes.

If the Fermi energy is comparable to the exchange cou-
pling energy, the adiabatic approximation that neglects the
minority spin components is no longer valid, and we expect
a spin current with a polarization that is not parallel to the
local spins. To confirm this, we plot the spin Hall conduc-
tance for each polarization direction in the lower three panels
of Fig. 2. GZI:IZ vanish at #=0, 7, while GfH vanishes at 6
=0,7/2, 7. At 8=7/2, the local spins near the interface be-
tween the sample and lead 2 are almost direct in the x direc-
tion, and the suppression of the Hall conductance results in a
suppression of GfH. The nonvanishing Y and Z components
of the spin Hall conductance at #=/2 do not induce a volt-
age drop in the transverse direction, such as the spin Hall
effect predicted in the spin-orbit system.'®!° The direction of
polarization rotates while electrons propagate in the sample
due to the precession induced by the exchange coupling. This
precession is an important feature of the mesoscopic spin
Hall effect that is also obtained in a two-dimensional elec-
tron system with spin-orbit interaction. In contrast, only the
Z component of the spin current is expected in bulk spin-
orbit systems.

Figure 3 shows the averaged Hall conductances in the
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FIG. 3. Averaged Hall conductance (G) and spin Hall conduc-
tances (G (v=X,Y,Z) as a ratio of the Fermi wavelength A and
the mean free path L,. Parameters are Er=1.45¢, §=0.37, and JS
=t. Average over 10000 random configurations has been
performed.

presence of impurities. We plot the conductance as a function
of the ratio between A and the mean free path L,
=(6)\3E%)/(W2ma?).'® The Hall conductances survive when
the strength of the impurities is weak. We also observe that
the sign of each Hall conductance is not sensitive to weak
disorder. The spin Hall conductances, especially (GfH), sur-
vive when the strength of the impurities is not so strong.

To make contact with the two-dimensional system with
spin-orbit interaction, we consider the Rashba spin-orbit in-
teraction represented as

H=-1 2 Vio.,jo./cj-o.c]‘o./ N (6)
(irj),0n0"
with
cosy siny
Vieg,i= ( . ) (7)
—siny cosy
and
cosy —isinvy
Vi+y,i = ( .. ) (8)
—isiny cosvy

where 7y is the coupling strength of the Rashba spin-orbit
interaction.?>2* The parameters JS and 7y can be regarded as
a gauge field strength.?>2® Figure 4 shows the dependence on
the coupling strength of the spin Hall conductances both for
the chiral spin system and for the spin-orbit system. The spin
Hall conductances oscillate with the coupling constant in
both cases. Indeed, the component of the spin Hall conduc-
tance in the spin-orbit system shows spin precession by
changing the length of the lead where the spin-obit interac-
tion is present.?” The precession of the spin current is the
feature of ballistic systems, such as a Datta-Das spin
transistor.”® In order to observe the spin precession of the
spin current, one needs the long spin relaxation time. In this
sense, the spin Hall current obtained in the present paper
should be distinguished from the bulk spin Hall effect calcu-
lated from the spin current-charge current correlation of
Kubo formula. We also show the absolute value of the spin
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FIG. 4. Coupling parameter dependences of the spin Hall con-
ductances of the chiral spin order system with #=/2 (left upper
panel) and of the Rashba spin-orbit interaction system (left lower
panel). The right panel shows the log-log plot of absolute values of
spin Hall conductances |Gyy|=(GX)2+(G%)2+(G%,)? in a weak
coupling regime. Both spin Hall conductances show a linear depen-
dence on the coupling parameters JS and 7.

Hall conductance |Gyyl=v(GX)2+(G%)2+(G%)? in the
weak coupling regime. Here, both spin Hall conductances
show linear dependence on the coupling constant in weak
coupling regime.

IV. CONCLUSIONS

We have investigated a mesoscopic Hall effect driven by a
local spin system with spin chirality, which might be experi-
mentally detected in two-dimensional electron system em-
bedded in ferromagnetic semiconductors. The local spin sys-
tem is assumed to have the geometry of a vortex with a
chirality at the center. We have predicted a Hall effect, which
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induces both a charge and a spin Hall conductance. Our nu-
merical results based on the Landauer-Buttiker formula and
the recursive Green’s function technique show that a voltage
drop is obtained in the presence of spin chirality. The sign
and the magnitude of the Hall conductances are rather insen-
sitive to weak disorder, and the Hall effect is expected to be
observable experimentally. We have pointed out that the
present Hall effect is related to the spin Hall effect obtained
for a two-dimensional spin-orbit system, but should be dis-
tinguished from the usual bulk spin Hall effect driven by
monopoles in momentum space described.

For measuring the present Hall effect in actual systems,
an experimental setup using ferromagnetic semiconductors,
such as (Ga, Mn)As, can be used. The proposed vortex spin
configuration?® can be obtained in dilute magnetic semicon-
ductors with low Curie temperatures.’*! Because of the
small saturation magnetization (=0.01 T) of magnetic semi-
conductors, the coupling energy between the conduction spin
and local magnetic moment should be comparable to the
Fermi energy.'> For our calculations, by setting the tight
binding parameter a=10 nm and m"=0.05m,, the corre-
sponding exchange energy becomes J~ 6.9 meV. The Fermi
energy is Ep~ 10 meV for Ep=1.45¢. 6 should be adjusted
approximately to 7/2 to minimize the heating effect that
destroys the spin order. Indirectly, the effect has been re-
ported by spin torque effect in a vortex domain wall.?>33
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